Skip to main content

Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

In this paper, we first detail the geodesic matching of images which consists in minimizing an energy resulting from a Riemannian metric on a manifold of images, which itself comes from the projection of a Riemannian metric on a deformation group onto the image manifold. We will then present an energy minimization technique based on a wavelet analysis of the deformation and finally some applications with face images and 3D medical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, C.: Fast optic flow computation with discrete wavelets. Technical Report RI365, Centre de Mathématiques Appliquées, École Polytechnique (May 1997)

    Google Scholar 

  2. Bernard, C.P.: Discrete wavelet analysis for fast optic flow computation. Applied and Computational Harmonic Analysis 11(1), 32–63 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  4. Dupuis, P., Grenander, U.: Variational problems on flows of diffeomorphisms for image matching (1998)

    Google Scholar 

  5. Jaffard, S., Laurençot, P.: Orthonormal wavelets, analysis of operators, and applications to numerical analysis, pp. 543–601. Academic Press Professional, Inc., London (1992)

    Google Scholar 

  6. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pat. Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  7. Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)

    MATH  Google Scholar 

  8. Mallat, S.G., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 38(2), 617–643 (1992)

    Article  MathSciNet  Google Scholar 

  9. Meyer, Y.: Wavelets and operators. In: Analysis at Urbana, Urbana, IL (1986–1987). London Mathematical Society Lecture Note Series, vol. I, 137, pp. 256–365. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  10. Miller, M.I., Younes, L.: Group action, diffeomorphisms and matching: a general framework. International Journal of Computer Vision 41, 61–84 (2001)

    Article  MATH  Google Scholar 

  11. Miller, M.I., Joshi, S.C., Christensen, G.E.: Large deformation fluid diffeomorphisms for landmark and image matching. In: Toga, A.W. (ed.) Brain Warping, ch. 7. Academic Press, London (1999)

    Google Scholar 

  12. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting in computational anatomy. Technical report, Center for Imaging Science, Johns Hopkins University (2003)

    Google Scholar 

  13. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sethian, J.A.: Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  15. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Foundations of Computational Mathematics (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcin, L., Younes, L. (2005). Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_23

Download citation

  • DOI: https://doi.org/10.1007/11585978_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics