Skip to main content

Monitoring the Impact of Nanomaterials on Animal Cells by Impedance Analysis: A Noninvasive, Label-Free, and Multimodal Approach

  • Chapter
  • First Online:
Measuring Biological Impacts of Nanomaterials

Abstract

Experimental assays based on living cells have emerged to an indispensable tool in the life sciences as a compromise between animal experiments and purely molecular interactions analysis. Label-free monitoring of such assays is rather new and its technical progress has been driven by the accumulating evidence that the molecular constituents of label-based approaches might manipulate the assay cells or their readout might be affected by the compound being tested in the assay. This has been particularly evident in the field of nanotoxicology as many nanomaterials are luminescent or redox active or they inhibit the activity of enzymes that are used to analyze the cell response. Among the established label-free techniques to monitor cell-based assays, impedance analysis is the farthest developed with respect to the available assay formats, throughput, and information content of the raw data. This chapter will summarize the general principles of impedimetric cell monitoring, introduce the available assay formats, and show how these have been applied to unravel the biological response of nanoscale particles on different levels of cell physiology. The description and interpretation of impedimetric assays will be embedded in a thorough discussion on the pros and cons of label-free versus label-based monitoring of animal cells in biomedical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Impedance for the fraction of the total current that is in phase with the voltage

  2. 2.

    Impedance for the fraction of the total current that is 90° out of phase with the voltage

  3. 3.

    C = 1/[2·π·f·Im(Z)] with f as the AC frequency.

References

  1. Bradlaw JA (1986) Evaluation of drug and chemical toxicity with cell culture systems. Fundam Appl Toxicol 6(4):598–606

    Article  CAS  Google Scholar 

  2. Horrocks C, Halse R, Suzuki R, Shepherd PR (2003) Human cell systems for drug discovery. Curr Opin Drug Discov Devel 6(4):570–575

    CAS  Google Scholar 

  3. Conway BR, Demarest KT (2002) The use of biosensors to study GPCR function: applications for high-content screening. Receptors Channels 8(5-6):331–341

    Article  CAS  Google Scholar 

  4. Beske OE, Goldbard S (2002) High-throughput cell analysis using multiplexed array technologies. Drug Discov Today 7(18 Suppl):S131–S135

    Article  CAS  Google Scholar 

  5. Johnston PA (2002) Cellular platforms for HTS: three case studies. Drug Discov Today 7(6):353–363

    Article  CAS  Google Scholar 

  6. Horakova K (1999) The use of cell culture systems for the assessment of general cellular toxicity and to detect the nature and location of free radical damage. Gen Physiol Biophys 18 Spec No:63–69

    Google Scholar 

  7. Zucco F, De Angelis I, Testai E, Stammati A (2004) Toxicology investigations with cell culture systems: 20 years after. Toxicol In Vitro 18(2):153–163

    Article  CAS  Google Scholar 

  8. Carlo GL, Jenrow RS (2000) Scientific progress – wireless phones and brain cancer: current state of the science. MedGenMed 2(3), E40

    CAS  Google Scholar 

  9. Valberg PA (1997) Radio frequency radiation (RFR): the nature of exposure and carcinogenic potential. Cancer Causes Control 8(3):323–332

    Article  CAS  Google Scholar 

  10. Pizzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D, Savarino L (1994) Cell culture methods for testing biocompatibility. Clin Mater 15(3):173–190

    Article  CAS  Google Scholar 

  11. Wintermantel E, Shah-Derler B, Bruinink A, Petitmermet M, Blum J, Ha SW (2002) Biokompatibilität. In: Wintermantel E, Suk-Woo H (eds) Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer, Berlin, pp 5–44

    Google Scholar 

  12. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137

    Article  CAS  Google Scholar 

  13. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem (Palo Alto Calif) 5:181–205

    Article  CAS  Google Scholar 

  14. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134(3):425–439

    Article  CAS  Google Scholar 

  15. Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL (2009) Toxicity of therapeutic nanoparticles. Nanomedicine (Lond) 4(2):219–241

    Article  CAS  Google Scholar 

  16. Freshney IR (2010) The culture of animal cells: a manual of basic technique. Wiley, Hoboken

    Google Scholar 

  17. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97(5):695–710

    Article  CAS  Google Scholar 

  18. Fendyur A, Varma S, Lo CT, Voldman J (2014) Cell-based biosensor to report DNA damage in micro- and nanosystems. Anal Chem 86(15):7598–7605

    Article  CAS  Google Scholar 

  19. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79(2):214–223

    Article  CAS  Google Scholar 

  20. Hu H, Deng H, Fang Y (2012) Label-free phenotypic profiling identified D-luciferin as a GPR35 agonist. PLoS One 7(4), e34934

    Article  CAS  Google Scholar 

  21. Knight MM, Roberts SR, Lee DA, Bader DL (2003) Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am J Physiol Cell Physiol 284(4):C1083–C1089

    Article  CAS  Google Scholar 

  22. Sumantran VN (2011) Cellular chemosensitivity assays: an overview. Methods Mol Biol 731:219–236

    Article  CAS  Google Scholar 

  23. Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30(5):609–627

    Article  CAS  Google Scholar 

  24. Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, Vandenabeele P (2013) Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61(2):117–129

    Article  CAS  Google Scholar 

  25. Holder AL, Goth-Goldstein R, Lucas D, Koshland CP (2012) Particle-induced artifacts in the MTT and LDH viability assays. Chem Res Toxicol 25(9):1885–1892

    Article  CAS  Google Scholar 

  26. Oh SJ, Kim H, Liu Y, Han HK, Kwon K, Chang KH, Park K, Kim Y, Shim K, An SS, Lee MY (2014) Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Toxicol Lett 225(3):422–432

    Article  CAS  Google Scholar 

  27. Lupu AR, Popescu T (2013) The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays. Toxicol In Vitro 27(5):1445–1450

    Article  CAS  Google Scholar 

  28. Weiss DG (1987) Videomicroscopic measurements in living cells: dynamic determination of multiple end points for in vitro toxicology. Mol Toxicol 1(4):465–488

    CAS  Google Scholar 

  29. Bayyoud T, Hofmann J, Spitzer M, Bartz-Schmidt KU, Yoeruek E (2014) Cytotoxic properties of sunitinib and sorafenib on human corneal epithelial cells. Curr Eye Res 39(2):149–154

    Article  CAS  Google Scholar 

  30. Bettenworth D, Lenz P, Krausewitz P, Bruckner M, Ketelhut S, Domagk D, Kemper B (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 9(9), e107317

    Article  CAS  Google Scholar 

  31. Rappaz B, Breton B, Shaffer E, Turcatti G (2014) Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb Chem High Throughput Screen 17(1):80–88

    Article  CAS  Google Scholar 

  32. Kuhn J, Shaffer E, Mena J, Breton B, Parent J, Rappaz B, Chambon M, Emery Y, Magistretti P, Depeursinge C, Marquet P, Turcatti G (2013) Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev Technol 11(2):101–107

    Article  CAS  Google Scholar 

  33. Mir TA, Shinohara H (2012) Label-free observation of three-dimensional morphology change of a single PC12 cell by digital holographic microscopy. Anal Biochem 429(1):53–57

    Article  CAS  Google Scholar 

  34. Shinohara H, Sakai Y, Mir TA (2013) Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal Biochem 441(2):185–189

    Article  CAS  Google Scholar 

  35. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M (2014) Surface plasmon resonance for cell-based clinical diagnosis. Sensors (Basel) 14(3):4948–4959

    Article  CAS  Google Scholar 

  36. Horii M, Shinohara H, Iribe Y, Suzuki M (2011) Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager. Analyst 136(13):2706–2711

    Article  CAS  Google Scholar 

  37. Scott CW, Peters MF (2010) Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 15(17-18):704–716

    Article  CAS  Google Scholar 

  38. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2009) Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol 10:16–33

    Article  CAS  Google Scholar 

  39. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2010) Using surface plasmon resonance imaging to probe dynamic interactions between cells and extracellular matrix. Cytometry A 77A(9):895–903

    Article  CAS  Google Scholar 

  40. Robelek R (2009) Surface plasmon resonance sensors in cell biology: basics & application. Bioanal Rev 1(1):57–72

    Article  Google Scholar 

  41. Fang Y (2010) Live cell optical sensing for high throughput applications. Adv Biochem Eng Biotechnol 118:153–163

    CAS  Google Scholar 

  42. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91(5):1925–1940

    Article  CAS  Google Scholar 

  43. Deng H, Wang C, Su M, Fang Y (2012) Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole cell assays. Anal Chem 84(19):8232–8239

    Article  CAS  Google Scholar 

  44. Wolf B, Brischwein M, Baumann W, Ehret R, Kraus M (1998) Monitoring of cellular signalling and metabolism with modular sensor- technique: the PhysioControl-Microsystem (PCM). Biosens Bioelectron 13(5):501–509

    Article  CAS  Google Scholar 

  45. Owicki JC, Parce JW (1990) Bioassays with a microphysiometer. Nature 344(6263):271

    Article  CAS  Google Scholar 

  46. Lehmann M, Baumann W, Brischwein M, Ehret R, Kraus M, Schwinde A, Bitzenhofer M, Freund I, Wolf B (2000) Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications. Biosens Bioelectron 15(3-4):117–124

    Article  CAS  Google Scholar 

  47. Lehmann M, Baumann W, Brischwein M, Gahle H, Freund I, Ehret R, Drechsler S, Palzer H, Kleintges M, Sieben U, Wolf B (2001) Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosens Bioelectron 16(3):195–203

    Article  CAS  Google Scholar 

  48. Hafner F (2000) Cytosensor Microphysiometer: technology and recent applications. Biosens Bioelectron 15(3-4):149–158

    Article  CAS  Google Scholar 

  49. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257(5078):1906–1912

    Article  CAS  Google Scholar 

  50. Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD, Wada HG, Parce JW (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–113

    Article  CAS  Google Scholar 

  51. Parce JW, Owicki JC, Kercso KM, Sigal GB, Wada HG, Muir VC, Bousse LJ, Ross KL, Sikic BI, McConnell HM (1989) Detection of cell-affecting agents with a silicon biosensor. Science 246(4927):243–247

    Article  CAS  Google Scholar 

  52. Fanigliulo A, Accossato P, Adami M, Lanzi M, Martinoia S, Paddeu S, Parodi MT, Rossi M, Sartore M, Grattarola M, Nicolini C (1996) Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sens Actuators B 32(1):41–48

    Article  CAS  Google Scholar 

  53. Ungerbock B, Charwat V, Ertl P, Mayr T (2013) Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab Chip 13(8):1593–1601

    Article  CAS  Google Scholar 

  54. Fromherz P (1999) Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane. Eur Biophys J 28(3):254–258

    Article  CAS  Google Scholar 

  55. Fromherz P, Offenhausser A, Vetter T, Weis J (1991) A neuron-silicon junction: a Retzius cell of the leech on an insulated- gate field-effect transistor. Science 252(5010):1290–1293

    Article  CAS  Google Scholar 

  56. Fromherz P, Stett A (1995) Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys Rev Lett 75(8):1670–1673

    Article  CAS  Google Scholar 

  57. Gross GW, Rhoades BK, Azzazy HM, Wu MC (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10(6-7):553–567

    Article  CAS  Google Scholar 

  58. Woolley DE, Tetlow LC, Adlam DJ, Gearey D, Eden RD (2002) Electrochemical monitoring of cell behaviour in vitro: a new technology. Biotechnol Bioeng 77(7):725–733

    Article  CAS  Google Scholar 

  59. Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed Engl 39(22):4004–4032

    Article  CAS  Google Scholar 

  60. Kipling AL, Thompson M (1990) Network analysis method applied to liquid-phase acoustic-wave sensors. Anal Chem 62(14):1514–1519

    Article  CAS  Google Scholar 

  61. Yang MS, Thompson M (1993) Multiple chemical information from the thickness shear mode acoustic-wave sensor in the liquid-phase. Anal Chem 65(9):1158–1168

    Article  CAS  Google Scholar 

  62. Gryte DM, Ward MD, Hu WS (1993) Real-time measurement of anchorage-dependent cell-adhesion using a quartz crystal microbalance. Biotechnol Prog 9(1):105–108

    Article  CAS  Google Scholar 

  63. Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J Biophys Lett 28(1):26–37

    Article  CAS  Google Scholar 

  64. Saitakis M, Gizeli E (2012) Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 69(3):357–371

    Article  CAS  Google Scholar 

  65. Wegener J, Seebach J, Janshoff A, Galla HJ (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78(6):2821–2833

    Article  CAS  Google Scholar 

  66. Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79(9):3392–3400

    Article  CAS  Google Scholar 

  67. Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361(1):77–92

    Article  CAS  Google Scholar 

  68. Marx KA, Zhou T, Montrone A, Schulze H, Braunhut SJ (2001) A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens Bioelectron 16(9-12):773–782

    Article  CAS  Google Scholar 

  69. Pietuch A, Bruckner BR, Schneider D, Tarantola M, Rosman C, Sonnichsen C, Janshoff A (2015) Mechanical properties of MDCK II cells exposed to gold nanorods. Beilstein J Nanotechnol 6:223–231

    Article  CAS  Google Scholar 

  70. Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S, Rosman C, Breus V, Sonnichsen C, Basche T, Wegener J, Janshoff A (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3(1):213–222

    Article  CAS  Google Scholar 

  71. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A 81(12):3761–3764

    Article  CAS  Google Scholar 

  72. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A 88(17):7896–7900

    Article  CAS  Google Scholar 

  73. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259(1):158–166

    Article  CAS  Google Scholar 

  74. Stolwijk JA, Michaelis S, Wegener J (2012) Cell growth and cell death studied by electric cell-substrate impedance sensing. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis, vol 17, Cancer metastasis – biology and treatment. Springer, Heidelberg, pp 85–117

    Chapter  Google Scholar 

  75. Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101(6):1554–1559

    Article  CAS  Google Scholar 

  76. Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19(6):583–594

    Article  CAS  Google Scholar 

  77. Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH, Fey J, Salazar N (2009) A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9(15):2176–2183

    Article  CAS  Google Scholar 

  78. Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24(8):2625–2629

    Article  CAS  Google Scholar 

  79. Tran TB, Nguyen PD, Um SH, Son SJ, Min J (2013) Real-time monitoring in vitro cellular cytotoxicity of silica nanotubes using electric cell-substrate impedance sensing (ECIS). J Biomed Nanotechnol 9(2):286–290

    Article  CAS  Google Scholar 

  80. Fang Y (2011) Label-free receptor assays. Drug Discov Today Technol 7(1):e5–e11

    Article  CAS  Google Scholar 

  81. Schroder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Muller A, Blattermann S, Mohr-Andra M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28(9):943–949

    Article  CAS  Google Scholar 

  82. Giaever I, Keese CR (1986) Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng 33(2):242–247

    Article  CAS  Google Scholar 

  83. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366(6455):591–592

    Article  CAS  Google Scholar 

  84. Janshoff A, Wegener J, Sieber M, Galla HJ (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25(2):93–103

    Article  CAS  Google Scholar 

  85. Wegener J (2009) Impedance analysis of cell junctions. In: Fuchs H (ed) Nanotechnology, vol 6, Nanoprobes. Wiley VCH, Weinheim, pp 325–357

    Google Scholar 

  86. Wegener J, Sieber M, Galla HJ (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32(3):151–170

    Article  CAS  Google Scholar 

  87. Wegener J, Seebach J (2014) Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res 355(3):485–514

    Article  CAS  Google Scholar 

  88. Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR, Giaever I, Wegener J (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26(12):4720–4727

    Article  CAS  Google Scholar 

  89. Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33 (2):348, 350, 352 passim

    Google Scholar 

  90. Lukic S, Wegener J (2015) Impedimetric monitoring of cell-based assays. In: eLS. Wiley, Chichester

    Google Scholar 

  91. Frisch T, Thoumine O (2002) Predicting the kinetics of cell spreading. J Biomech 35(8):1137–1141

    Article  Google Scholar 

  92. Wang L, Wang L, Yin H, Xing W, Yu Z, Guo M, Cheng J (2010) Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosens Bioelectron 25(5):990–995

    Article  CAS  Google Scholar 

  93. Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S (2011) Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst 136(2):237–245

    Article  CAS  Google Scholar 

  94. Xie F, Xu Y, Wang L, Mitchelson K, Xing W, Cheng J (2012) Use of cellular electrical impedance sensing to assess in vitro cytotoxicity of anticancer drugs in a human kidney cell nephrotoxicity model. Analyst 137(6):1343–1350

    Google Scholar 

  95. Lo CM, Keese CR, Giaever I (1994) pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res 213(2):391–397

    Article  CAS  Google Scholar 

  96. Lo C-M, Keese CR, Giaever I (1993) Monitoring motion of confluent cells in tissue culture. Exp Cell Res 204:102–109

    Article  CAS  Google Scholar 

  97. Lovelady DC, Friedman J, Patel S, Rabson DA, Lo CM (2009) Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Biosens Bioelectron 24(7):2250–2254

    Article  CAS  Google Scholar 

  98. Lo CM, Linton M, Keese CR, Giaever I (2001) Correlated motion and oscillation of neighboring cells in vitro. Cell Commun Adhes 8(3):139–145

    Article  CAS  Google Scholar 

  99. Bagnaninchi PO, Drummond N (2011) Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A 108(16):6462–6467

    Article  CAS  Google Scholar 

  100. Wegener J, Zink S, Rosen P, Galla H (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflugers Arch 437(6):925–934

    Article  CAS  Google Scholar 

  101. Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313(7):1318–1325

    Article  CAS  Google Scholar 

  102. Wegener J, Hakvoort A, Galla HJ (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853(1):115–124

    Article  CAS  Google Scholar 

  103. Dieterich P, Odenthal-Schnittler M, Mrowietz C, Kramer M, Sasse L, Oberleithner H, Schnittler HJ (2000) Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress. Biophys J 79(3):1285–1297

    Article  CAS  Google Scholar 

  104. Hondroulis E, Liu C, Li CZ (2010) Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotechnology 21(31):315103

    Article  CAS  Google Scholar 

  105. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JH (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80(14):5487–5493

    Article  CAS  Google Scholar 

  106. Male KB, Hamzeh M, Montes J, Leung AC, Luong JH (2013) Monitoring of potential cytotoxic and inhibitory effects of titanium dioxide using on-line and non-invasive cell-based impedance spectroscopy. Anal Chim Acta 777:78–85

    Article  CAS  Google Scholar 

  107. Otero-Gonzalez L, Sierra-Alvarez R, Boitano S, Field JA (2012) Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 46(18):10271–10278

    CAS  Google Scholar 

  108. Chuang SM, Lee YH, Liang RY, Roam GD, Zeng ZM, Tu HF, Wang SK, Chueh PJ (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim Biophys Acta 1830(10):4960–4973

    Article  CAS  Google Scholar 

  109. Huang L, Xie L, Boyd JM, Li XF (2008) Cell-electronic sensing of particle-induced cellular responses. Analyst 133(5):643–648

    Article  CAS  Google Scholar 

  110. Moe B, Gabos S, Li XF (2013) Real-time cell-microelectronic sensing of nanoparticle-induced cytotoxic effects. Anal Chim Acta 789:83–90

    Article  CAS  Google Scholar 

  111. Bohmert L, Niemann B, Thunemann AF, Lampen A (2012) Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2. Arch Toxicol 86(7):1107–1115

    Article  CAS  Google Scholar 

  112. Seiffert JM, Baradez MO, Nischwitz V, Lekishvili T, Goenaga-Infante H, Marshall D (2012) Dynamic monitoring of metal oxide nanoparticle toxicity by label free impedance sensing. Chem Res Toxicol 25(1):140–152

    Article  CAS  Google Scholar 

  113. Lovelady DC, Richmond TC, Maggi AN, Lo CM, Rabson DA (2007) Distinguishing cancerous from noncancerous cells through analysis of electrical noise. Phys Rev E Stat Nonlin Soft Matter Phys 76(4 Pt 1):041908

    Article  CAS  Google Scholar 

  114. Lai YT, Lo CM (2014) Assessing in vitro cytotoxicity of cell micromotion by Hilbert-Huang transform. Conf Proc IEEE Eng Med Biol Soc 2014:3200–3203

    Google Scholar 

  115. Sapper A, Reiss B, Janshoff A, Wegener J (2006) Adsorption and fluctuations of giant liposomes studied by electrochemical impedance measurements. Langmuir 22(2):676–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft (within SPP 1313, GRK 1910, GRK 1570) and the Federal Ministry for Economic Affairs and Energy (within ZIM projects FASTEST and THERANOSTIC) for substantial and continuous support. SL was supported by the European Union under Grant Agreement number 264772 (International Training Network CHEBANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Wegener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 © Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sperber, M. et al. (2015). Monitoring the Impact of Nanomaterials on Animal Cells by Impedance Analysis: A Noninvasive, Label-Free, and Multimodal Approach. In: Wegener, J. (eds) Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, vol 5. Springer, Cham. https://doi.org/10.1007/11663_2015_13

Download citation

Publish with us

Policies and ethics