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Abstract. We investigate the performance of the recently proposed Uni-
fied Particle Swarm Optimization method on constrained engineering
optimization problems. For this purpose, a penalty function approach
is employed and the algorithm is modified to preserve feasibility of the
encountered solutions. The algorithm is illustrated on four well–known
engineering problems with promising results. Comparisons with the stan-
dard local and global variant of Particle Swarm Optimization are re-
ported and discussed.

1 Introduction

Many engineering applications, such as structural optimization, engineering de-
sign, VLSI design, economics, allocation and location problems [1], involve diffi-
cult optimization problems that must be solved efficiently and effectively. Due to
the nature of these applications, the solutions usually need to be constrained in
specific parts of the search space that are delimited by linear and/or nonlinear
constraints.

Different deterministic as well as stochastic algorithms have been developed
for tackling such problems. Deterministic approaches such as Feasible Direction
and Generalized Gradient Descent make strong assumptions on the continuity
and differentiability of the objective function [1,2]. Therefore their applicability is
limited since these characteristics are rarely met in problems that arise in real–
life applications. On the other hand, stochastic optimization algorithms such
as Genetic Algorithms, Evolution Strategies, Evolutionary Programming and
Particle Swarm Optimization (PSO) do not make such assumptions and they
have been successfully applied for tackling constrained optimization problems
during the past few years [3, 4, 5, 6, 7].

Most of the aforementioned optimization algorithms have been primarily
designed to address unconstrained optimization problems. Thus, constraint–
handling techniques are usually incorporated in the algorithm in order to direct
the search towards the desired (feasible) regions of the search space. The most
common constraint–handling technique is the use of penalty functions [3,8,9,7].
In these approaches, the problem is solved as an unconstrained one, where the
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objective function is designed such that non–feasible solutions are characterized
by high function values (in minimization cases). The popularity of penalty–based
approaches for constraint–handling is based mostly on their simplicity and di-
rect applicability that does not involve neither modifications of the employed
algorithm nor development of specialized operators to tackle constraints.

Unified Particle Swarm Optimization (UPSO) is a recently proposed PSO
scheme that harnesses the local and global variant of PSO, combining their
exploration and exploitation abilities without imposing additional requirements
in terms of function evaluations [10]. Preliminary studies have shown that UPSO
can tackle efficiently different optimization problems [10, 11].

We investigate the performance of UPSO on four well–known constrained
engineering optimization problems. A penalty function approach is adopted and
the obtained results are compared to that of the standard PSO algorithm, pro-
viding useful conclusions regarding the efficiency of the unified scheme. The rest
of the paper is organized as follows. The employed penalty function is described
in Section 2, while Section 3 is devoted to the description of UPSO. The consid-
ered test problems as well as the obtained results are reported and discussed in
Section 4. The paper closes with conclusions in Section 5.

2 The Penalty Function Approach

The constrained optimization problem can be formulated, in general, as:

min
X∈S⊂Rn

f(X), (1)

subject to gi(X) � 0, i = 1, . . . , m, (2)

where m is the number of constraints. Different inequality and equality con-
straints can be easily transformed into the form of Eq. (2). The corresponding
penalty function can be defined as [3]:

F (X) = f(X) + H(X), (3)

where H(X) is a penalty factor that is strictly positive for all non–feasible solu-
tions. Penalty functions with static, dynamic, annealing and adaptive penalties
have been proposed and successfully applied in different applications [3, 7].

In the current study, we employed a penalty function that includes informa-
tion about both the number of the violated constraints as well as the degree of
violation. Thus, the penalty factor is defined as [8]:

H(X) = w1 NVCX + w2 SVCX , (4)

where NVCX is the number of constraints that are violated by X ; SVCX is the
sum of all violated constraints, i.e.,

SVCX =
m∑

i=1

max{0, gi(X)},
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and w1, w2, are static weights. The selection of this form of penalties was based
on the promising results obtained by using such penalty functions with evolu-
tionary algorithms [8].

In general, the penalty function influences heavily the performance of an algo-
rithm in solving constrained optimization problems. Sophisticated and problem–
based penalty functions can increase the algorithm’s performance significantly.
To avoid the possibly large influence of the employed penalty function on the
performance of the algorithms, we used static weights w1 and w2, although self–
adaptive approaches that modify the weights dynamically through co–evolution
schemes, as well as more complicated penalty functions, have been successfully
applied in relative works [8, 6].

3 Unified Particle Swarm Optimization

PSO is a stochastic, population–based algorithm for solving optimization prob-
lems. It was introduced in 1995 by Eberhart and Kennedy for numerical op-
timization tasks and its dynamic is based on principles that govern socially
organized groups of individuals [12].

In PSO’s context, the population is called a swarm and its individuals (search
points) are called particles. Each particle has three main characteristics: an
adaptable velocity with which it moves in the search space, a memory where
it stores the best position it has ever visited in the search space (i.e., the posi-
tion with the lowest function value), and the social sharing of information, i.e.,
the knowledge of the best position ever visited by all particles in its neighbor-
hood. The neighborhoods are usually determined based on the indices of the
particles, giving rise to the two main variants of PSO, namely the global and the
local variant. In the former, the whole swarm is considered as the neighborhood
of each particle, while in the latter strictly smaller neighborhoods are used.

Assume an n–dimensional function, f : S ⊂ R
n → R, and a swarm, S =

{X1, X2, . . . , XN}, of N particles. The i–th particle, Xi ∈ S, its velocity, Vi, as
well as its best position, Pi ∈ S, are n–dimensional vectors. A neighborhood of
radius m of Xi consists of the particles Xi−m, . . . , Xi, . . . , Xi+m. Assume bi to
be the index of the particle that attained the best previous position among all
the particles in the neighborhood of Xi, and t to be the iteration counter. Then,
according to the constriction coefficient version of PSO, the swarm is updated
using the equations [13],

Vi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pbi(t) − Xi(t)

)]
, (5)

Xi(t + 1) = Xi(t) + Vi(t + 1), (6)

where i = 1, 2, . . . , N ; χ is the constriction coefficient; c1 and c2 are positive
constants, referred to as cognitive and social parameters, respectively; and r1,
r2 are random vectors with components uniformly distributed in [0, 1]. Default
values for χ, c1 and c2 are determined in the theoretical analysis of Clerc and
Kennedy [13].



UPSO for Solving Constrained Engineering Optimization Problems 585

The performance of a population–based algorithm is heavily dependent on
the trade–off between its exploration and exploitation abilities, i.e., its ability
to explore wide areas of the search space and its ability to converge rapidly
towards the most promising solutions, respectively. The global variant of PSO
promotes exploitation since all particles are attracted by the same best posi-
tion, thereby converging faster towards the same point. On the other hand,
the local variant has better exploration properties since the information regard-
ing the best position of each neighborhood is communicated to the rest of the
swarm through neighboring particles. Therefore, the attraction to specific points
is weaker, thus, preventing the swarm from getting trapped in local minima.
Obviously, the proper selection of neighborhood size affects the trade–off be-
tween exploration and exploitation. However, the selection of neighborhood size
is heavily based on the experience of the user [10].

The Unified Particle Swarm Optimization (UPSO) scheme was recently pro-
posed as an alternative that combines the exploration and exploitation properties
of both the local and global PSO variant [10]. Let Gi(t + 1) and Li(t + 1) de-
note the velocity update of the particle Xi for the global and local PSO variant,
respectively [10],

Gi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pb(t) − Xi(t)

)]
, (7)

Li(t + 1) = χ
[
Vi(t) + c1r

′
1

(
Pi(t) − Xi(t)

)
+ c2r

′
2

(
Pbi(t) − Xi(t)

)]
, (8)

where t denotes the iteration number; b is the index of the best particle of the
whole swarm (global variant); and bi is the index of the best particle in the
neighborhood of Xi (local variant). The main UPSO scheme is defined by [10]:

Ui(t + 1) = (1 − u)Li(t + 1) + uGi(t + 1), (9)
Xi(t + 1) = Xi(t) + Ui(t + 1), (10)

where u ∈ [0, 1] is a parameter called the unification factor, which balances the
influence of the global and local search directions in the unified scheme. The
standard global PSO variant is obtained by setting u = 1 in Eq. (9), while u = 0
corresponds to the standard local PSO variant. All values u ∈ (0, 1), correspond
to composite variants of PSO that combine the exploration and exploitation
characteristics of the global and local variant.

Besides the aforementioned scheme, a stochastic parameter that imitates mu-
tation in evolutionary algorithms can also be incorporated in Eq. (9) to enhance
the exploration capabilities of UPSO [10]. Thus, depending on which variant
UPSO is mostly based, Eq. (9) can be written as [10],

Ui(t + 1) = (1 − u)Li(t + 1) + r3 uGi(t + 1), (11)

which is mostly based on the local variant, or

Ui(t + 1) = r3 (1 − u)Li(t + 1) + uGi(t + 1), (12)

which is mostly based on the global variant, where r3 ∼ N (µ, σ2I) is a nor-
mally distributed parameter, and I is the identity matrix. Although r3 imitates
mutation, the obtained scheme is consistent with the PSO dynamics.
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Fig. 1. The tension/compression spring problem

4 Results and Discussion

In the experiments we used four well–known constrained engineering optimiza-
tion problems:

Problem 1: Design of a tension/compression spring [14]. This problem consists
of the minimization of the weight of the tension/compression spring illustrated
in Fig. 1, subject to constraints on the minimum deflection, shear stress, surge
frequency, diameter and design variables. The design variables are the wire di-
ameter, d, the mean coil diameter, D, and the number of active coils, N . The
problem is formulated as:

min
X

f(X) = (N + 2)Dd2,

subject to:

g1(X) : 1 − D3N
71785d4 � 0,

g2(X) : 4D2−dD
12566(Dd3−d4) + 1

5108d2 − 1 � 0,

g3(X) : 1 − 140.45d
D2N � 0,

g4(X) : D+d
1.5 − 1 � 0,

where X = (d, D, N)�. The desired ranges of the design variables are:

0.05 � d � 2.0, 0.25 � D � 1.3, 2.0 � N � 15.0.

Problem 2: Design of a welded beam [15]. This problem consists of the mini-
mization of the cost of a welded beam illustrated in Fig. 2, subject to constraints
on the shear stress, τ , bending stress in the beam, σ, buckling load on the bar,
Pc, end deflection of the beam, δ, and side constraints. There are four design
variables, h, l, t and b that will be denoted as x1, x2, x3 and x4, respectively.
The problem is formulated as:

min
X

f(X) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2),
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Fig. 2. The welded beam problem

subject to:

g1(X) : τ(X) − τmax � 0,

g2(X) : σ(X) − σmax � 0,

g3(X) : x1 − x4 � 0,

g4(X) : 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5.0 � 0,

g5(X) : 0.125− x1 � 0,

g6(X) : δ(X) − δmax � 0,

g7(X) : P − Pc(X) � 0,

where,

τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2,

τ ′ =
P√

2x1x2

, τ ′′ =
MR

J
, M = P

(
L +

x2

2

)
,

R =

√
x2

2

4
+

(
x1 + x3

2

)2

, J = 2

{√
2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

,

σ(X) =
6PL

x4x2
3

, δ(X) =
4PL3

Ex3
3x4

, Pc =
4.013E

√
x2
3x6

4
36

L2

(
1 − x3

2L

√
E

4G

)
,
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Fig. 3. The gear train problem

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi,

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in,

and X = (x1, x2, x3, x4)�. The desired ranges of the design variables are:

0.1 � x1, x4 � 2.0, 0.1 � x2, x3 � 10.0.

Problem 3: Design of a gear train [16]. This problem consists of the minimiza-
tion of the cost of the gear ratio of the gear train illustrated in Fig. 3. The gear
ratio is defined as:

gear ratio =
nBnD

nF nA
,

where nj denotes the number of teeth of the gearwheel j, with j = A, B, D, F .
The design variables, nA, nB, nD and nF will be denoted as x1, x2, x3 and
x4, respectively, and they are all integers in the range [12, 60]. The problem is
formulated as:

min
X

f(X) =
(

1
6.931

− x3x2

x1x4

)2

,

subject to:
12 � xi � 60, i = 1, . . . , 4.

Problem 4: Design of a pressure vessel [16]. This problem consist of the min-
imization of the cost of the pressure vessel illustrated in Fig. 4. The design
variables are the shell’s thickness, Ts, the thickness of the head, Th, the inner
radius, R, and the length, L, of the cylindrical section of the vessel, and they
will be denoted as x1, x2, x3 and x4, respectively. The variables Ts and Th are
integer multiples of 0.0625, which represent the available thicknesses of rolled
steel plates. The problem is formulated as:

min
X

f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3,
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Fig. 4. The pressure vessel problem

subject to:

g1(X) : −x1 + 0.0193x3 � 0,

g2(X) : −x2 + 0.00954x3 � 0,

g3(X) : −πx2
3x4 − 4

3πx3
3 + 1296000 � 0,

g4(X) : x4 − 240 � 0,

where X = (x1, x2, x3, x4)�. The desired ranges of the design variables are:

1 � x1, x2 � 99, 10.0 � x3, x4 � 200.0.

In all cases, the constriction coefficient PSO version was used with χ = 0.729,
c1 = c2 = 2.05. The neighborhood radius for the determination of the velocities
in the local PSO variant was always equal to 1 (smallest possible neighborhood)
in order to take full advantage of its exploration capabilities. For each test prob-
lem we applied the standard UPSO algorithm with u = 0.2 and 0.5, as well
as UPSO with mutation (denoted as UPSOm) with u = 0.1, µ = (0, . . . , 0)�

and σ = 0.01. These choices were based on prior good performance on static
optimization problems [10]. Also, the standard global and local PSO versions
(derived for u = 1 and u = 0, respectively), were applied. In all problems, the
swarm size was equal to 20, and the algorithm was allowed to perform 5000
iterations per experiment. We conducted 100 independent experiments per algo-
rithm per problem, recording at each experiment the best solution detected by
the swarm.

In order to preserve feasibility of the solutions, the update of the best posi-
tions of the particles was performed according to the scheme adopted by Hu et
al. in [4]. More specifically, the best position of a particle was updated only if
the new candidate best position was feasible, otherwise, it remained unchanged.
Regarding the weights w1 and w2 of the penalty function in Eq. (4), the values
w1 = w2 = 100 were used.
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Table 1. The obtained results

Standard UPSO UPSOm

Pr. u = 0 u = 0.2 u = 0.5 u = 1

1 Mean 2.32563 × 10−2 1.19291 × 10−1 4.67351 × 10−2 4.19581 × 10−2 2.29478 × 10−2

StD 7.48230 × 10−3 5.42710 × 10−1 2.14505 × 10−1 2.84724 × 10−2 7.20571 × 10−3

Min 1.28404 × 10−2 1.31269 × 10−2 1.28158 × 10−2 1.30803 × 10−2 1.31200 × 10−2

Max 4.87550 × 10−2 4.12260 × 100 1.57998 × 100 1.98921 × 10−1 5.03651 × 10−2

2 Mean 2.58869 × 100 2.29718 × 100 1.96820 × 100 4.27985 × 100 2.83721 × 100

StD 5.01437 × 10−1 4.10969 × 10−1 1.55415 × 10−1 1.36945 × 100 6.82980 × 10−1

Min 1.83008 × 100 1.82440 × 100 1.76558 × 100 1.91853 × 100 1.92199 × 100

Max 4.13207 × 100 4.17382 × 100 2.84406 × 100 8.91270 × 100 4.88360 × 100

3 Mean 3.92135 × 10−8 7.55581 × 10−8 2.83820 × 10−7 1.64225 × 10−6 3.80562 × 10−8

StD 7.71670 × 10−8 1.83057 × 10−7 6.87035 × 10−7 8.28521 × 10−6 1.09631 × 10−7

Min 2.70085 × 10−12 2.70085 × 10−12 2.30781 × 10−11 8.88761 × 10−10 2.70085 × 10−12

Max 6.41703 × 10−7 8.94899 × 10−7 5.69940 × 10−6 8.19750 × 10−5 8.94899 × 10−7

4 Mean 9.19585 × 103 8.66971 × 103 8.01637 × 103 1.35035 × 105 9.03255 × 103

StD 9.60268 × 102 6.24907 × 102 7.45869 × 102 1.51116 × 105 9.95573 × 102

Min 7.56796 × 103 6.77080 × 103 6.15470 × 103 7.52706 × 103 6.54427 × 103

Max 1.26720 × 104 1.01895 × 104 9.38777 × 103 5.59300 × 105 1.16382 × 104

All results are reported in Table 1. More specifically, the mean, standard
deviation, minimum and maximum value of the function values of the best solu-
tions obtained in 100 experiments for each algorithm and problem are reported.
In Problem 1, UPSOm (UPSO with mutation) had the overall best performance
with respect to the mean objective function value of the best solutions as well
as the standard deviation, although, the lowest minimum function value was ob-
tained for the standard UPSO scheme with u = 0.5. In Problem 2, UPSO with
u = 0.5 had the smallest mean, standard deviation and minimum of the objec-
tive function value of the best solutions, which is also true for Problem 4 with
the exception of the standard deviation. In Problem 3, UPSOm had again the
best mean, although the local PSO variant (UPSO with u = 0) was more robust,
exhibiting the smallest standard deviation, while they had the same minimum
value. In all cases except Problem 1, the global PSO variant had the worst mean
and maximum value.

Summarizing the results, UPSO with u = 0.5 and UPSOm proved to be the
most promising schemes, conforming with results obtained for different uncon-
strained optimization problems [10, 11]. The global PSO variant had the worst
overall performance, while the local variant was competitive, however only in
Problem 3 it outperformed UPSO with respect to the standard deviation and
the minimum objective function value.

5 Conclusions

We investigated the performance of the recently proposed Unified Particle Swarm
Optimization method on four well–known constrained engineering optimization
problems, using a penalty function approach and a feasibility preserving mod-
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ification of the algorithm. The results were very promising, with UPSO out-
performing the standard PSO algorithm, conforming with previous results for
different unconstrained optimization problems.

Further work will consider the investigation of the effect of the penalty func-
tion on the algorithm’s performance as well as different feasibility preserving
mechanisms.
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