
HAL Id: inria-00103573
https://inria.hal.science/inria-00103573

Submitted on 4 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CL-Atse Protocol Analyser
Mathieu Turuani

To cite this version:
Mathieu Turuani. The CL-Atse Protocol Analyser. 17th International Conference on Term Rewriting
and Applications - RTA 2006, Aug 2006, Seattle, WA/USA, pp.277–286. �inria-00103573�

https://inria.hal.science/inria-00103573
https://hal.archives-ouvertes.fr

in
ria

-0
01

03
57

3,
 v

er
si

on
 1

 -
 4

 O
ct

 2
00

6

The CL-Atse Protocol Analyser

Mathieu Turuani

Loria-INRIA, Vandoeuvre-lès-Nancy, France
turuani@loria.fr

Abstract This paper presents an overview of the CL-Atse tool, an efficient and
versatile automatic analyser for the security of cryptographic protocols. CL-Atse
takes as input a protocol specified as a set of rewriting rules(IF format, produced
by the AVISPA compiler), and uses rewriting and constraint solving techniques
to model all reachable states of the participants and decideif an attack exists w.r.t.
the Dolev-Yao intruder. Any state-based security propertycan be modelled (like
secrecy, authentication, fairness, etc...), and the algebraic properties of operators
like xor or exponentiation are taken into account with much less limitations than
other tools, thanks to a complete modular unification algorithm. Also, useful con-
straints like typing, inequalities, or shared sets of knowledge (with set operations
like removes, negative tests, etc...) can also be analysed.

1 Introduction

Designing secure communication systems in open environments such as the Internet
is a challenging task, which heavily relies on cryptographic protocols. However, se-
vere attacks have been discovered on protocols even assuming perfect cryptographic
primitives. Also, a complete manual analysis of a security protocol is usually a very
difficult work. Therefore, many decision procedures have been proposed to decide se-
curity properties of protocols w.r.t. a bounded number of sessions [1,7,16,15] in the so
called Dolev-Yao model of intruder [13], the dominating formal security model in this
line of research (see [14] for an overview of the early history of protocol analysis). In
particular, among the different approaches the symbolic ones [15,10,12] have proved
to be very effective on standard benchmarks [11] and discovered new flaws on several
protocols.

The main design goals of CL-Atse1 are modularity and performance. These two fea-
tures proved crucial for i) easily extending the class of protocols that can be analysed
(modularity) and ii) obtaining results for a large number ofprotocol sessions (perfor-
mance). This appeared to be very useful for analysing protocols from the AVISPA [2]
project in which CL-Atse is involved since a few years (with OFMC [5], SATMC [3]
and TA4SP [6]), as well as for the RNTL Prouvé project that CL-Atse joined recently.
The CL-Atse tool can be freely used, either by binary download on the CL-Atse web
page2, or through on-line execution on the AVISPA web page3.

1 CL-Atse stands for Constraint-Logic-based ATtack SEarcher.
2 http://www.loria.fr/equipes/cassis/softwares/AtSe/
3 http://www.avispa-project.org/web-interface/

http://www.loria.fr/equipes/cassis/softwares/AtSe/
http://www.avispa-project.org/web-interface/

The protocol analysis methods of CL-Atse have their roots inthe generic knowledge
deduction rules from casrul [10] and AVISPA. However, a lot of optimisations and
major extensions have been integrated in the tool, like preprocessing of the protocol
specifications of extensions to manage the algebraic properties of operators like xor4 or
exponentiation. In practice, the main characteristics of CL-Atse are:

– A general protocol language: CL-Atse can analyse any protocol specified as a set of
IF rewriting rules (no restriction). The following figure shows the standard process
of protocol analysis using the AVISPA tools, from a specification in HLPSL (role-
based, same idea as strands) to any of the four tools available at the moment.

Spec. in IF format
 (rewriting rules) TA4SPSATMCOFMCCL−Atse

Spec. in HLPSL HLPSL2IF

– Flexibility and modularity: CL-Atse structure allows easyintegration of new de-
duction rules and operator properties. In particular, CL-Atse integrates an optimised
version of the well-known Baader & Schulz unification algorithm [4], with mod-
ules for xor, exponentiation, and associative pairing. To our knowledge, CL-Atse
is the only protocol analysis tool that includes complete unification algorithms for
xor and exponentiation, with no limitation on terms or intruder operations.

– Efficiency: CL-Atse takes advantage of many optimisations,like simplification and
re-writing of the input specification, or optimisations of the analysis method.

– Expressive language for security goals: CL-Atse can analyse any user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded number of sessions, the analysis
is restricted to a fixed but arbitrary large number of sessions (or loops, specified by the
user). Other tools provide different features. The closestto CL-Atse are:

The OFMC tool [5], also part of AVISPA, solves the same problem as CL-Atse except
that loops and sessions are iterated indefinitely. However,OFMC proposes a differ-
ent method to manage algebraic properties of operators: instead of hard-coding these
properties in the tool, a language of operator properties isprovided to the user. Equal-
ity modulo theories is solved through modular rewriting instead of direct unification
with state-of-the-art algorithms for CL-Atse. However, since this language covers all
theories, termination is only obtained by specifying bounds on message depths and
number of intruder operations used to create new terms. Hence, completeness cannot
be ensured. CL-Atse does not provide such flexibility on properties, but it also does not
have any limitation for the theories it can handle (xor, exponentiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in knowledge deduction rules, it
is quite easy to include new algebraic (or cryptographic) properties directly in the tool.
Also, CL-Atse seems to be much faster than OFMC (see Section 3.3).

The Corin-Etalle [12] constraint-based system, which improves upon one developed
by Millen & Schmatikov, relies on an expressive syntax basedon strands and some
efficient semantics to analyse and validate security protocols. Here, strands are extended
to allow any agent to perform explicit checks (i.e. equalitytest over terms). This makes
a quite expressive syntax for modelling protocols, that is however subsumed by IF rules.
Moreover, to our knowledge no implementation for xor and exponential is provided.
4 We specially thank Max Tuengal who largely contributed to the integration of xor in CL-Atse.

2 The internal of CL-Atse

We now describe how CL-Atse models protocols and states, andhow these objects
are used in analysis methods. We start with term signature inCL-Atse used to model
messages sent by parties (honest or malicious):

T erm = Atom | Var | T erm.T erm | {T erm}s

T erm | {T erm}a

T erm

| inv(T erm) | T erm ⊕ T erm |Exp(T erm, Product)

Product = (T erm)
±1

| (T erm)
±1

× Product

Terms can be atoms, variables, concatenations (or pairing), and symmetric or asym-
metric encryption (marked bys or a). Also, inv(k) is the inverse ofk for asymmetric
encryption5. The⊕ andExp(..) operators are presented in Section 3.1, and model the
xor and exponentiation operators.

The intruder capabilities in CL-Atse match the Dolev-Yao model [13], extended
for xor and exponentiation as in [8,9]. Following the formalism of [16,8,9], we write
Forge(E) for the infinite set of messages that the intruder can generate from a set
of ground termsE. In particular, the intruder can compose pairs, encryption, xor and
exponentiation terms, and decompose pairs, encryption (ifpossible), etc...

As usual, (ground) substitutions are (ground) term assignments to variables. See [9]
for a discussion about how to rewrite a protocol specification to avoid products as vari-
able values. Moreover, allowing agents to make tests of quadratic residuosity for the
exponential is an easy extension of CL-Atse planned for nearfuture.

2.1 Protocol and System state in CL-Atse

For performance issues, various algorithms are implemented in CL-Atse to simplify
and optimise the input protocol specification, and also to guide the protocol analysis.
However, these methods require working on a protocol specification with some special
features. Listing these would be quite technical, but the most important ones are the
fact that all protocol steps and roles must be local to only one participant, and that CL-
Atse must eliminate all honest agents’ knowledge by converting them into a small set
of equality and inequality constraints over terms with global variables. This allows CL-
Atse to compute closures of the participant’s or intruder knowledge, unforgeable terms,
sets or facts, and to optimise each role instance accordingly (preprocessing). The way
CL-Atse converts an IF file is out of the scope of this paper.

An execution trace in CL-Atse is built over (protocol) stepsand states, and repre-
sents the list of state changes when running a list of steps, starting from the initial state.
The basic objects used by CL-Atse are defined as follows.

A system statein CL-Atse is a symbolic representation of an infinite numberof “real”
(i.e. ground) states. Since honest agent’s states have beenconverted into constraints,
only the intruder state is relevant in the definition of states, here. Formally:

state = Subst, Sets, T oDec, Known
ToDec = (T erm, T erm)∗

Known = H(Var) ⊲ Known |D(T erm) ⊲ Known | ǫ
5 If k is a (random) term, theninv(k) exists but is unknown to every agent.

with Subst a (partial) substitution,Sets a list of factst ∈ set, with {t, set} ⊂ T erm,
saying that in this state the elementt is present in the setnamedset, andToDec a list
of opportunities of knowledge deductions: if(m, k) ∈ ToDec, then the intruder will
getm as soon as he will be able to forgek. Typically, a knowledge{m}

s

k creates an
entry inToDec if k in not known at the point{m}

s

k is obtained. Finally,Known is a
list of elementary ’D’ecomposed knowledgeD(t), and ’H’ypothesisH(v) (i.e. variable
constraints), ordered by creation time in the execution trace. For example:

Known = H(x) ⊲ H(y) ⊲ D({z}s

k) ⊲ H(z) ⊲ D(a) ⊲ D(b) ⊲ ǫ

means that the intruder knows{z}s
k, a, b but must forge the value ofz from {a, b},

and the values ofx andy from {{z}s
k, a, b}. We denoteE|D the set of termst such

thatD(t) ∈ E. Naturally, a symbolic state as above models the infinite setof ground
statesσ(Known|D, Sets) such thatσ is a ground instance ofSubst and σ(v) ∈
Forge(σ(F|D)), with Known = E ⊲ H(v) ⊲ F . The analysis methods of CL-Atse
use rewriting of symbolic states in order to filter or update the set of ground states that
it represents.

A protocol step in CL-Atse represents an elementary reaction of an agent: when receiv-
ing the messagercv, and provided that a listCtrList of constraintsu = v or u 6= v
over terms and a listSetT ests of constraintst ∈ set or t /∈ set over sets are satisfied,
the agent sends a messagesnd as a response and executes a listSetOperations of add
or remove operations over sets and set elements. That is:

step = iknows(rcv)& CtrList & SetT ests
⇒ iknows(snd)& SetOperations

Note that IF facts are converted into constraints over sets.The semantic of ground step
execution is defined as usual: given some intruder knowledgeE, a populated list of
named sets, and a ground substitutionσ, if σ(rcv) ∈ Forge(E), if σ(u) = σ(v) or
σ(s) 6= σ(t) for any constraintu = v or s 6= t in CtrList, and ifσ(t) ∈ σ(set) (resp.
σ(t) /∈ σ(set)) for any testt ∈ set (resp.t /∈ set) in SetT ests, thenσ(snd) is added
to E and all add or remove operations inSetOperations are performed moduloσ.

A role in CL-Atse is a tree-structured set of roles that captures the non-determinism of
the execution of IF rules. Formally:

role = Step(step, role) |Choice(role list) |EndRole

whereChoice describes an agent’s choice point, i.e. from that point onlyone role in
role list may be run, like inA|B. Thanks to equality and inequality constraints, this
may model pattern matching. Moreover, thread creation is supported through tokens.
For example,A.(B||C) is modeled by3 rolesA, B, C whereA sendtok1 at its last
step andB andC wait for tok1 in their first steps. Same for confluence ((B||C).D),
with a pool of tokens.

A security property in CL-Atse is modeled as the negation of a list of attack states,
defined as follows:

attack states = (iknows(rcv)& CtrList & SetT ests)∗

with the same definitions as forstep. An attack is found when at least one ground
state of a symbolic system state satisfies the constraints ofone of the attack states. This
definition of security failure is quite versatile since it allows the user to use any IF
facts (self-made or not) to define any property based on states adapted to his protocol.
Standard properties like secrecy or authentication are naturally supported and an imple-
mentation of temporal security properties is planned for very near future. For example,
fairness6 in a two-party contract-signing protocol may be coded by:

fairness atk = (i, Alice, text) ∈ play together & iknows(ctr(text))
& ctr(text) /∈ ctr list(Alice)& Alice ∈ finished

with text a contract text,ctr(text) a term representing the valid signed contract, and
play together, ctr list(Alice) andfinished user-defined facts representing the lists
of initiated sessions, contracts ofAlice, and terminated agent’s roles. Similar forAlice
playing with an honest agent.

A protocol specification in CL-Atse is simply a set of instantiated roles (one for each
participant) plus an initial state and a set of attack states:

protocol = RoleList, InitState, attack state

2.2 Protocol Simplifications & Optimisations

During the AVISPA project, it became increasingly clearer that two important ingredi-
ents that may contribute to the efficiency of the CL-Atse toolwould be protocol simpli-
fication strategies and optimisation operations on the protocol specification. Therefore,
without neglecting the importance of efficiency for the analysis algorithm, some impor-
tant efforts were devoted to the two axes of protocol simplification and optimisation.

Protocol simplifications reduce the overall size of the protocol, and specifically the
number of steps, by merging as many steps together as possible, or at least marking
them to be executed as soon, or as late, as possible. A step marked to be run as soon as
possible will be run in any trace immediately after its parent step. Since these marks or
merges put very restrictive constraints on the step interleaving, they greatly reduce CL-
Atse computing time (the analysis is necessarily exponential in the number of unmarked
steps). However, CL-Atse can only take such decisions when it can automatically build
a proof that it would not void the insecurity of the protocol,i.e., that if the protocol was
flawed then necessarily at least one attack remains. To do so,CL-Atse builds various
protocol-dependant objects like a set of unforgeable terms(atoms, keys, etc.. that the
intruder cannot create in any execution). Then, given a protocol step, CL-Atse tests its
elements for possibilities of merging (or marking).

To do so, set tests and operations are checked for possibilities of being executed
as soon, or as late, as possible. For example, ifset is a set name unforgeable by the
intruder, then an operation that removes the termt from set can be performed as soon
as possible when either there exists no set operation that add t′ to set′ or testst′ ∈ set′ in

6 It intuitively requires that whenever a participant obtains a valid contract, there is a way for it’s
partner to also obtain one.

any step of other roles that may be run before this operation;or the operation is useless
or impossible (similar tests). Similar criteria are evaluated for each set operation or test,
and for both as soon, or as late, as possible executions.

Also, all other step elements are tested in similar ways, as well as attack states: for
example, marking a step to be run as soon as possible requiresthat if any attack state
is validated, then it is also validated either before the previous step, or after the current
step if no constraints could prevent running this step. Whenall tests are successful, the
step is marked and another one is analysed.

Optimisations: Protocol optimisations aim at rewriting some parts of the protocol in
order to accelerate the search for attacks. The acceleration can be significant, but the
protocol structure can be changed. The idea is to track all possible origins of ciphertexts
that the intruder must send but cannot create himself (i.e. necessarily obtained from an
agent). By building an exhaustive list of origins for such terms, CL-Atse can reduce
the future work of the analysis algorithm by unifying these terms with each of their
possible origins and generate choice points accordingly. Analysis acceleration comes
from a reduction of possible redundancy in step execution. Moreover, this strategy also
fixes the moment when steps holding such cipher terms must be run in the analysis.
The same must also be done on the awaited sets that the intruder cannot create himself
(same idea). For example, if we have some protocol steps

step1 = iknows({m}k) ⇒
step2 = ... ⇒ iknows({m′}k′) ...
step3 = ... ⇒ iknows({m′′}k′′) ...

where CL-Atse computes thatk is unforgeable by the intruder, and thatstep2 andstep3

are the only origins of{m}k, then these steps may be replaced by:

step4 = Choice(step5, step6)
step5 = iknows(token1)& equal({m}k , {m′}k′) ⇒
step6 = iknows(token2)& equal({m}k , {m′′}k′′) ⇒
step7 = ... ⇒ iknows({m′}k′ , token1) ...
step8 = ... ⇒ iknows({m′′}k′′ , token2) ...

The big difference is that only atoms are now awaited instep5 andstep6. This gives
us the chance to optimise their execution (when possible) byrunning these steps imme-
diately as soon astoken1 or token2 is added to the intruder knowledge. This strategy
allows CL-Atse to analyse rapidly some protocols that it could not analyse otherwise.

3 The Analysis Method

As said before, the analysis algorithm implemented in CL-Atse follows the general
ideas developed in the AVISPA Project, that is, to symbolically execute the protocol
in any possible step ordering. We saw in the previous sectionsome of the important
optimisations of CL-Atse for step interleaving above this generic method. Moreover, in
order to perform this exploration of all possible executiontraces, the analysis algorithm
relies on two major components: a (generic) unification algorithm modulo the properties

of the operators, like xor or exponentiation, that provide all term-specific computations;
and the management of states and constraints when running a protocol step. This mod-
ular structure allowed us to code the tool extensions required by the AVISPA project
(like sets, properties, typing, etc..) in a direct and natural way. We now present the two
major components of CL-Atse and the analysis method.

3.1 Modular Unification (with xor and exponentiation)

The unification module provides a (generic) complete unification algorithm modulo the
algebraic or cryptographic properties of the CL-Atse operators (encryption, xor, exp,
pair, etc..), as well as related algorithms like term purification or normalisation. From
a general point of view, the problem that must be decided hereis: given a (partial)
substitutionσ and two termsu andv, generate a list of most general unifiersMguσ

u,v =
{

σ′
1, .., σ

′
p

}

of u andv that validateσ, i.e.:

∀σ′ ∈ Mguσ
u,v, σ′(u) = σ′(v) andσ′(Var) = σ′(σ(Var))

Since mgu(s) are used to generate new system states, a great care must be taken to
generate a list of mgu as small as possible. The latest implementation of CL-Atse man-
ages the properties of the xor operator, the exponentiation, and the associative concate-
nation. To manage these properties, the tool unifies terms thanks to an implementation
of an optimised version of the well-known Baader & Schulz unification algorithm [4],
which splits the unification problem into smaller unification problems, one for each the-
ory. Therefore, the unification algorithm is very modular, and we consider that it would
be reasonably difficult to add new operator properties to theprevious ones. Currently,
we have:

The xor operator: Denoted⊕, this is an associative (a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c) and
commutative (a ⊕ b = b ⊕ a) operator equipped with a unit element (a ⊕ 0 = a) and
nilpotent (a ⊕ a = 0);

The exponentiation:DenotedExp(g, a), it representsga in some fixed group of prime
order. Also, the product× on exponents models the multiplication in the corresponding
(abelian) multiplicative group. Properties include inverse (a×a−1 = 1), commutativity
(a × b = b × a), normalisation (Exp(Exp(g, M), N) = Exp(g, M × N)), ...

The associative concatenation:it represents the basic bit string concatenation, without
any header giving the splitting position: in this case, associativity models the chance (or
a risk) that an agent will not cut the concatenation correctly when parsing it. Naturally,
a non-associative pairing operator is also provided.

3.2 The kernel: running a protocol step

The second foundational element of the protocol analysis isthe kernel module, which
aims at running a protocol step on a symbolic system state by adding new constraints,
reducing them to elementary constraints, testing their validity, etc... All these operations
are described as rewriting rules and follow carefully the IFsemantics. For performance
issues all these rules are directly implemented in the tool as operations on constraints.

Therefore, adding new intruder deduction rules requires toimplement them in the tool.
However, the recent extensions to algebraic properties proved that the tool is sufficiently
modular to make such integration quite easy. In particular,the rewriting rules described
below correspond to matching in the tool very precisely.

Hypothesis reductions:We call non-reduced a hypothesisH(t) wheret is not a vari-
able. This is the received message of a protocol step. Assumethats = (E ⊲ H(t) ⊲ F ⊲
ǫ, td, set, σ) is a system state wheret /∈ Var andF reduced already. Then, we reduce
H(t) depending ont with rewriting rules onE ⊲ H(t) ⊲ F ⊲ ǫ (andσ). For example:

– E ⊲ H(u, v) ⊲ F −→ E ⊲ H(u) ⊲ H(v) ⊲ F ;
– E ⊲ H(t) ⊲ F ⊲ D(t′) ⊲ G −→ σ′ (E ⊲ F ⊲ D(t′) ⊲ G) with σ′ ∈ Mguσ

t,t′;
– E ⊲ H({t}s or a

k) ⊲ F −→ E ⊲ H(t) ⊲ H(k) ⊲ F if k in not unforgeable;

These rules model respectively the creation of a pair, the redirection of a known mes-
sage, and the creation of a cipher. Also, similar but more complex rules allow us to
construct xor or exponentiation terms, by enumerating the possibilities available to an
adversary for constructing such terms, like building an xorby combining xor and non-
xor terms. If defined,σ′ is the new state’s substitution. These rules are naturally non-
deterministic (create a set of states), and are iterated until all variables are reduced.

Knowledge deductions:We increaseKnown with K(t), t ∈ T erm, for new non-
decomposed ’K’nowledge (sent message in a protocol step), andT (t) for a knowledge
being processed (i.e. ’T’emporary). Reducing anKnown containing someK(t) is done
in two steps, similar to those for hypothesis. That is, the processing of a new knowledge
follows this scheme:

... ⊲ K(t) ⊲ ...
decomposeK(t)
−−−−−−−−−→ ... ⊲ T (t) ⊲ ...

analyseToDec with t
−−−−−−−−−−−−→ ... ⊲ D(t) ⊲ ...

The first set of rules decompose anyK(t). For example:

– E ⊲ K(u, v) ⊲ F −→ E ⊲ K(u) ⊲ K(v) ⊲ F ; E ⊲ K(t) ⊲ F −→ E ⊲ T (t) ⊲ F ;
– E ⊲K({m}

s or a

k)⊲F −→ E ⊲K(m)⊲T ({m}
s or a

k)⊲H(k′)⊲F with k′ = inv(k)
(for asymmetric encryption) ork′ = k (for symmetric encryption);

These rules model respectively the decomposition of a pair,the fact that a term may
not be decomposable, and the decryption of a cipher. Rules inCL-Atse include vari-
ous optimisations and variations of the techniques described above (like state filtering
depending on key availability, ...). Moreover, rules for⊕ or Exp are also included (to
geta from a ⊕ t, or g from Exp(g, M)). The second set of rules can analyseToDec
to add or remove deduction opportunities depending onT (..). That is, assuming that
Known = E ⊲ T (t) ⊲ F , we:

– Add (m, k) to ToDec whent = {m}k;
– Remove{(m′

i, k
′
i)}i∈1..n fromToDec when we can reduce the hypothesisH(k′

1)⊲
.. ⊲ H(k′

n) ⊲ E ⊲ D(t) ⊲ F to someG such thatD(t) is used at least once for each
k′

i, and create a new state withK(m′) ⊲ G. This is again non-deterministic. Also,
create a new state withE ⊲ D(t) ⊲ F , in case nok′

i may be computed.

These rules, too, are significantly optimised in CL-Atse. Moreover, the last rule guar-
antee that we won’t ever buildk′ is a way that has already been tried before, which is
critical for tool performance.

Other operations:To run a protocol step, we need to perform other operations onstates
than the two above, like adding (and validating) new equality or inequality constraints,
managing sets, etc.. Since they are quite straightforward and coded in a similar way as
the two above, they are not detailed here.

3.3 Search for attacks

Using the previously described kernel module, we are now able to run a protocol step on
a system state and get the resulting set of new states. Therefore, we can easily explore
all possible runs of a protocol by iteratively running stepsin any possible ordering,
starting from the initial state. Moreover, we reduce step interleaving by using the step
marking described in the simplification and optimisation Section 2.2. Finally, each time
a protocol step is run, we test the non-satisfiability of eachattack state.

Performances:The analysis algorithm of CL-Atse gives very good performances in
practice, as shown in the small benchmark table that follows. Times are computing
times of the latest versions (feb. 20, 2006) of OFMC and CL-Atse, and protocol speci-
fications are taken from AVISPA. Note also that (2) is CL-Atsewithout some optimisa-
tions. The “Timeout” for QoS in that case is due to an explosion of the number of states.
Both binaries and on-line tool execution are available (seeintroduction for URLs).

Protocol Name Alg. theory Result OFMC CL-Atse CL-Atse(2)

ASW - Abort part Secrecy failure 3.94s 0.03s 0.16s
EAP with Archie method Safe 0.70s 0.07s 5.94s
EAP TTLS with CHAP Safe 1.27s 0.18s 0.19s
Fair Zhou-Gollmann Auth. failure Timeout 0.13s 0.13s
Fair Zhou-Gollmann (fixed) Safe 7.65s 4.57s 5.34
IKEv2 with MAC auth. - Exp. Safe 20.29s 7.62s 7.62s
Kerberos, cross-realm ver. - Exp. Safe 5.83s 0.42s 0.42s
Kerberos, forwardable tickets- Exp. Safe 15.40s 0.14s 0.15s
Purpose Built Keys protocol Auth. failure 0.35s 0.00s 0.00s
PEAP with MS-CHAP auth. Safe 14.25s 0.18s 0.18s
Next Steps In Signaling, QoS Safe 15.53s 0.86s Timeout
SET - Purchase Request Secrecy failure 1.17s 0.14s 0.15s
Diameter Session Init. Prot. Safe 1.80s 0.01s 0.02s
SPEKE, with strong pwd. - Exp. Safe 2.75s 0.04s 0.04s
SSH Transport Layer Prot. - Exp. Safe 33.96s 2.12s 2.16s

4 Conclusion

As mentioned before, the analysis algorithm implemented inCL-Atse proposes a solu-
tion to the NP-Complete protocol insecurity problem w.r.t.a bounded number of ses-
sions, and with (or without) the algebraic or cryptographicproperties of operators, like
xor, exponentiation, or associative pairing. The methods of CL-Atse include many im-
portant optimisations for step interleaving, either by preprocessing or by optimised data
structures and deduction rules. This allows CL-Atse to reduce redundancies and limit

the overall number of elementary actions needed at each step(performance). Moreover,
the tool proved to be sufficiently flexible to support major improvements and extensions
of the past few years (modularity). For example, extensionsto inequalities, set opera-
tions, state-based properties, or typing required only little recoding of previous works.
Also, while the recent implementation of the Baader & Schulzunification required a
significant amount of work, the extension of CL-Atse with newoperator properties,
like Cipher block chaining, is now largely facilitated, as well as planned extensions to
temporal security properties of heuristics for unbounded analysis.

References

1. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions.Theor. Comput. Sci., 290(1):695–740, 2003.

2. The AVISPA Team. The Avispa Tool for the automated validation of internet security pro-
tocols and applications. InProceedings of CAV 2005, Computer Aided Verification, LNCS
3576, Springer Verlag.

3. A. Armando, L. Compagna. An Optimized Intruder Model for SAT-based Model-Checking
of Security Protocols. InProceedings of the Workshop on Automated Reasoning for Security
Protocol Analysis (ARSPA 2004), ENTCS 125(1):91-108, 2005.

4. F. Baader and K.U. Schulz. Unification in the Union of Disjoint Equational Theories: Com-
bining Decision Procedures. InJournal of Symbolic Computing. 21(2): 211-243 (1996).

5. D. Basin, S. Mödersheim, L. Viganò. OFMC: A symbolic model checker for security proto-
cols. InInternational Journal of Information Security4(3):181–208, 2005.

6. Y. Boichut, P.-C. Héam, O. Kouchnarenko. Automatic Verification of Security Protocols
Using Approximations.INRIA Research Report, October 2005.

7. M. Boreale. Symbolic trace analysis of cryptographic protocols. InProceedings of the 28th
ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag, Berlin, 2001.

8. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with xor. InProceedings of LICS 2003, 2003.

9. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security of Pro-
tocols with Diffie-Hellman Exponentiation and Products in Exponents. InProceedings of
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS’03),
LNCS 2914, Springer-Verlag, December 2003.

10. Y. Chevalier and L. Vigneron. A Tool for Lazy Verificationof Security Protocols. InPro-
ceedings of the Automated Software Engineering Conference(ASE’01). IEEE CSP, 2001.

11. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL:www.cs.york.ac.uk/˜jac/papers/drareview.ps.gz .

12. R. Corin and S. Etalle. An improved constraint-based system for the verification of security
protocols. InSAS, LNCS 2477:326–341, Springer-Verlag, 2002.

13. D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

14. C. Meadows. Open issues in formal methods for cryptographic protocol analysis. InPro-
ceedings of DISCEX 2000, pages 237–250. IEEE Computer Society Press, 2000.

15. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-Hellman
exponentiation. InProceedings of the 16th IEEE Computer Security FoundationsWorkshop
(CSFW’03), pages 47–61, 2003.

16. M. Rusinowitch and M. Turuani. Protocol Insecurity withFinite Number of Sessions is
NP-complete. In14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
174–190, 2001.

www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

