Skip to main content

OPTICAL FIBRES FOR OPTICAL SENSING

  • Conference paper
Book cover Optical Chemical Sensors

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 224))

  • 2814 Accesses

Abstract

Optical sensors (Figure 1) can be defined as devices for optical monitoring of physical parameters (pressure, temperature, etc.) or (bio)chemical properties of a medium by means of optical elements (planar optical waveguides or optical fibres). Chemical or biochemical fibre-optic sensors are small devices capable of continuously and reversibly recording the concentration of a (bio)chemical species constructed be means of optical fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Mitchell G.L., A review of fabry-perot Interferometric sensors, in Optical Fiber Sensors, Proc.6th Int. Conf. OFS'89 (1989), H.J.Arditty, J.P.Dakin, R.ThKersten eds., Springer-Verlag, pp. 450–478.

    Google Scholar 

  2. K.T.V. Grattan, Fibre optic sensor technology, Sensors & Actuators A 2000; 82: 40–61.

    Article  Google Scholar 

  3. Wolfbeis O.S., Reisfeld R., Oehme I., Sol-gels and chemical sensors, Structure and Bonding 1996; 85: 51–98.

    Article  CAS  Google Scholar 

  4. Boisde G., Harmer A., Chemical and biochemical sensing with optical fibres and waveguides, Artech House, 1996.

    Google Scholar 

  5. Baldini F., Bechi P., Bracci S., Cosi F., Pucciani F., In vivo optical-fibre pH sensor for gastro-oesophageal measurements, Sensors & Actuators 1995; B29: 164–168.

    Article  CAS  Google Scholar 

  6. Miller S.E., Chynoweth A.G., Optical Fiber Telecommunications, Academic Press (1979), pp. 167–226.

    Google Scholar 

  7. Bluenstein B., Walczak I., Chen S.Y., Fiber-optic evanescent-wave immunosensors for medical diagnostics, Trends Biotechnol 1990: 161–168.

    Google Scholar 

  8. Bevenot X., Trouillet A., Veillas C. et.al., Hydrogen leak detection using an optical fibre sensor for aerospace applications, Sensors & Actuators B 2000; 67: 57–67.

    Article  Google Scholar 

  9. Brecht A., Gauglitz G.: Recent developments in optical transducers for chemical or biochemical applications, Sensors and Actuators B 1997; 38:1–7.

    Article  Google Scholar 

  10. Nagel S., MacChesney J.B., Walker K., IEEE J, of Quantum. El, 1982; QE-18: 459–478.

    Article  ADS  Google Scholar 

  11. Optische Glas, Schott catalogue.

    Google Scholar 

  12. Kasik I., Lezal D., Karel M., Zavadil J.: Germanate glasses doped with rare-earth, Proc. 5th ESG Conf. (1999), Prague, p.151.

    Google Scholar 

  13. Grattan K.T.V., Meggitt B.T., Optical fiber sensor technology, Vol.4 Chemical and environmental sensing, Kluwer Academic Publishers, 1999, pp. 205–248.

    Google Scholar 

  14. Hocde S., Pledel-Boussard C., Fonteneau G., Lucas J., TeAsSe glass fibers for evanescent wave spectroscopy, Proc. SPIE 3849 (1999), Boston.

    Google Scholar 

  15. Le Sergent C., Chalcogenide glass optical fibers, Proc.SPIE 799 (1987), pp. 18–24.

    Google Scholar 

  16. Donald I.W., McMillan P.W., Infrared transmitting materials, J.Mat.Sci. 1978; 13: 1151–1176.

    Article  CAS  ADS  Google Scholar 

  17. Poulain M., Advances glasses, Annales de chimie-science des materiaux 28 (2003) 87–94.

    Article  CAS  Google Scholar 

  18. Hewak D.W., Taylor E., Payne D.N., Optical amplifiers and lasers in IR fibers, Proc.SPIE 3849 (1999), Boston.

    Google Scholar 

  19. Shalem S., German A., Barkay N., Moser F., Katzir A., Mechanical and optical properties of silver-halide infrared transmitting fibres, Fiber and integrated optics 1997; 16: 27–54.

    Article  CAS  Google Scholar 

  20. Hahn P., Tacke M., Jakusch M., Mizaikoff B., Detection of hydrocarbons in water by MIR evanescet-wave spectroscopy with flattened silver halide fibres, Applied Spectroscopy 2001; 55: 39–43.

    Article  CAS  ADS  Google Scholar 

  21. Schwotzer G. et al., Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescent field of fibers, Sensors & Actuators B 1997; 38: 150–153.

    Article  Google Scholar 

  22. Dybko A., Fundamentals of optoelectronics, Proc. ASCOS 2000.

    Google Scholar 

  23. Matejec V., Kasik I., Chomát M., Ctyroky J., Berkova D., Huttel I., Modified inverted graded-index fibers for evanescent-wave chemical sensing, Proc. SPIE 3860 (1999), Boston, pp. 443–451.

    Article  CAS  ADS  Google Scholar 

  24. Chailleux E., Salvia M., Jaffrezic-Renault N., Matejec V., Kasik I., A fibre optic sensor for monitoring the polymer cure process, Proc. SPIE 4016 (1999), Prague, pp. 136–142.

    Article  ADS  Google Scholar 

  25. Matejec V., Chomát M., Kasik I., Ctyroky J., Berkova D., Hayer M., Inverted-graded index fiber structures for evanescent-wave chemical sensing, Sensors & Actuators B 1998, 51:340–347.

    Article  Google Scholar 

  26. Chomát M., Berkova D., Matejec V., Ctyroky J., Kasik I., The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile, Proc. SPIE 3860 (1999), Boston.

    Google Scholar 

  27. Bardin F., Kasik I., Trouillet A. et.al., SPR sensor using an optical fiber with IGI profile, Appl, Opt. 2002; 41: 2514–2520.

    Article  ADS  Google Scholar 

  28. M. Chomát, D. Berková, V. Matéjec, I. Kašik, G. Kuncová, The effect of hydrodynamic conditions on the detection of aqueous solutions of toluene by means of an inverted graded-index fiber, Sensors & Actuators B 2003; 90: 151–156.

    Article  Google Scholar 

  29. Stewart G., Jin W., Culshaw B., Prospects for fibre-optic evanescent-field gas sensors using absorption in near-infrared, Sensors and Actuators B 1997; 38–39: 42–47.

    Article  Google Scholar 

  30. Matéjec V., Chomát M., Pospisilova M., Hayer M., Kasik I.: Optical fiber with novel geometry for evanescent-wave sensing, Sensors & Actuators (1995) B 29, pp. 416–422.

    Article  Google Scholar 

  31. Matéjec V., Chomát M., Hayer M., Berková D., Pospisilova M., Kasik I., Improvement of the sectorial fiber for evanescent-wave sensing, Sensors & Actuators B 1997; 38–39: 334–338.

    Article  Google Scholar 

  32. Wilson S.J., Hollow core glass waveguides, Proc. SPIE 799 (1987), pp. 54–60.

    CAS  Google Scholar 

  33. Saggese S.J., Harrington J.A., Sigel G.H., Hollow waveguides for sensor applications, Proc. SPIE 1368 (1990), San Jose, pp. 2–14.

    Google Scholar 

  34. Doupovec J., Brunner R., Suchy F., Evanescent fiberoptic sensors based on capillary optical fibers, Proc. 3rd Europtrode (1996), Zurich, p. 150.

    Google Scholar 

  35. Murthy Ch.S., Pustogov V.V., Mizaikoff B., Inberg A., Croitoru N., Trace level gas detection using mid infrared hollow waveguides, Proc. 5th Europtrode (2000), Lyon, p.275.

    Google Scholar 

  36. Matéjec V., Chomát M., Hayer M., Kasik I., Berková D., Abdelmalek F., Jaffrezic-Renault N., Development of special optical fibers for evanescent-wave sensing, Czechoslovak J. of Phys, 1999; 49: 883–888.

    Article  ADS  Google Scholar 

  37. http://www.OceanOptics.com.

    Google Scholar 

  38. D. Derickson et. al., Fiber optic test and measurement, Prentice Hall PTR, 1998.

    Google Scholar 

  39. http://www.oxford-electronics.com.

    Google Scholar 

  40. Wolfbeis O.S., Novel techniques and materials for fiber optic chemical sensing, Proc.6th IntConf. OFS'89 (1989), Paris, Springer-Verlag, pp. 416–424.

    Google Scholar 

  41. Gupta B.D., Sharma A., Singh C.D., Fiber optic evanescent-wave absorption sensors based on uniform and tapered fibers, Proc. 2nd Europtrode (1994), Firenze, p. 189.

    Google Scholar 

  42. Shiverlanke L.C., Anderson G.P., Golden J.P., Ligler F.S., The effect of tapering the optical fiber on evanescent-wave measurements, Analytical Letters 1992; 25: 1183–1199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kasik, I., Matejec, V., Chomat, M., Hayer, M., Berkova, D. (2006). OPTICAL FIBRES FOR OPTICAL SENSING. In: Baldini, F., Chester, A., Homola, J., Martellucci, S. (eds) Optical Chemical Sensors. NATO Science Series II: Mathematics, Physics and Chemistry, vol 224. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4611-1_4

Download citation

Publish with us

Policies and ethics