N

HAL

open science

The CL-Atse Protocol Analyser

Mathieu Turuani

» To cite this version:

Mathieu Turuani. The CL-Atse Protocol Analyser. 17th International Conference on Term Rewriting

and Applications - RTA 2006, Aug 2006, Seattle, WA /USA, pp.277-286. inria-00103573

HAL Id: inria-00103573
https://inria.hal.science/inria-00103573
Submitted on 4 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00103573
https://hal.archives-ouvertes.fr

inria-00103573, version 1 - 4 Oct 2006

The CL-Atse Protocol Analyser

Mathieu Turuani

Loria-INRIA, Vandoeuvre-les-Nancy, France
turuani@loria.fr

Abstract This paper presents an overview of the CL-Atse tool, an efiicand
versatile automatic analyser for the security of cryptpfra protocols. CL-Atse
takes as input a protocol specified as a set of rewriting (lfe®rmat, produced
by the AVISPA compiler), and uses rewriting and constraaivisg techniques
to model all reachable states of the participants and dédeattack exists w.r.t.
the Dolev-Yao intruder. Any state-based security propeaty be modelled (like
secrecy, authentication, fairness, etc...), and the edgeproperties of operators
like xor or exponentiation are taken into account with muegsllimitations than
other tools, thanks to a complete modular unification atgori Also, useful con-
straints like typing, inequalities, or shared sets of krealgle (with set operations
like removes, negative tests, etc...) can also be analysed.

1 Introduction

Designing secure communication systems in open envirotergith as the Internet
is a challenging task, which heavily relies on cryptograptriotocols. However, se-
vere attacks have been discovered on protocols even agsymifect cryptographic
primitives. Also, a complete manual analysis of a securittqrol is usually a very
difficult work. Therefore, many decision procedures haverbgroposed to decide se-
curity properties of protocols w.r.t. a bounded number st&ms [JiJf,36,35] in the so
called Dolev-Yao model of intrudeEIl3], the dominatingrfaal security model in this
line of research (seﬂl4] for an overview of the early higtirprotocol analysis). In
particular, among the different approaches the symbolEsZ] have proved
to be very effective on standard benchmafk$ [11] and diseoveew flaws on several
protocols.

The main design goals of CL-Atsare modularity and performance. These two fea-
tures proved crucial for i) easily extending the class oftqeols that can be analysed
(modularity) and ii) obtaining results for a large numbeipobtocol sessions (perfor-
mance). This appeared to be very useful for analysing potgdoom the AVISPAE]
project in which CL-Atse is involved since a few years (witkl@C [E], SATMC [3]
and TA4SP|I}6]), as well as for the RNTL Prouvé project that&tkse joined recently.
The CL-Atse tool can be freely used, either by binary dowdloa the CL-Atse web
pagé, or through on-line execution on the AVISPA web page

! CL-Atse stands for Constraint-Logic-based ATtack SEarche
2 http:/lwww.loria.fr/lequipes/cassis/softwares/AtSe/ |
3 http://www.avispa-project.org/web-interface/ [

http://www.loria.fr/equipes/cassis/softwares/AtSe/
http://www.avispa-project.org/web-interface/

The protocol analysis methods of CL-Atse have their rootsérgeneric knowledge
deduction rules from casruf [lL0] and AVISPA. However, a Ibtoptimisations and
major extensions have been integrated in the tool, like pegssing of the protocol
specifications of extensions to manage the algebraic piepef operators like xéror
exponentiation. In practice, the main characteristicslofA@se are:

— Ageneral protocol language: CL-Atse can analyse any pobspecified as a set of
IF rewriting rules (no restriction). The following figure®ls the standard process
of protocol analysis using the AVISPA tools, from a specifmain HLPSL (role-
based, same idea as strands) to any of the four tools awadabile moment.

- Spec. in IF formd——— v Y v
[spec. in HLPSE—~(HLPSL2IF)—~ (fewiting rules) (cL-Atse) (OFMC) (SATMC) (TA4SP)

— Flexibility and modularity: CL-Atse structure allows eaisyegration of new de-
duction rules and operator properties. In particular, GeeAntegrates an optimised
version of the well-known Baader & Schulz unification algfom [E], with mod-
ules for xor, exponentiation, and associative pairing. Tiolnowledge, CL-Atse
is the only protocol analysis tool that includes completiication algorithms for
xor and exponentiation, with no limitation on terms or irttew operations.

— Efficiency: CL-Atse takes advantage of many optimisatitike,simplification and
re-writing of the input specification, or optimisations bétanalysis method.

— Expressive language for security goals: CL-Atse can apalpy user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded nurabsessions, the analysis
is restricted to a fixed but arbitrary large number of sess{onloops, specified by the
user). Other tools provide different features. The cloge€lL-Atse are:

The OFMC tool |E], also part of AVISPA, solves the same problem as CL-Atszept
that loops and sessions are iterated indefinitely. How&EMC proposes a differ-
ent method to manage algebraic properties of operatoteadof hard-coding these
properties in the tool, a language of operator propertiesasided to the user. Equal-
ity modulo theories is solved through modular rewritingt@@sl of direct unification
with state-of-the-art algorithms for CL-Atse. Howevence this language covers all
theories, termination is only obtained by specifying basioth message depths and
number of intruder operations used to create new terms. éJe@mnpleteness cannot
be ensured. CL-Atse does not provide such flexibility on praps, but it also does not
have any limitation for the theories it can handle (xor, exgtiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in krledge deduction rules, it
is quite easy to include new algebraic (or cryptographiopprties directly in the tool.
Also, CL-Atse seems to be much faster than OFMC (see Sectin 3

The Corin-Etalle [@] constraint-based system, which improves upon oneldped
by Millen & Schmatikov, relies on an expressive syntax basedtrands and some
efficient semantics to analyse and validate security poi¢oElere, strands are extended
to allow any agent to perform explicit checks (i.e. equéakist over terms). This makes
a quite expressive syntax for modelling protocols, thabiséver subsumed by IF rules.
Moreover, to our knowledge no implementation for xor andamential is provided.

4 We specially thank Max Tuengal who largely contributed ®ititegration of xor in CL-Atse.

2 The internal of CL-Atse

We now describe how CL-Atse models protocols and states hamdthese objects
are used in analysis methods. We start with term signatu@ iAtse used to model
messages sent by parties (honest or malicious):

Term = Atom |Var | Term.Term | {Term}s,. |{Term}s .. .
|inv(Term)|Term & Term | Exp(Term, Product)
Product = (Term)il | (Term)il x Product

Terms can be atoms, variables, concatenations (or pairdmg) symmetric or asym-
metric encryption (marked by or a). Also, inv(k) is the inverse ok for asymmetric
encryptiorf. The® and Ezp(..) operators are presented in Secfiof} 3.1, and model the
xor and exponentiation operators.

The intruder capabilities in CL-Atse match the Dolev-Yaodab[13], extended
for xor and exponentiation as if][B,9]. Following the forieai of [L§[#,p], we write
Forge(E) for the infinite set of messages that the intruder can gemdram a set
of ground termsF. In particular, the intruder can compose pairs, encryptian and
exponentiation terms, and decompose pairs, encryptiqogésible), etc...

As usual, (ground) substitutions are (ground) term asségrigto variables. SeE [9]
for a discussion about how to rewrite a protocol specificattoavoid products as vari-
able values. Moreover, allowing agents to make tests of iig@dresiduosity for the
exponential is an easy extension of CL-Atse planned for fugare.

2.1 Protocol and System state in CL-Atse

For performance issues, various algorithms are implendeinte€€L-Atse to simplify
and optimise the input protocol specification, and also tdgthe protocol analysis.
However, these methods require working on a protocol sjgatidin with some special
features. Listing these would be quite technical, but thetnmaportant ones are the
fact that all protocol steps and roles must be local to onky jparticipant, and that CL-
Atse must eliminate all honest agents’ knowledge by comgithem into a small set
of equality and inequality constraints over terms with glblariables. This allows CL-
Atse to compute closures of the participant’s or intrudenidedge, unforgeable terms,
sets or facts, and to optimise each role instance accoyd{pgtprocessing). The way
CL-Atse converts an IF file is out of the scope of this paper.

An execution trace in CL-Atse is built over (protocol) stepwl states, and repre-
sents the list of state changes when running a list of stéqusing) from the initial state.
The basic objects used by CL-Atse are defined as follows.

A system statein CL-Atse is a symbolic representation of an infinite numbfeireal”
(i.e. ground) states. Since honest agent’s states havedoesgrted into constraints,
only the intruder state is relevant in the definition of stateere. Formally:

state = Subst, Sets, ToDec, Known
ToDec = (Term,Term)*
Known = H(Var) > Known | D(Term) > Known | e

5 If k is a (random) term, theimv(k) exists but is unknown to every agent.

with Subst a (partial) substitutionSets a list of factst € set, with {¢, set} C Term,
saying that in this state the elemeris present in the setamedset, andT'oDec a list
of opportunities of knowledge deductions:(if, k) € T'oDec, then the intruder will
getm as soon as he will be able to forge Typically, a knowledggm}; creates an
entry inT'oDec if k in not known at the poinfm}; is obtained. FinallyKnown is a
list of elementary 'D’ecomposed knowled@¥t), and 'H'ypothesid (v) (i.e. variable
constraints), ordered by creation time in the executiotetr&or example:

Known = H(z)> H(y)> D({z},)> H(z)>D(a)>D(b)>e€

means that the intruder knows};, a, b but must forge the value of from {a, b},
and the values of andy from {{z};, a, b}. We denotel, the set of terms such
that D(t) € E. Naturally, a symbolic state as above models the infinitetgtound
stateso (K nown|p, Sets) such thato is a ground instance afubst and o(v) €
Forge(o(F|p)), with Known = E > H(v) > F. The analysis methods of CL-Atse
use rewriting of symbolic states in order to filter or updéie $et of ground states that
it represents.

A protocol stepin CL-Atse represents an elementary reaction of an agermnwdrceiv-
ing the messagecv, and provided that a lisP'tr List of constraints, = v or u # v
over terms and a listetTests of constraintg € set ort ¢ set over sets are satisfied,
the agent sends a message as a response and executes adistOperations of add
or remove operations over sets and set elements. That is:

step = iknows(rcv) & CtrList & SetTests
= iknows(snd) & SetOperations

Note that IF facts are converted into constraints over 3éis.semantic of ground step
execution is defined as usual: given some intruder knowlddga populated list of
named sets, and a ground substitutigrif o(rcv) € Forge(E), if o(u) = o(v) or
o(s) # o(t) for any constraint. = v or s # t in CtrList, and ifo(t) € o(set) (resp.
o(t) ¢ o(set)) for any testt € set (resp.t ¢ set) in SetTests, theno(snd) is added
to £ and all add or remove operationsSatOperations are performed module.

Arole in CL-Atse is a tree-structured set of roles that capturesitin-determinism of
the execution of IF rules. Formally:

role = Step(step, role) | Choice(rolelist) | EndRole

whereChoice describes an agent’s choice point, i.e. from that point @mlg role in
rolelist may be run, like in4|B. Thanks to equality and inequality constraints, this
may model pattern matching. Moreover, thread creation jpstied through tokens.
For example A.(B||C) is modeled by3 roles A, B, C where A sendtok; at its last
step andB andC' wait for tok; in their first steps. Same for confluendd3(|C). D),
with a pool of tokens.

A security property in CL-Atse is modeled as the negation of a list of attack state
defined as follows:

attack_states = (iknows(rcv) & CtrList & SetTests)”

with the same definitions as fetep. An attack is found when at least one ground
state of a symbolic system state satisfies the constraiotseodf the attack states. This
definition of security failure is quite versatile since itoals the user to use any IF
facts (self-made or not) to define any property based onsstatapted to his protocol.
Standard properties like secrecy or authentication argaldt supported and an imple-
mentation of temporal security properties is planned foy vear future. For example,
fairnes§ in a two-party contract-signing protocol may be coded by:

fairness_atk = (i, Alice,text) € play_together & iknows(ctr(text))
& ctr(text) & ctr_list(Alice) & Alice € finished

with text a contract textgtr(text) a term representing the valid signed contract, and
play_together, ctr_list(Alice) and finished user-defined facts representing the lists
of initiated sessions, contracts dfice, and terminated agent’s roles. Similar fékice
playing with an honest agent.

A protocol specificationin CL-Atse is simply a set of instantiated roles (one for each
participant) plus an initial state and a set of attack states

protocol = RoleList, InitState, attack_state

2.2 Protocol Simplifications & Optimisations

During the AVISPA project, it became increasingly clearatttwo important ingredi-

ents that may contribute to the efficiency of the CL-Atse teolld be protocol simpli-

fication strategies and optimisation operations on theogaitspecification. Therefore,
without neglecting the importance of efficiency for the gs#& algorithm, some impor-
tant efforts were devoted to the two axes of protocol singaltfon and optimisation.

Protocol simplifications reduce the overall size of the protocol, and specifically the
number of steps, by merging as many steps together as pyssitdt least marking
them to be executed as soon, or as late, as possible. A sté&pdirtarbe run as soon as
possible will be run in any trace immediately after its pas#ap. Since these marks or
merges put very restrictive constraints on the step iragite, they greatly reduce CL-
Atse computing time (the analysis is necessarily expoakintthe number of unmarked
steps). However, CL-Atse can only take such decisions wireamni automatically build
a proof that it would not void the insecurity of the protoddd,, that if the protocol was
flawed then necessarily at least one attack remains. To dOlsétse builds various
protocol-dependant objects like a set of unforgeable tdatmns, keys, etc.. that the
intruder cannot create in any execution). Then, given aopadtstep, CL-Atse tests its
elements for possibilities of merging (or marking).

To do so, set tests and operations are checked for possibitif being executed
as soon, or as late, as possible. For examplextifis a set name unforgeable by the
intruder, then an operation that removes the tefrom set can be performed as soon
as possible when either there exists no set operation that tuset’ ortests’ € set’ in

8 It intuitively requires that whenever a participant obsinvalid contract, there is a way for it's
partner to also obtain one.

any step of other roles that may be run before this operatiotiye operation is useless
or impossible (similar tests). Similar criteria are evéhutfor each set operation or test,
and for both as soon, or as late, as possible executions.

Also, all other step elements are tested in similar ways,elkag attack states: for
example, marking a step to be run as soon as possible redjuétei§ any attack state
is validated, then it is also validated either before theviones step, or after the current
step if no constraints could prevent running this step. Walktests are successful, the
step is marked and another one is analysed.

Optimisations: Protocol optimisations aim at rewriting some parts of thet@eol in
order to accelerate the search for attacks. The acceleregio be significant, but the
protocol structure can be changed. The idea is to track aflipte origins of ciphertexts
that the intruder must send but cannot create himself (@eessarily obtained from an
agent). By building an exhaustive list of origins for suchnts, CL-Atse can reduce
the future work of the analysis algorithm by unifying thesents with each of their
possible origins and generate choice points accordingialysis acceleration comes
from a reduction of possible redundancy in step executiasredver, this strategy also
fixes the moment when steps holding such cipher terms muairberthe analysis.
The same must also be done on the awaited sets that the intarteot create himself
(same idea). For example, if we have some protocol steps

step; = iknows({m}k) = ...
stepy = ... = iknows({m’},,) ...
steps = ... = iknows({m"}..,) ...

where CL-Atse computes thats unforgeable by the intruder, and thatp, andsteps
are the only origins ofm},, then these steps may be replaced by:

stepys = Choice(steps, stepe)

steps = iknows(token,) & equal({m}, ,{m'},,) = ...
steps = iknows(tokens) & equal({m}, ,{m"},.,) = ...
stepr = ... = iknows({m'},, , tokeny) ...

stepg = ... = iknows({m"},. , tokens) ...

The big difference is that only atoms are now awaitedtitp; andstepg. This gives

us the chance to optimise their execution (when possible)ibying these steps imme-
diately as soon asken; or tokens is added to the intruder knowledge. This strategy
allows CL-Atse to analyse rapidly some protocols that itildawt analyse otherwise.

3 The Analysis Method

As said before, the analysis algorithm implemented in CkeAfollows the general
ideas developed in the AVISPA Project, that is, to symbdijjcaxecute the protocol
in any possible step ordering. We saw in the previous sestione of the important
optimisations of CL-Atse for step interleaving above thémgric method. Moreover, in
order to perform this exploration of all possible executi@tes, the analysis algorithm
relies on two major components: a (generic) unification@aigo modulo the properties

of the operators, like xor or exponentiation, that provitieseam-specific computations;
and the management of states and constraints when runniegoe@l step. This mod-

ular structure allowed us to code the tool extensions requily the AVISPA project

(like sets, properties, typing, etc..) in a direct and retway. We now present the two
major components of CL-Atse and the analysis method.

3.1 Modular Unification (with xor and exponentiation)

The unification module provides a (generic) complete urtificealgorithm modulo the
algebraic or cryptographic properties of the CL-Atse opmsa(encryption, xor, exp,
pair, etc..), as well as related algorithms like term puatfien or normalisation. From
a general point of view, the problem that must be decided sergiven a (partial)
substitutionr and two terms: andv, generate a list of most general unifiddgyuy, , =
{of,..,0}} of u andv that validater, i.e.:

Vo' € Mgus,,,, o'(u)=o'(v)ando’(Var) = o'(o(Var))

Since mgu(s) are used to generate new system states, agmeatust be taken to
generate a list of mgu as small as possible. The latest ingl@tion of CL-Atse man-
ages the properties of the xor operator, the exponentiaimhthe associative concate-
nation. To manage these properties, the tool unifies teramkgio an implementation
of an optimised version of the well-known Baader & SchulZfieation algorithm [§],
which splits the unification problem into smaller unificatjoroblems, one for each the-
ory. Therefore, the unification algorithm is very modulardave consider that it would
be reasonably difficult to add new operator properties tgtiegious ones. Currently,
we have:

The xor operator: Denoted®, this is an associativel(® (b @ ¢) = (a ® b) @ ¢) and
commutative ¢ © b = b @ a) operator equipped with a unit elementd 0 = a) and
nilpotent @ & a = 0);

The exponentiation:DenotedEzp(g, a), it representg® in some fixed group of prime
order. Also, the product on exponents models the multiplication in the correspagdin
(abelian) multiplicative group. Properties include irs@¢ x o~ = 1), commutativity

(a x b = b x a), normalisation Exp(Exp(g, M), N) = Exp(g, M x N)), ...

The associative concatenatiorit represents the basic bit string concatenation, without
any header giving the splitting position: in this case, agdivity models the chance (or

a risk) that an agent will not cut the concatenation coryegtien parsing it. Naturally,

a non-associative pairing operator is also provided.

3.2 The kernel: running a protocol step

The second foundational element of the protocol analydisekernel module, which
aims at running a protocol step on a symbolic system stateling new constraints,
reducing them to elementary constraints, testing theidigl etc... All these operations
are described as rewriting rules and follow carefully theéimantics. For performance
issues all these rules are directly implemented in the te@pgrations on constraints.

Therefore, adding new intruder deduction rules requirésifdement them in the tool.
However, the recent extensions to algebraic propertieggithat the tool is sufficiently
modular to make such integration quite easy. In partictharrewriting rules described
below correspond to matching in the tool very precisely.

Hypothesis reductions:We call non-reduced a hypothedigt) wheret is not a vari-
able. This is the received message of a protocol step. Asthehe= (E> H(t)> F >

€, td, set, o) is a system state whete# Var andF reduced already. Then, we reduce
H(t) depending or with rewriting rules onE > H (¢) > F' > € (ando). For example:

- E>H(u,v)> F — Ev H(u)> H(v)> F;

- EvH@{)>FeD(#')>G — o (EvFeD(#')>G)witho' € Mgu?,/;

- Ev H{t};* ") > F — E» H(t)> H(k) > F if k in not unforgeable;
These rules model respectively the creation of a pair, tHeeetion of a known mes-
sage, and the creation of a cipher. Also, similar but moreperrules allow us to
construct xor or exponentiation terms, by enumerating tresipilities available to an
adversary for constructing such terms, like building anbypcombining xor and non-
xor terms. If definedy’ is the new state’s substitution. These rules are naturalfy n
deterministic (create a set of states), and are iteratéldalintariables are reduced.

Knowledge deductions:We increasenown with K (t), t € Term, for new non-
decomposed 'K’'nowledge (sent message in a protocol stag)l"&) for a knowledge
being processed (i.e. 'T’emporary). Reducinginown containing soméx (¢) is done
in two steps, similar to those for hypothesis. That is, tleepssing of a new knowledge
follows this scheme:

decomposé (t) analyseT'oDec with ¢
ey

LK) DT>

>D(t)> ...

The first set of rules decompose ahyt). For example:

- EvK(u,v)>F — EvKu)>K@)>F; EsK({t)oF — EsT(t)> F;

- EcK({m};”"")> F — EcK(m)eT({m};”*)> H(k')>F with &' = inv(k)
(for asymmetric encryption) o' = k (for symmetric encryption);

These rules model respectively the decomposition of a fierfact that a term may
not be decomposable, and the decryption of a cipher. Rul€d iAtse include vari-
ous optimisations and variations of the techniques desdritbove (like state filtering
depending on key availability, ...). Moreover, rules foror Fxp are also included (to
geta froma @ ¢, or g from Exp(g, M)). The second set of rules can analys&Dec
to add or remove deduction opportunities depending’¢n). That is, assuming that
Known = ExT(t)> F, we:

— Add (m, k) to ToDec whent = {m},;

— Remove({(m;, k;)},c,..,, romToDec when we can reduce the hypotheHigk,) >
.>H(kl)> Ev> D(t) > F to someG such thatD(¢) is used at least once for each
ki, and create a new state wifi(m’) > G. This is again non-deterministic. Also,
create a new state with > D(t) > F', in case nd:; may be computed.

These rules, too, are significantly optimised in CL-Atse.rdtiver, the last rule guar-
antee that we won't ever builel' is a way that has already been tried before, which is
critical for tool performance.

Other operations: To run a protocol step, we need to perform other operatiossaias
than the two above, like adding (and validating) new equalitinequality constraints,
managing sets, etc.. Since they are quite straightforwaddcaded in a similar way as
the two above, they are not detailed here.

3.3 Search for attacks

Using the previously described kernel module, we are now/t@hiun a protocol step on
a system state and get the resulting set of new states. Bherafe can easily explore
all possible runs of a protocol by iteratively running stépsany possible ordering,
starting from the initial state. Moreover, we reduce stepriraving by using the step
marking described in the simplification and optimisatiootm [2.}. Finally, each time
a protocol step is run, we test the non-satisfiability of eattéick state.

Performances: The analysis algorithm of CL-Atse gives very good perforoemin
practice, as shown in the small benchmark table that follohirmes are computing
times of the latest versions (feb. 20, 2006) of OFMC and CkeAand protocol speci-
fications are taken from AVISPA. Note also that (2) is CL-Atgehout some optimisa-
tions. The “Timeout” for QoS in that case is due to an explosibthe number of states.
Both binaries and on-line tool execution are available (sgeduction for URLS).

Protocol Name Alg. theoryy Result OFMC |[CL-Atse|CL-Atse®
ASW - Abort part Secrecy failure 3.94s | 0.03s 0.16s
EAP with Archie method Safe 0.70s | 0.07s 5.94s
EAP TTLS with CHAP Safe 1.27s | 0.18s 0.19s
Fair Zhou-Gollmann Auth. failure | Timeout| 0.13s 0.13s
Fair Zhou-Gollmann (fixed) Safe 7.65s | 4.57s 5.34
IKEv2 with MAC auth. - Exp. Safe 20.29s| 7.62s 7.62s
Kerberos, cross-realm ver. - Exp. Safe 5.83s | 0.42s 0.42s
Kerberos, forwardable ticketsExp. Safe 15.40s| 0.14s 0.15s
Purpose Built Keys protocol Auth. failure | 0.35s | 0.00s 0.00s
PEAP with MS-CHAP auth. Safe 14.25s| 0.18s 0.18s
Next Steps In Signaling, QoS Safe 15.53s| 0.86s | Timeout
SET - Purchase Request Secrecy failure 1.17s | 0.14s 0.15s
Diameter Session Init. Prot. Safe 1.80s | 0.01s 0.02s
SPEKE, with strong pwd. - Exp. Safe 2.75s | 0.04s 0.04s
SSH Transport Layer Prot. - Exp. Safe 33.96s| 2.12s 2.16s

4 Conclusion

As mentioned before, the analysis algorithm implementddlirAtse proposes a solu-
tion to the NP-Complete protocol insecurity problem wa.bounded number of ses-
sions, and with (or without) the algebraic or cryptograpiricperties of operators, like
Xor, exponentiation, or associative pairing. The methddSleAtse include many im-

portant optimisations for step interleaving, either byguoeessing or by optimised data
structures and deduction rules. This allows CL-Atse to cededundancies and limit

the overall number of elementary actions needed at eacljteformance). Moreover,
the tool proved to be sufficiently flexible to support majopitovements and extensions
of the past few years (modularity). For example, extenstorisequalities, set opera-
tions, state-based properties, or typing required ortlg liecoding of previous works.
Also, while the recent implementation of the Baader & Schunication required a
significant amount of work, the extension of CL-Atse with neperator properties,
like Cipher block chaining, is now largely facilitated, aghas planned extensions to
temporal security properties of heuristics for unboundealyssis.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

R. Amadio, D. Lugiez, and V. Vanackere. On the symboliduation of processes with
cryptographic functionsTheor. Comput. S¢i290(1):695-740, 2003.

The AVISPA Team. The Avispa Tool for the automated val@aof internet security pro-
tocols and applications. IRroceedings of CAV 2005, Computer Aided VerificatiddCS
3576, Springer Verlag.

A. Armando, L. Compagna. An Optimized Intruder Model f&Tsbased Model-Checking
of Security Protocols. IRProceedings of the Workshop on Automated Reasoning fori§ecu
Protocol Analysis (ARSPA 2008NTCS 125(1):91-108, 2005.

F. Baader and K.U. Schulz. Unification in the Union of DisfdEquational Theories: Com-
bining Decision Procedures. lournal of Symbolic Computin@1(2): 211-243 (1996).

D. Basin, S. Modersheim, L. Vigand. OFMC: A symbolic rebdhecker for security proto-
cols. InInternational Journal of Information Securi#(3):181-208, 2005.

Y. Boichut, P.-C. Heam, O. Kouchnarenko. Automatic fieation of Security Protocols
Using ApproximationsINRIA Research Repqr©ctober 2005.

M. Boreale. Symbolic trace analysis of cryptographidgeols. InProceedings of the 28th
ICALP’01, LNCS 2076, pages 667—-681. Springer-Verlag, Berlin, 2001.

Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. TuruaAin NP decision procedure for
protocol insecurity with xor. IfProceedings of LICS 2002003.

Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuabieciding the Security of Pro-
tocols with Diffie-Hellman Exponentiation and Products impBnents. InProceedings of
the Foundations of Software Technology and Theoretical [iLoen Science (FSTTCSH3
LNCS 2914, Springer-Verlag, December 2003.

Y. Chevalier and L. Vigneron. A Tool for Lazy Verificatiarf Security Protocols. IiPro-
ceedings of the Automated Software Engineering Confer@®E’'01) IEEE CSP, 2001.

J. Clark and J. Jacob. A Survey of Authentication Prdtddterature: Version 1.0,
17. Nov. 1997. URL{vww.cs.york.ac.uk/“jac/papers/drareview.ps.gz

R. Corin and S. Etalle. An improved constraint-basetesygor the verification of securlty
protocols. INSAS LNCS 2477:326-341, Springer-Verlag, 2002.

D. Dolev and A.C. Yao. On the Security of Public-Key Poatis. |IEEE Transactions on
Information Theory29(2):198-208, 1983.

C. Meadows. Open issues in formal methods for cryptdbcaprotocol analysis. IiPro-
ceedings of DISCEX 200pages 237—-250. IEEE Computer Society Press, 2000.

J. Millen and V. Shmatikov. Symbolic protocol analysighaproducts and Diffie-Hellman
exponentiation. IfProceedings of the 16th IEEE Computer Security Foundatiogkshop
(CSFW'03, pages 47-61, 2003.

M. Rusinowitch and M. Turuani. Protocol Insecurity wRimite Number of Sessions is
NP-complete. Inl4th IEEE Computer Security Foundations Workshop (CSF)Vaates
174-190, 2001.

www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

