Skip to main content

Abstract

A key motivation behind the development and adoption of industrial biotechnology is the reduction of negative environmental impacts. However, accurately assessing these impacts remains a formidable task. Environmental impacts of industrial biotechnology may be significant across a number of categories that include, but may not be limited to, nonrenewable resource depletion, water withdrawals and consumption, climate change, and natural land transformation/occupation. In this chapter, we highlight some key environmental issues across two broad areas: (a) processes that use biobased feedstocks and (b) industrial activity that is supported by biological processes. We also address further issues in accounting for related environmental impacts such as geographic and temporal scope, co-product management, and uncertainty and variability in impacts. Case studies relating to (a) lignocellulosic ethanol, (b) biobased plastics, and (c) enzyme use in the detergent industry are then presented, which illustrate more specific applications. Finally, emerging trends in the area of environmental impacts of biotechnology are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biotechnology Innovation Organization (BIO) (2018) What is industrial biotechnology? https://www.bio.org/articles/what-industrial-biotechnology. Accessed 25 Jan 2018

  2. House TW (2012) National bioeconomy blueprint, April 2012. Ind Biotechnol 8:97–102. https://doi.org/10.1089/ind.2012.1524

    Article  Google Scholar 

  3. Australian Government Department of Industry Innovation and Science (2013) Industrial biotechnology and biomass industries. https://www.industry.gov.au/industry/IndustrySectors/nanotechnology/IndustrialBiotechnology/Pages/default.aspx. Accessed 25 Jan 2018

  4. European Commission (2018) Biotechnology – growth. https://ec.europa.eu/growth/sectors/biotechnology_en. Accessed 25 Jan 2018

  5. Verones F, Henderson AD, Lauren A, Ridoutt B, Ugaya C, Hellweg S (2016) LCIA framework and modelling guidance [TF 1 Crosscutting issues]. Global guidance for life cycle impact assessment indicators, vol 1. UNEP/SETAC Life Cycle Initiative, Paris, pp 40–57

    Google Scholar 

  6. Goedkoop M, Spriensma R, Effting S, Collignon M (2000) The eco-indicator 99: a damage oriented method for life-cycle impact assessment: manual for designers. PRé Consultants, Amersfoort

    Google Scholar 

  7. Guinée J (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Springer, Berlin

    Google Scholar 

  8. Bare JC, Pennington DW, Thomas McKone GAN (2003) The tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  9. Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. https://doi.org/10.1007/BF02978505

    Article  Google Scholar 

  10. Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method – eco-factors 2006. A method for impact assessment in LCA. Environmental Studies No. 0906. Swiss Confederation, Federal Office for the Environment FOEN, Bern

    Google Scholar 

  11. Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2016) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147. https://doi.org/10.1007/s11367-016-1246-y

    Article  Google Scholar 

  12. Vale A (2007) Methanol. Medicine 35:633–634. https://doi.org/10.1016/j.mpmed.2007.09.014

    Article  Google Scholar 

  13. Lindner JP, Beck T, Bos U, Albrecht S (2018) Assessing land use and biodiversity impacts of industrial biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg

    Google Scholar 

  14. Curran M, de Souza DM, Antón A et al (2016) How well does LCA model land use impacts on biodiversity? – A comparison with approaches from ecology and conservation. Environ Sci Technol 50:2782–2795. https://doi.org/10.1021/acs.est.5b04681

    Article  CAS  PubMed  Google Scholar 

  15. Broeren MLM, Zijp MC, Waaijers-van der Loop SL et al (2017) Environmental assessment of bio-based chemicals in early-stage development: a review of methods and indicators. Biofuels Bioprod Biorefin 11:701–718. https://doi.org/10.1002/bbb.1772

    Article  CAS  Google Scholar 

  16. Park S, Croteau P, Boering KA et al (2012) Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci 5:261–265. https://doi.org/10.1038/ngeo1421

    Article  CAS  Google Scholar 

  17. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985

    Article  CAS  PubMed  Google Scholar 

  18. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  20. USDA ERS (2017) Irrigation and water use. https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use.aspx. Accessed 4 Oct 2017

  21. Qin Z, Dunn JB, Kwon H et al (2016) Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol. GCB Bioenergy 8:1136–1149. https://doi.org/10.1111/gcbb.12333

    Article  CAS  Google Scholar 

  22. Mullins KA, Griffin WM, Matthews HS (2011) Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. Environ Sci Technol 45:132–138. https://doi.org/10.1021/es1024993

    Article  CAS  PubMed  Google Scholar 

  23. Warner E, Zhang Y, Inman D, Heath G (2013) Challenges in the estimation of greenhouse gas emissions from biofuel-induced global land-use change. Biofuels Bioprod Biorefin 8:114–125. https://doi.org/10.1002/bbb.1434

    Article  CAS  Google Scholar 

  24. De Kleine RD, Anderson JE, Kim HC, Wallington TJ (2017) Life cycle assessment is the most relevant framework to evaluate biofuel greenhouse gas burdens. Biofuels Bioprod Biorefin 11:407–416. https://doi.org/10.1002/bbb.1752

    Article  CAS  Google Scholar 

  25. The Federal Government (2012) Biorefineries roadmap as part of the German Federal Government action plans for the material and energetic utilisation of renewable raw materials. German Federal Government, Berlin

    Google Scholar 

  26. Saling P (2018) Assessing industrial biotechnology products. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg

    Google Scholar 

  27. Franklin Associates (2011) Cradle-to-gate life cycle inventory of nine plastic resins and four polyurethane precursors. Franklin Associates, Kansas

    Google Scholar 

  28. Venkatesh A, Jaramillo P, Griffin WM, Matthews HS (2011) Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies. Environ Sci Technol 45:125–131

    Article  CAS  PubMed  Google Scholar 

  29. Venkatesh A, Jaramillo P, Michael Griffin W, Scott Matthews H (2012) Uncertainty in life cycle greenhouse gas emissions from United States coal. Energy Fuel 26:4917–4923. https://doi.org/10.1021/ef300693x

    Article  CAS  Google Scholar 

  30. Choquette-Levy N, Zhong M, MacLean H, Bergerson J (2018) COPTEM: a model to investigate the factors driving crude oil pipeline transportation emissions. Environ Sci Technol 52:337–345. https://doi.org/10.1021/acs.est.7b03398

    Article  CAS  PubMed  Google Scholar 

  31. McKechnie J, Saville B, MacLean HL (2016) Steam-treated wood pellets: environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation. Appl Energy 180:637–649. https://doi.org/10.1016/j.apenergy.2016.08.024

    Article  CAS  Google Scholar 

  32. APEC Biofuels Taskforce (2011) Biofuel transportation and distribution options for APEC economies. Produced by BBI Biofuels Canada for APEC Secretariat, Singapore

    Google Scholar 

  33. Abrahams LS, Griffin WM, Matthews HS (2015) Assessment of policies to reduce core forest fragmentation from Marcellus shale development in Pennsylvania. Ecol Indic 52:153–160. https://doi.org/10.1016/j.ecolind.2014.11.031

    Article  Google Scholar 

  34. Garg A, Kazunari K, Pulles T (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Chapter 1: introduction. Intergovernmental panel on climate change, vol 2. IGES, Kanagawa

    Google Scholar 

  35. Curran MA (2012) Life cycle inventory modeling in practice. Life cycle assessment handbook: a guide for environmentally sustainable products. Scrivener Publishing/Wiley, Salem/Hoboken, pp 43–46

    Chapter  Google Scholar 

  36. Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sust Energ Rev 26:108–134. https://doi.org/10.1016/j.rser.2013.04.021

    Article  CAS  Google Scholar 

  37. DeCicco JM (2014) The liquid carbon challenge: evolving views on transportation fuels and climate. Wiley Interdiscip Rev Energy Environ 4:98–114. https://doi.org/10.1002/wene.133

    Article  CAS  Google Scholar 

  38. Searchinger TD (2010) Biofuels and the need for additional carbon. Environ Res Lett 5:24007. https://doi.org/10.1088/1748-9326/5/2/024007

    Article  CAS  Google Scholar 

  39. Wang M, Tyner WE, Williams D, Dunn JB (2015) Comments on and discussion of the liquid carbon challenge: evolving views on transportation fuels and climate. Argonne National Laboratory, Lemont

    Google Scholar 

  40. Wallington TJ, Anderson JE, Kurtz EM, Tennison PJ (2016) Biofuels, vehicle emissions, and urban air quality. Faraday Discuss 189:121–136. https://doi.org/10.1039/c5fd00205b

    Article  CAS  PubMed  Google Scholar 

  41. Bluhm K, Heger S, Seiler T-B et al (2012) Toxicological and ecotoxicological potencies of biofuels used for the transport sector-a literature review. Energy Environ Sci 5:7381–7392. https://doi.org/10.1039/C2EE03033K

    Article  CAS  Google Scholar 

  42. Posen ID, Paulina J, Amy EL, Griffin WM (2017) Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ Res Lett 12:34024

    Article  CAS  Google Scholar 

  43. Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol 22:1315–1324. https://doi.org/10.1111/gcb.13178

    Article  PubMed  Google Scholar 

  44. Vanholme B, Desmet T, Ronsse F et al (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:174. https://doi.org/10.3389/fpls.2013.00174

    Article  PubMed  PubMed Central  Google Scholar 

  45. Whitaker M, Heath GA, O’Donoughue P, Vorum M (2012) Life cycle greenhouse gas emissions of coal-fired electricity generation. J Ind Ecol 16:S53–S72. https://doi.org/10.1111/j.1530-9290.2012.00465.x

    Article  CAS  Google Scholar 

  46. Kumar A, Schei T, Ahenkorah A et al (2011) Hydropower. IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  47. Carnegie Endownment for International Peace (2018) Assessing global oils. http://oci.carnegieendowment.org/#total-emissions. Accessed 26 Jan 2018

  48. Wallington TJ, Anderson JE, De Kleine RD et al (2016) When comparing alternative fuel-vehicle systems, life cycle assessment studies should consider trends in oil production. J Ind Ecol 21(2):244–248. https://doi.org/10.1111/jiec.12418

    Article  CAS  Google Scholar 

  49. Anderson JE, DiCicco DM, Ginder JM et al (2012) High octane number ethanol–gasoline blends: quantifying the potential benefits in the United States. Fuel 97:585–594. https://doi.org/10.1016/j.fuel.2012.03.017

    Article  CAS  Google Scholar 

  50. U.S. Department of Energy (2017) Alternative fuels data center: fuel properties comparison. https://www.afdc.energy.gov/fuels/fuel_properties.php

  51. Fthenakis V, Kim HC (2009) Land use and electricity generation: a life-cycle analysis. Renew Sust Energ Rev 13:1465–1474. https://doi.org/10.1016/j.rser.2008.09.017

    Article  Google Scholar 

  52. Trainor AM, McDonald RI, Fargione J (2016) Energy sprawl is the largest driver of land use change in United States. PLoS One 11:e0162269. https://doi.org/10.1371/journal.pone.0162269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeh S, Jordaan SM, Brandt AR et al (2010) Land use greenhouse gas emissions from conventional oil production and oil sands. Environ Sci Technol 44:8766–8772. https://doi.org/10.1021/es1013278

    Article  CAS  PubMed  Google Scholar 

  54. Bentsen NS (2017) Carbon debt and payback time – lost in the forest? Renew Sust Energ Rev 73:1211–1217. https://doi.org/10.1016/j.rser.2017.02.004

    Article  Google Scholar 

  55. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. https://doi.org/10.1126/science.1152747

    Article  CAS  PubMed  Google Scholar 

  56. Gawel E, Ludwig G (2011) The iLUC dilemma: how to deal with indirect land use changes when governing energy crops? Land Use Policy 28:846–856. https://doi.org/10.1016/j.landusepol.2011.03.003

    Article  Google Scholar 

  57. Rajagopal D (2013) The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions. Environ Res Lett 8:24013. https://doi.org/10.1088/1748-9326/8/2/024013

    Article  Google Scholar 

  58. Bento A, Klotz R, Landry J (2012) Are there carbon savings from us biofuel policies? The critical importance of accounting for leakage in land and fuel markets. SSRN Electron J. https://doi.org/10.2139/ssrn.2219503

  59. Posen ID, Griffin WM, Matthews HS, Azevedo IL (2015) Changing the renewable fuel standard to a renewable material standard: bioethylene case study. Environ Sci Technol 49:93–102. https://doi.org/10.1021/es503521r

    Article  CAS  PubMed  Google Scholar 

  60. Smeets E, Tabeau A, van Berkum S et al (2014) The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: a critical review. Renew Sust Energ Rev 38:393–403. https://doi.org/10.1016/j.rser.2014.05.035

    Article  CAS  Google Scholar 

  61. Hill J, Tajibaeva L, Polasky S (2016) Climate consequences of low-carbon fuels: the United States Renewable Fuel Standard. Energy Policy 97:351–353. https://doi.org/10.1016/j.enpol.2016.07.035

    Article  Google Scholar 

  62. Drabik D, de Gorter H (2011) Biofuel policies and carbon leakage. AgBioforum 14:103–110

    Google Scholar 

  63. Rajagopal D, Plevin RJ (2013) Implications of market-mediated emissions and uncertainty for biofuel policies. Energy Policy 56:75–82. https://doi.org/10.1016/j.enpol.2012.09.076

    Article  Google Scholar 

  64. Thompson W, Whistance J, Meyer S (2011) Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energy Policy 39:5509–5518. https://doi.org/10.1016/j.enpol.2011.05.011

    Article  Google Scholar 

  65. Debnath D, Whistance J, Thompson W (2017) The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission. Energy 141:2045–2053. https://doi.org/10.1016/j.energy.2017.11.048

    Article  Google Scholar 

  66. Seki SM, Michael GW, Chris H, Scott MH (2018) Refueling and infrastructure costs of expanding access to E85 in Pennsylvania. J Infrastruct Syst 24:4017045. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000408

    Article  Google Scholar 

  67. Girod B, De Haan P (2009) Mental rebound. Rebound Research Report Nr. 3. ETH, Zurich

    Google Scholar 

  68. Meeks D, Hottle T, Bilec MM, Landis AE (2015) Compostable biopolymer use in the real world: stakeholder interviews to better understand the motivations and realities of use and disposal in the US. Resour Conserv Recycl 105:134–142. https://doi.org/10.1016/j.resconrec.2015.10.022

    Article  Google Scholar 

  69. Miller SA, Keoleian GA (2015) Framework for analyzing transformative technologies in life cycle assessment. Environ Sci Technol 49:3067–3075. https://doi.org/10.1021/es505217a

    Article  CAS  PubMed  Google Scholar 

  70. Brander M, Tipper R, Hutchison C, Davis G (2009) Consequential and attributional approaches to LCA: a guide to policy makers with specific reference to greenhouse gas LCA of biofuels. Econometrica, London

    Google Scholar 

  71. Curran MA, Mann M, Norris G (2005) The international workshop on electricity data for life cycle inventories. J Clean Prod 13:853–862. https://doi.org/10.1016/j.jclepro.2002.03.001

    Article  Google Scholar 

  72. Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453. https://doi.org/10.1007/s11367-011-0275-9

    Article  Google Scholar 

  73. Plevin RJ, Delucchi MA, Creutzig F (2014) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18:73–83. https://doi.org/10.1111/Jiec.12074

    Article  Google Scholar 

  74. Rajagopal D (2017) A synthesis of unilateral approaches to mitigating emissions leakage under incomplete policies. Clim Policy 17:573–590. https://doi.org/10.1080/14693062.2016.1150249

    Article  Google Scholar 

  75. Rajagopal D (2017) A step towards a general framework for consequential life cycle assessment. J Ind Ecol 21:261–271. https://doi.org/10.1111/jiec.12433

    Article  CAS  Google Scholar 

  76. Roos A, Ahlgren S (2018) Consequential life cycle assessment of bioenergy systems – a literature review. J Clean Prod 189:358–373. https://doi.org/10.1016/j.jclepro.2018.03.233

    Article  CAS  Google Scholar 

  77. Weidema B (2003) Market information in life cycle assessment. Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  78. Zamagni A, Guinée J, Heijungs R et al (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918. https://doi.org/10.1007/s11367-012-0423-x

    Article  Google Scholar 

  79. Gavrilescu M, Chisti Y (2005) Biotechnology – a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499. https://doi.org/10.1016/j.biotechadv.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  80. Abbasi T, Tauseef SM, Abbasi SA (2012) Anaerobic digestion for global warming control and energy generation – an overview. Renew Sust Energ Rev 16:3228–3242. https://doi.org/10.1016/j.rser.2012.02.046

    Article  CAS  Google Scholar 

  81. Appels L, Lauwers J, Degrève J et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15:4295–4301. https://doi.org/10.1016/j.rser.2011.07.121

    Article  CAS  Google Scholar 

  82. Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199. https://doi.org/10.1126/science.aad6359

    Article  CAS  PubMed  Google Scholar 

  83. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. J Clean Prod 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005

    Article  CAS  Google Scholar 

  84. Skals PB, Krabek A, Nielsen PH, Wenzel H (2008) Environmental assessment of enzyme assisted processing in pulp and paper industry. Int J Life Cycle Assess 13:124. https://doi.org/10.1065/lca2007.11.366

    Article  CAS  Google Scholar 

  85. Nielsen PH, Kuilderd H, Zhou W, Lu X (2009) Enzyme biotechnology for sustainable textiles. In: Blackburn RS (ed) Sustainable textiles. Woodhead, Oxford, pp 113–138

    Chapter  Google Scholar 

  86. Oxenbøll KM, Cowan D (2008) Enzymatic bioprocessing of oils and fats. Inf Int News Fats Oils Relat Mater 19:210

    Google Scholar 

  87. Oxenbøll K, Ernst S (2008) Environment as a new perspective on the use of enzymes in the food industry. Food Sci Technol 22:45–47

    Google Scholar 

  88. Henderson RK, Jiménez-González C, Preston C et al (2008) Peer review original research: EHS & LCA assessment for 7-ACA synthesis A case study for comparing biocatalytic & chemical synthesis. Ind Biotechnol 4:180–192. https://doi.org/10.1089/ind.2008.4.180

    Article  CAS  Google Scholar 

  89. McKechnie J, MacLean HL (2014) Implications of emissions timing on the cost-effectiveness of greenhouse gas mitigation strategies: application to forest bioenergy systems. GCB Bioenergy 6:414–424. https://doi.org/10.1111/gcbb.12063

    Article  CAS  Google Scholar 

  90. Fröhling M, Schweinle J, Meyer J, Schultmann F (2011) Logistics of renewable raw materials. Renewable raw materials. Wiley, Weinheim

    Chapter  Google Scholar 

  91. Cherubini F, Peters GP, Berntsen T et al (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3:413–426. https://doi.org/10.1111/j.1757-1707.2011.01102.x

    Article  CAS  Google Scholar 

  92. Levasseur A, Brandão M, Lesage P et al (2011) Valuing temporary carbon storage. Nat Clim Chang 2:6–8. https://doi.org/10.1038/nclimate1335

    Article  CAS  Google Scholar 

  93. Almeida J, Degerickx J, Achten WMJ, Muys B (2015) Greenhouse gas emission timing in life cycle assessment and the global warming potential of perennial energy crops. Carbon Manag 6:185–195. https://doi.org/10.1080/17583004.2015.1109179

    Article  CAS  Google Scholar 

  94. Schwietzke S, Griffin WM, Matthews HS (2011) Relevance of emissions timing in biofuel greenhouse gases and climate impacts. Environ Sci Technol 45:8197–8203. https://doi.org/10.1021/es2016236

    Article  CAS  PubMed  Google Scholar 

  95. McKechnie J, Zhang Y, Ogino A et al (2011) Impacts of co-location, co-production, and process energy source on life cycle energy use and greenhouse gas emissions of lignocellulosic ethanol. Biofuels Bioprod Biorefin 5:279–292. https://doi.org/10.1002/bbb.286

    Article  CAS  Google Scholar 

  96. Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11:161–179. https://doi.org/10.1162/jiec.2007.1136

    Article  Google Scholar 

  97. Pfister S, Scherer L (2015) Uncertainty analysis of the environmental sustainability of biofuels. Energy Sustain Soc 5:30. https://doi.org/10.1186/s13705-015-0058-4

    Article  Google Scholar 

  98. Plevin RJ, O’Hare M, Jones AD et al (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021. https://doi.org/10.1021/es101946t

    Article  CAS  PubMed  Google Scholar 

  99. Posen ID, Jaramillo P, Griffin WM (2016) Uncertainty in the life cycle greenhouse gas emissions from U.S. production of three biobased polymer families. Environ Sci Technol 50:2846–2858. https://doi.org/10.1021/acs.est.5b05589

    Article  CAS  PubMed  Google Scholar 

  100. Sills DL, Paramita V, Franke MJ et al (2013) Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production. Environ Sci Technol 47:687–694. https://doi.org/10.1021/es3029236

    Article  CAS  PubMed  Google Scholar 

  101. Spatari S, MacLean HL (2010) Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels. Environ Sci Technol 44:8773–8780. https://doi.org/10.1021/es102091a

    Article  CAS  PubMed  Google Scholar 

  102. Yan X, Boies AM (2013) Quantifying the uncertainties in life cycle greenhouse gas emissions for UK wheat ethanol. Environ Res Lett 8:15024. https://doi.org/10.1088/1748-9326/8/1/015024

    Article  CAS  Google Scholar 

  103. Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment. J Ind Ecol 11:161–179

    Article  Google Scholar 

  104. Fertitta-Roberts C, Spatari S, Grantz DA, Jenerette DG (2017) Trade-offs across productivity, GHG intensity, and pollutant loads from second-generation sorghum bioenergy. GCB Bioenergy 9:1764–1779. https://doi.org/10.1111/gcbb.12471

    Article  CAS  Google Scholar 

  105. Sala S, Crenna E, Secchi M, Pant R (2017) Global normalisation factors for the environmental eootprint and life cycle assessment, EUR (28984). Publications Office of the European Union, Luxembourg. ISBN 978-92-79-77213-9, JRC109878. https://doi.org/10.2760/88930

    Book  Google Scholar 

  106. Landis AE, Theis TL (2008) Comparison of life cycle impact assessment tools in the case of biofuels. 2008 IEEE international symposium on electronics and the environment, pp 1–7

    Google Scholar 

  107. Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. https://doi.org/10.1126/science.1151861

    Article  CAS  PubMed  Google Scholar 

  108. Cassidy E (2014) Ethanol’s broken promise: using less corn ethanol reduces greenhouse gas emissions. Environmental Working Group, Washington

    Google Scholar 

  109. Pimentel D, Marklein A, Toth MA et al (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37:1–12. https://doi.org/10.1007/s10745-009-9215-8

    Article  Google Scholar 

  110. Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22. https://doi.org/10.1016/j.renene.2009.02.025

    Article  Google Scholar 

  111. Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sust Energ Rev 16:4638–4650. https://doi.org/10.1016/j.rser.2012.04.016

    Article  CAS  Google Scholar 

  112. US Environmental Protection Agency (2010) Renewable fuel standard program (RFS2) regulatory impact analysis. EPA-420-R-10-006

    Google Scholar 

  113. Wiloso EI, Heijungs R, de Snoo GR (2012) LCA of second generation bioethanol: a review and some issues to be resolved for good LCA practice. Renew Sust Energ Rev 16:5295–5308. https://doi.org/10.1016/j.rser.2012.04.035

    Article  CAS  Google Scholar 

  114. Searchinger T, Heimlich R (2015) Avoiding bioenergy competition for food crops and land. World Resources Institute, Washington

    Google Scholar 

  115. Energy Independence and Security Act of 2007 (EISA 2007). Public Law 110–140

    Google Scholar 

  116. Schwarzenegger A (2007) Executive order S-01-07: low carbon fuel standard. California Energy Commission, Sacramento

    Google Scholar 

  117. Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sust Energ Rev 42:1349–1361. https://doi.org/10.1016/j.rser.2014.10.097

    Article  CAS  Google Scholar 

  118. Gerbrandt K, Chu PL, Simmonds A et al (2016) Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol 38:63–70. https://doi.org/10.1016/j.copbio.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  119. González-García S, Moreira MT, Feijoo G (2010) Environmental performance of lignocellulosic bioethanol production from Alfalfa stems. Biofuels Bioprod Biorefin 4:118–131. https://doi.org/10.1002/bbb.204

    Article  CAS  Google Scholar 

  120. Spatari S, Bagley DM, MacLean HL (2010) Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour Technol 101:654–667. https://doi.org/10.1016/j.biortech.2009.08.067

    Article  CAS  PubMed  Google Scholar 

  121. Scown CD, Nazaroff WW, Mishra U et al (2012) Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:14011. https://doi.org/10.1088/1748-9326/7/1/014011

    Article  CAS  Google Scholar 

  122. McKechnie J, Pourbafrani M, Saville BA, MacLean HL (2015) Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol. Renew Energy 76:726–734. https://doi.org/10.1016/j.renene.2014.11.088

    Article  CAS  Google Scholar 

  123. Kim S, Dale BE, Jenkins R (2009) Life cycle assessment of corn grain and corn stover in the United States. Int J Life Cycle Assess 14:160–174. https://doi.org/10.1007/s11367-008-0054-4

    Article  CAS  Google Scholar 

  124. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40. https://doi.org/10.1002/bbb.49

    Article  CAS  Google Scholar 

  125. MacLean HL, Spatari S (2009) The contribution of enzymes and process chemicals to the life cycle of ethanol. Environ Res Lett 4:14001. https://doi.org/10.1088/1748-9326/4/1/014001

    Article  Google Scholar 

  126. Hong Y, Nizami A-S, Bafrani MP et al (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Biorefin 7:303–313. https://doi.org/10.1002/bbb.1393

    Article  CAS  Google Scholar 

  127. Scown CD, Gokhale AA, Willems PA et al (2014) Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels. Environ Sci Technol 48:8446–8455. https://doi.org/10.1021/es5012753

    Article  CAS  PubMed  Google Scholar 

  128. Pourbafrani M, McKechnie J, Shen T et al (2014) Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production. J Clean Prod 78:104–111. https://doi.org/10.1016/j.jclepro.2014.04.050

    Article  CAS  Google Scholar 

  129. Laure S, Leschinsky M, Frohling M et al (2014) Assessment of an Organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48:793–798

    CAS  Google Scholar 

  130. Karavalakis G, Durbin TD, Shrivastava M et al (2012) Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles. Fuel 93:549–558. https://doi.org/10.1016/j.fuel.2011.09.021

    Article  CAS  Google Scholar 

  131. Geringer B, Spreitzer J, Mayer M, Martin C (2014) Meta-analysis for an E20/25 technical development study – task 2: meta-analysis of E20/25 trial reports and associated data. Vienna University of Technology, Institute for Powertrains and Automotive Technology, Wien

    Google Scholar 

  132. Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sust Energ Rev 53:1486–1499. https://doi.org/10.1016/j.rser.2015.09.070

    Article  CAS  Google Scholar 

  133. Scown CD, Horvath A, McKone TE (2011) Water footprint of U.S. transportation fuels. Environ Sci Technol 45:2541–2553. https://doi.org/10.1021/es102633h

    Article  CAS  PubMed  Google Scholar 

  134. Wu M, Zhang Z, Chiu Y (2014) Life-cycle water quantity and water quality implications of biofuels. Curr Sustain Energy Rep 1:3–10. https://doi.org/10.1007/s40518-013-0001-2

    Article  Google Scholar 

  135. Philp J (2014) OECD policies for bioplastics in the context of a bioeconomy, 2013. Ind Biotechnol 10:19–21. https://doi.org/10.1089/ind.2013.1612

    Article  Google Scholar 

  136. Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40. https://doi.org/10.1002/bbb.189

    Article  CAS  Google Scholar 

  137. Mohammadi Nafchi A, Nafchi AM, Moradpour M et al (2013) Thermoplastic starches: properties, challenges, and prospects. Starch 65:61–72. https://doi.org/10.1002/star.201200201

    Article  CAS  Google Scholar 

  138. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016

    Article  CAS  Google Scholar 

  139. Janssen LPBM, Moscicki L (2006) Thermoplastic starch as packaging material. Acta Sci Pol Tech Agrar 5:19–25

    Google Scholar 

  140. Spierling S, Knüpffer E, Behnsen H et al (2018) Bio-based plastics – a review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  141. Bos H, Conijn S, Patel M (2010) Sustainability aspects of biobased applications. UR Food & Biobased Research, Wageningen

    Google Scholar 

  142. Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers – a critical review. Resour Conserv Recycl 78:54–66. https://doi.org/10.1016/j.resconrec.2013.06.010

    Article  Google Scholar 

  143. Kim S, Dale BE (2005) Life cycle assessment study of biopolymers (polyhydroxyalkanoates) derived from no-tilled corn. Int J Life Cycle Assess 10:200–210. https://doi.org/10.1065/lca2004.08.171

    Article  CAS  Google Scholar 

  144. Sainju UM (2016) A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils. PLoS One 11(2):1–26. https://doi.org/10.1371/journal.pone.0148527

    Article  CAS  Google Scholar 

  145. Wightman JL, Duxbury JM, Woodbury PB (2015) Land quality and management practices strongly affect greenhouse gas emissions of bioenergy feedstocks. BioEnergy Res 4:1681–1690. https://doi.org/10.1007/s12155-015-9620-3

    Article  CAS  Google Scholar 

  146. Bohlmann GM (2004) Biodegradable packaging life-cycle assessment. Environ Prog 23:342–346. https://doi.org/10.1002/ep.10053

    Article  CAS  Google Scholar 

  147. Gironi F, Piemonte V (2010) Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environ Prog Sustain Energy 30:459–468. https://doi.org/10.1002/ep.10490

    Article  CAS  Google Scholar 

  148. Hottle TA, Bilec MM, Landis AE (2017) Biopolymer production and end of life comparisons using life cycle assessment. Resour Conserv Recycl 122:295–306. https://doi.org/10.1016/j.resconrec.2017.03.002

    Article  Google Scholar 

  149. Gregory MR (2009) Environmental implications of plastic debris in marine settings – entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond Ser B Biol Sci 364:2013–2025. https://doi.org/10.1098/rstb.2008.0265

    Article  Google Scholar 

  150. Woods JS, Veltman K, Huijbregts MAJ et al (2016) Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA). Environ Int 89–90:48–61. https://doi.org/10.1016/j.envint.2015.12.033

    Article  PubMed  Google Scholar 

  151. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  152. Tolinski M (2011) Polymer properties and environmental footprints. Plastics and sustainability: towards a peaceful coexistence between bio-based and fossil fuel-based plastics. Wiley, Hoboken

    Chapter  Google Scholar 

  153. Martin RT, Camargo LP, Miller SA (2014) Marine-degradable polylactic acid. Green Chem 16:1768–1773. https://doi.org/10.1039/c3gc42604a

    Article  CAS  Google Scholar 

  154. Levis JW, Barlaz MA (2011) Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model. Environ Sci Technol 45:5470–5476. https://doi.org/10.1021/es200721s

    Article  CAS  PubMed  Google Scholar 

  155. Sevenster MN (2015) Time-dependent life-cycle assessment of bio-based packaging materials. Sustainability assessment of renewables-based products. Wiley, Hoboken, pp 347–360

    Chapter  Google Scholar 

  156. Kolstad JJ, Vink ETH, De Wilde B, Debeer L (2012) Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polym Degrad Stab 97:1131–1141. https://doi.org/10.1016/j.polymdegradstab.2012.04.003

    Article  CAS  Google Scholar 

  157. Krause MJ, Townsend TG (2016) Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ Sci Technol Lett 3(4):166–169. https://doi.org/10.1021/acs.estlett.6b00068

    Article  CAS  Google Scholar 

  158. Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J Clean Prod 125:95–107. https://doi.org/10.1016/j.jclepro.2016.03.029

    Article  CAS  Google Scholar 

  159. European Bioplastics (2015) Anaerobic digestion fact sheet. http://docs.european-bioplastics.org/publications/bp/EUBP_BP_Anaerobic_digestion.pdf. Accessed 10 Oct 2017

  160. Kim S, Dale BE (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective. Environ Sci Technol 42:7690–7695

    Article  CAS  PubMed  Google Scholar 

  161. Groot WJ, Borén T (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int J Life Cycle Assess 15:970–984. https://doi.org/10.1007/s11367-010-0225-y

    Article  CAS  Google Scholar 

  162. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11:167–180. https://doi.org/10.1089/ind.2015.0003

    Article  CAS  Google Scholar 

  163. Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194. https://doi.org/10.1016/j.jclepro.2009.03.015

    Article  CAS  Google Scholar 

  164. Suwanmanee U, Varabuntoonvit V, Chaiwutthinan P et al (2012) Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess 18:401–417. https://doi.org/10.1007/s11367-012-0479-7

    Article  CAS  Google Scholar 

  165. Shen L, Patel MK (2008) Life cycle assessment of polysaccharide materials: a review. J Polym Environ 16:154–167. https://doi.org/10.1007/s10924-008-0092-9

    Article  CAS  Google Scholar 

  166. Piemonte V, Gironi F (2010) Land-use change emissions: how green are the bioplastics? Environ Prog Sustain Energy 30:685–691. https://doi.org/10.1002/ep.10518

    Article  CAS  Google Scholar 

  167. Pawelzik P, Carus M, Hotchkiss J et al (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials – reviewing methodologies and deriving recommendations. Resour Conserv Recycl 73:211–228. https://doi.org/10.1016/j.resconrec.2013.02.006

    Article  Google Scholar 

  168. Sekhon BS, Sangha MK (2004) Detergents – zeolites and enzymes excel cleaning power. Resonance 9:35–45. https://doi.org/10.1007/BF02837576

    Article  CAS  Google Scholar 

  169. Nielsen AM, Schaetz T (2012) Taking steps towards a phosphate-free future. Househ Pers Care Today 2:13–16

    Google Scholar 

  170. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148. https://doi.org/10.3389/fbioe.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nielsen PH, Skagerlind P (2007) Cost-neutral replacement of surfactants with enzymes. Househ Pers Care Today 4:3–7

    Google Scholar 

  172. Union of Concerned Scientists (2017) Genetic engineering risks and impacts. http://www.ucsusa.org/food_and_agriculture/our-failing-food-system/genetic-engineering/risks-of-genetic-engineering.html. Accessed 11 Oct 2017

  173. Tsatsakis AM, Nawaz MA, Kouretas D et al (2017) Environmental impacts of genetically modified plants: a review. Environ Res 156:818–833. https://doi.org/10.1016/j.envres.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  174. Brookes G, Barfoot P (2017) Environmental impacts of genetically modified (GM) crop use 1996–2015: impacts on pesticide use and carbon emissions. GM Crops Food 8:117–147. https://doi.org/10.1080/21645698.2017.1309490

    Article  PubMed  PubMed Central  Google Scholar 

  175. Phipps R, Park J (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–18. https://doi.org/10.22358/jafs/67788/2002

    Article  Google Scholar 

  176. Venton D (2016) Core concept: can bioenergy with carbon capture and storage make an impact? Proc Natl Acad Sci U S A 113:13260–13262. https://doi.org/10.1073/pnas.1617583113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Denholm P, Margolis RM (2007) Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy 35:4424–4433. https://doi.org/10.1016/j.enpol.2007.03.004

    Article  Google Scholar 

  178. Traut EJ, Cherng TC, Hendrickson C, Michalek JJ (2013) US residential charging potential for electric vehicles. Transp Res Part D Transp Environ 25:139–145. https://doi.org/10.1016/j.trd.2013.10.001

    Article  Google Scholar 

  179. Clack CTM, Qvist SA, Apt J et al (2017) Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc Natl Acad Sci 114:6722–6727. https://doi.org/10.1073/pnas.1610381114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fröhling M, Hiete M (2018) Sustainability and life cycle assessments in industrial biotechnology: a review of current approaches and future needs. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg

    Google Scholar 

  181. Osseweijer P, Posada Duque J, Asveld L (2018) Societal and ethical aspects of industrial biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg

    Google Scholar 

  182. Chen C, Reniers G (2018) Risk assessment of processes and products in industrial biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. MacLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatesh, A., Posen, I.D., MacLean, H.L., Chu, P.L., Griffin, W.M., Saville, B.A. (2019). Environmental Aspects of Biotechnology. In: Fröhling, M., Hiete, M. (eds) Sustainability and Life Cycle Assessment in Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham. https://doi.org/10.1007/10_2019_98

Download citation

Publish with us

Policies and ethics