Skip to main content

Carotenoids of Biotechnological Importance

  • Chapter
  • First Online:
Biotechnology of Isoprenoids

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 148))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids ß-carotene and zeaxanthin. Biotechn Lett 21:791–795

    Article  CAS  Google Scholar 

  2. Andrewes AG, Starr MP (1976) (3R,3’R)-Astaxanthin from the yeast Phaffia rhodozyma. Phytochem 15:1009–1011

    Article  CAS  Google Scholar 

  3. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  CAS  Google Scholar 

  4. BCC Research (2011). http://www.bccresearch.com/report/carotenoids-global-market-fod025d.html

  5. Ben-Amotz A (1991) The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresource Technology 38:233–235

    Article  CAS  Google Scholar 

  6. Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem 44:1095–1102

    Article  CAS  Google Scholar 

  7. Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M, Ezzati M, Mathers C, Rivera J et al (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  Google Scholar 

  8. Borowitzka MA, Borowitzka LJ, Moulton TP (1984) The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116(117):115–134

    Article  Google Scholar 

  9. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    CAS  Google Scholar 

  10. Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785–793

    Article  CAS  Google Scholar 

  11. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J. 9:1551–1558

    CAS  Google Scholar 

  12. Brown CR, Kim TS, Ganga Z, Haynes K, DeJong D, Jahn M, Paran I, DeJong W (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Americ J Potato Res 83:365–372

    Article  CAS  Google Scholar 

  13. Böhme K, Richter C, Pätz R (2006) New insights into mechanisms of growth and β-carotene production in Blakeslea trispora. Biotechnol J 1:1080–1084

    Article  Google Scholar 

  14. Ceballos H, Morante N, Sánchez T, Ortiz D, Aragón I, Chávez AL, Pizarro M, Calle F, Dufour D (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Sci 53:1–10

    Article  Google Scholar 

  15. Chen YY, Shen HJ, Cui YY, Chen SG, Weng ZM, Zhao M, Liu JZ (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6

    Article  CAS  Google Scholar 

  16. Chun SB, Chin JE, Bai S, An GH (1992) Strain improvement of Phaffia rhodozyma by protoplast fusion. FEMS Microbiol Lett 93:221–226

    Article  CAS  Google Scholar 

  17. Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  18. Ernst H (2002) Recent advances in industrial carotenoid synthesis. Pure Appl Chem 74:1369–1382

    Article  CAS  Google Scholar 

  19. Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    Article  Google Scholar 

  20. Farré G, Maiam Rivera S, Alves R, Vilaprinyo E, Sorribas A, Canela R, Naqvi S, Sandmann G, Capell T, Zhu C, Christou P (2013) Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that can be addressed by multigene engineering. Plant J 75:441–455

    Article  Google Scholar 

  21. Farré G, Zhu C, Capell T, Sandmann G, Christou P (2014) Reconstruction and extension of the carotenoid pathway in corn a hybrid with high levels of ketocarotenoids, specially astaxanthin (manuscript in preparation)

    Google Scholar 

  22. Fraser PD, Enfissi EM, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204

    Article  CAS  Google Scholar 

  23. Fraser PD, Römer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    Article  CAS  Google Scholar 

  24. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  25. Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350

    Article  CAS  Google Scholar 

  26. Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35:565–569

    Article  CAS  Google Scholar 

  27. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    Article  CAS  Google Scholar 

  28. Goodwin TW (1980) The biochemistry of the carotenoids, vol I. Plants, Chapman and Hall, London, New York

    Book  Google Scholar 

  29. Gómez PI, Inostroza I, Pizarro M, Pérez J (2013) From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants. doi:10.1093/aobpla/plt026

    Google Scholar 

  30. Götz T, Windhövel U, Böger P, Sandmann G (1999) Protection of photosynthesis against UV-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol 120:599–604

    Article  Google Scholar 

  31. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67

    Article  CAS  Google Scholar 

  32. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Google Scholar 

  33. Kang EK, Campbell RE, Bastian E, Drake MA (2010) Annatto usage and bleaching in dairy foods. J Dairy Sci 93:3891–3901

    Article  CAS  Google Scholar 

  34. Kavitha P, Shivashankara KS, Rao VK, Sadashiva AT, Ravishankar KV, Sathish GJ (2013) Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J Sci Food Agric 94:993–999

    Google Scholar 

  35. Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175

    Article  CAS  Google Scholar 

  36. Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635

    Article  CAS  Google Scholar 

  37. Krubasik P, Kobayashi M, Sandmann G (2001) Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Eur J Biochem 268:3702–3708

    Article  CAS  Google Scholar 

  38. Landrum JT, Bone RA (2001) Lutein, zeaxanthin and the macular pigment. Arch Biochem Biophys 385:28–40

    Article  CAS  Google Scholar 

  39. Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microbial Cell Factories 10:29–40

    Article  CAS  Google Scholar 

  40. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  41. López-Nieto MJ, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, de la Fuente JL, Cabri W, Barredo JL (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    Article  Google Scholar 

  42. Matthäus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid producing yeast Yarrowia lipolytica. Appl Environ Microbiol. doi:10.1128/AEM.03167-13

    Google Scholar 

  43. Mehta BJ, Obraztsova IN, Cerda-Olmedo E (2003) Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol 69:4043–4048

    Article  CAS  Google Scholar 

  44. Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491

    Article  CAS  Google Scholar 

  45. Nanou K, Roukas T, Papadakis E (2012) Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochem Eng J 67:203–207

    Article  CAS  Google Scholar 

  46. Naqvi S, Zhu C, Farrel G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn: Biofortification of corn endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  CAS  Google Scholar 

  47. Nonomura AM (1989) In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Industrial biosynthesis of carotenoids. Carotenoids: chemistry and biology, Plenum Press, New York, pp 365–375

    Google Scholar 

  48. Ooi CK, Choo YM, Yap SC, Basiron Y, Ong ASH (1994) Recovery of carotenoids from palm oil. J Americ Oil Chem Soc 71:423–426

    Article  CAS  Google Scholar 

  49. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  Google Scholar 

  50. Perry A, Rasmussen H, Johnson EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal 22:9–15

    Google Scholar 

  51. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Industr Crops Prod 8:45–51

    Article  CAS  Google Scholar 

  52. Raisig A, Sandmann G (2001) Functional properties of diapophytoene and related desaturases of C30 and C40 carotenoid biosynthetic pathways. Biochim Biophys Acta 1533:164–170

    Article  CAS  Google Scholar 

  53. Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523

    Article  CAS  Google Scholar 

  54. Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering 21:26–33

    Article  CAS  Google Scholar 

  55. Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    Article  Google Scholar 

  56. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  Google Scholar 

  57. SanGiovanni JP, Neuringer M (2012) The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: Promise of molecular genetics for guiding mechanistic and translational research in the field. Am J Clin Nutr 96:1223S–1233S

    Article  CAS  Google Scholar 

  58. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  CAS  Google Scholar 

  59. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trend Plant Sci 6:14–17

    Article  CAS  Google Scholar 

  60. Sandmann G, Albrecht M, Schnurr G, Knörzer P, Böger P (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol 17:233–237

    Article  CAS  Google Scholar 

  61. Sandmann G, Römer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metabolic Engin 8:291–302

    Article  CAS  Google Scholar 

  62. Sandmann G, Misawa N (2002) In: Osiewacz HD (ed) Fungal carotenoids. The Mycota X: industrial application. Springer Verlag Berlin, pp 247–262

    Google Scholar 

  63. Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol 138:441–450

    Article  CAS  Google Scholar 

  64. Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2010) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  Google Scholar 

  65. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Google Scholar 

  66. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    CAS  Google Scholar 

  67. Tyczkowski JK, Hamilton PB (1986) Absorption, transport, and deposition in chickens of lutein diester, a carotenoid extracted from Marigold (Tagetes erecta) petals. Poult Sci 65:1526–1531

    Article  CAS  Google Scholar 

  68. Verdoes CJ, Sandmann G, Visser H, Diaz M, van Mossel M, van Ooyen AJJ (2003) Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environm Microbiol 69:3728–3738

    Article  CAS  Google Scholar 

  69. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  Google Scholar 

  70. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  CAS  Google Scholar 

  71. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  Google Scholar 

  72. Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  CAS  Google Scholar 

  73. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Google Scholar 

  74. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA, 105:18232–18237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sandmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandmann, G. (2014). Carotenoids of Biotechnological Importance. In: Schrader, J., Bohlmann, J. (eds) Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, vol 148. Springer, Cham. https://doi.org/10.1007/10_2014_277

Download citation

Publish with us

Policies and ethics