Skip to main content

BIOSENSORS FOR DETECTION OF BIOTERRORIST THREATS

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 224))

Abstract

There is no universal sensor appropriate for the detection of bioterrorist threats in all situations. All biothreats are composed of very similar compounds--molecules composed predominantly of carbon, nitrogen, oxygen, and hydrogen atoms and generally organized into amino acids and nucleotides. These molecules are highly similar when viewed spectroscopically or using other long-range interrogation techniques. Thus specific identification requires direct contact with the threat for further analysis. The most rapid and specific methods for such analyses involve molecular recognition using complementary biomolecules. Such molecules are incorporated into biosensors to provide an optoelectronic signal when the recognition event occurs. Distinct biosensor approaches provide different information and are useful in different scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Hewish M., Chem-bio warfare, surviving cbw detection and protection: what you don't know, International Defense Rev 1997; 30(003): 30–48.

    Google Scholar 

  2. Casagrande R. Technology against terror. Scientific American 83–87, Oct. 2002.

    Google Scholar 

  3. Bryden W.A., Benson R.C., Ko H.W., Donlon M., Universal agent sensor for counterproliferation applications, Johns Hopkins APL Technical Digest. 18:302–308, 1997.

    CAS  Google Scholar 

  4. Pancrazio J.J. (Ed.) Special Issue: Cell-based Biosensors, Biosens. Bioelectron. 2001; 16: 427–608.

    Google Scholar 

  5. Steichen C., Chen P., Kearney J.F., Turnbough C.L., Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium, J. Bacteriol. 2003; 185:1903–1910.

    Article  CAS  Google Scholar 

  6. Emanuel P.A., Dang J., Gebhardt J.S., Aldrich J., Garber E.A.E., Kulaga H., Stopa P., Valdes J.J., Dion-Schultz A., Recombinant antibodies: a new reagent for biological agent detection, Biosens. Bioelectron. 2000; 14:751–759.

    Article  CAS  Google Scholar 

  7. Hayhurst A., Happe S., Mabry R., Koch Z., Iverson B.L., Georgiou G., Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis, J. Immunol. Meth. 2003; 276:185–196.

    Article  CAS  Google Scholar 

  8. Park S.-J., Taton T.A., Mirkin C.A., Array-based electrical detection of DNA using nanoparticle probes, Science 2002; 295:1503–1506.

    Article  CAS  Google Scholar 

  9. Brody E.N., Willis M.C., Smith J.D., Jayasena S., Zichi, D. Gold, L., The use of aptamers in large arrays for molecular diagnostics, Molecular Diagnostics 1999; 4(4):381–388

    Article  CAS  Google Scholar 

  10. Bruno J.G., Kiel J.L., In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection, Biosens. Bioelectron. 1999; 14:457–464.

    Article  CAS  Google Scholar 

  11. Golden M.C., Collins B.D., Willis M.C., Koch T.H., Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers, J. Biotechnol. 2000; 81:167–178.

    Article  CAS  Google Scholar 

  12. Zichi D., Koga T., Greef C., Ostroff R., Petach H., Photoaptamer technology: development of multiplexed microarray protein assays, Clin. Chem. 2002; 48:1865–1868.

    CAS  Google Scholar 

  13. Song X., Swanson B.I., Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions, Anal. Chem. 1999; 71:2097–2107.

    Article  CAS  Google Scholar 

  14. Rowe-Taitt C.A., Cras J.J., Patterson C.H., Golden J.P., Ligler F.S., A ganglioside-based assay for cholera toxin using an array biosensor, Anal. Biochem. 2000a; 281:123–133.

    Article  CAS  Google Scholar 

  15. Fang Y., Frutos A.G., Lahiri J., Ganglioside microarrays for toxin detection, Langmuir 19:1500–1505, 2003.

    Article  CAS  Google Scholar 

  16. Mason H.Y., Lloyd C., Dice M., Sinclair R., Ellis W., Powers L., Taxonomic identification of microorganisms by capture and intrinsic fluorescence detection, Biosens. Bioelectron. 2003, 18:521–527.

    Article  CAS  Google Scholar 

  17. Emanuel P.A., Biosecurity and bioterrorism. Biodefense Strategy, Practice, and Science, 2003, 1:131–137.

    Article  Google Scholar 

  18. Walt, D.R., Franz, D.R., Biological warfare detection, Anal. Chem. 2000; 738:A-746–757.

    Google Scholar 

  19. Dill K., Song J.H., Blomdahl J.A., Olson J.D., Rapid, sensitive and specific detection of whole cells and spores using the light-addressable potentiometric sensor, J. Biochem. Biophys. Meth. 1997; 3:161–166.

    Article  Google Scholar 

  20. Uithoven K.A., Schmidt J.C., Ballman M.E., Rapid identification of biological warfare agents using an instrument employing a light addressable potentiometric sensor and a flow-through immunofiltration-enzyme assay system, Biosens. Bioelectron. 2000, 14:761–770.

    Article  CAS  Google Scholar 

  21. Ogert R.A., Shriver-Lake L.C., Ligler F.S., Toxin detection using a fiber optic-based biosensor, Proc. SPIE. 1885:11–17, 1993.

    Article  CAS  Google Scholar 

  22. Ligler F.S., Anderson G.P., Davidson P.T., Foch R.J., Ives J.T., King K.D., Page G., Stenger D.A., Whelan J.P., Remote sensing using an airborne biosensor, Environ. Sci. Technol. 1998a; 32: 2461–2466.

    Article  CAS  Google Scholar 

  23. Hewish M., On alert against the bioagents, International Defense Rev. 31(011), 53 pp., 1998.

    Google Scholar 

  24. Anderson G.P., King K.D., Cuttino D.S., Whelan J.P., Ligler F.S., MacKrell J.F., Bovais C.S., Indyke D.K., Foch R.J., Biological agent detection using an airborne biosensor, FACT 1999; 3:307–314.

    Article  Google Scholar 

  25. Tempelman L.A., King K.D., Anderson G.P., Ligler F.S., Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber optic biosensor, Anal. Biochem. 1996; 223: 50–57.

    Article  Google Scholar 

  26. Demarco D.R., Lim D.V., Detection of Escherichia coli 0157 : H7 in 10-and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides, J. Food Protect. 2002; 65: 596–602.

    Google Scholar 

  27. Narang U., Anderson G.P., King K.D., Liss H.S., Ligler F.S., Enhanced biosensor performance using an avidin-biotin bridge for antibody immobilization, Proc. SPIE. 2980:187–194,1997.

    CAS  Google Scholar 

  28. Anderson G.P., Rowe-Taitt C.A., Water quality monitoring using an automated portable fiber optic biosensor: RAPTOR, Proc. SPIE 4206:58–63, 2001.

    Article  CAS  Google Scholar 

  29. Cao L.K., Anderson G.P., Ligler F.S., Ezzell J., Detection of Yersinia pestis Fl antigen by a fiber optic biosensor, J. Clin. Micro. 1995; 33: 336–341.

    CAS  Google Scholar 

  30. King K.D., Vanniere J.M., LeBlanc J.L., Bullock K.E., Anderson G.P., Automated fiber optic biosensor for multiplexed immunoassays, Environ. Sci. Technol. 2000; 34: 2845–2850.

    Article  CAS  Google Scholar 

  31. Anderson G.P., King K.D., Gaffney K.L., Johnson L.H., Multianalyte interrogation using the fiber optic biosensor, Biosens. Bioelectron. 2000; 14: 771–778.

    Article  CAS  Google Scholar 

  32. Yu H., Bruno J.G., Immunomagnetic-electrochemiluminescent detection of Escherichia coli 0157 and Salmonella typhimurium in foods and environmental water samples, Appl. Environ. Micro. 1995; 62: 587–592.

    Google Scholar 

  33. Anderson G.P., Lingerfelt B.M., Taitt C.R., Eight analyte detection using a four-channel optical biosensor, Sensor Letters 2004; 2 (1): 18–24.

    Article  Google Scholar 

  34. Bruno J.G., Yu H., Immunomagnetic electrochemiluminescent detection of Bacillus anthracis spores in soil matrices, Appl. Environ. Micro. 1996; 62:3474–3476.

    CAS  Google Scholar 

  35. Crawford C.G., Wijey C., Fratamico P., Tu S.I., Brewster J., Immunomagnetic-electrochemiluminescent detection of E. coli 0157:H7 in ground beef, J. Rapid Meth. Auto. Micro. 2000; 8: 249–264.

    CAS  Google Scholar 

  36. Kuczynska E., Boyer D.G., Shelton D.R., Comparison of immunofluorescence assay and immunomagnetic electrochemiluminescence in detection of Cryptosporidium parvum oocysts in karst water samples, J. Microbiol. Meth. 2003; 53: 17–26.

    Article  Google Scholar 

  37. Lee G.U., Metzger S., Natesan M., Yanavich C., Dufrene Y.F., Implementation of force differentiation in the immunoassay, Anal. Biochem. 2000; 287: 261–271.

    Article  CAS  Google Scholar 

  38. Linder D., The μChemLabTM project: micrototal analysis system R&D at Sandia National Laboratories, Lab on a Chip. 2001; 1: 15N-19N.

    Google Scholar 

  39. Belgrader P., Okuzumi, M., Pourahmadi, F., Borkholder, D., Northrup, M.A., A microfluidic cartridge to prepare spores for PCR analysis, Biosens. Bioelectron. 2000; 14: 849–852.

    Article  CAS  Google Scholar 

  40. Taylor M.T., Belgrader P., Joshi R., Kintz G.A., Northrup M.A., Fully automated sample preparation for pathogen detection performed in a microfluidic cassette. In Micro Total Analysis Systems 2000, Berg, A. van den, Olthuis, W., Bergveld, P., eds. Kluwer Academic Publishers, The Netherlands, pp 670–672, 2000.

    Google Scholar 

  41. Taylor M.T., Belgrader P., Furman B.J., Pourahmadi F., Kovacs G.T.A., Northrup M.A., Lysing bacterial spores by sonication through a flexible interface in a microfluidic system, Anal. Chem. 2001; 73: 492–496.

    Article  CAS  Google Scholar 

  42. Taitt C.R., Anderson G.P., Lingerfelt B.M., Feldstein M.J., Ligler F.S., Nine-analyte detection using an array-based biosensor, Anal. Chem. 2002; 74: 6114–6120.

    Article  CAS  Google Scholar 

  43. Golden J.P.; Taitt C.R.; Shriver-Lake L.C.; Shubin Y.S.; Ligler F.S., A portable automated multianalyte biosensor, Talanta, 2005; 65 (5): 1078–1085.

    Article  CAS  Google Scholar 

  44. Ligler F.S., Conrad D.W., Golden J.P., Feldstein M.J., MacCraith B.D., Balderson S.D., Czarnaski J., Rowe C.A., Array biosensor for multi-analyte sensing, Proc. SPIE. 3258:50–55, 1998b.

    Article  CAS  Google Scholar 

  45. Rowe C.A., Scruggs S.B., Feldstein M.J., Golden J.P, Ligler F.S., An array immunosensor for simultaneous detection of clinical analytes, Anal. Chem. 1999; 71: 433–439.

    Article  CAS  Google Scholar 

  46. Shriver-Lake L.C, Shubin Y., Ligler F.S., Detection of staphylococcal enterotoxin B in spiked food samples, J. Food Protect. 2003; 66: 1851–1856.

    CAS  Google Scholar 

  47. Ligler F.S., Taitt C.R., Shriver-Lake L.C., Sapsford K.E., Shubin Y., Golden J.P., Array biosensor for detection of toxins, Anal. Bioanal. Chem. 2003; 377: 469–477.

    Article  CAS  Google Scholar 

  48. Taitt C.R., Golden J.P., Shubin Y.S., Shriver-Lake L.C., Sapsford K.E., Rasooly A., Ligler F.S. A portable array biosensor for detecting multiple analytes in complex samples, J. Microbiol. Ecol. 2003; Feb 9.

    Google Scholar 

  49. Rowe-Taitt C.A., Hazzard J.W., Hoffman K.E., Cras J.J., Golden J.P., Ligler F.S., Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor, Biosens. Bioelectron. 2000b; 15: 579–589.

    Article  CAS  Google Scholar 

  50. Goodey A., Lavigne J.J., Savoy S.M., Rodriguez M., Curey T., Tsao A., Simmons G., Wright J., Yoo S.-J., Sohn Anslyn E.V., Shear J.B., Neikirk D.P., McDevitt J.T., Development of multi-analyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities, J. Am. Chem. Soc. 2000b; 123: 2559–2570.

    Article  Google Scholar 

  51. Michael K.L., Taylor L.C., Schultz S.L., Walt D.R., Randomly ordered addressable high-density optical sensor arrays, Anal. Chem. 1998; 70: 1242–1248.

    Article  CAS  Google Scholar 

  52. Epstein J.R., Walt D.R., Fluorescence-based fibre optic arrays: a universal platform for sensing, Chem. Soc. Rev. 2003; 32: 203–214.

    Article  CAS  Google Scholar 

  53. Rife J.C., Miller M.M., Sheehan P.E., Tamanaha C.R., Tondra M., Whitman L.J., Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, Sensor Actuat A-Phys. 2003; 107: 209–218.

    Article  Google Scholar 

  54. Tamanaha C.R., Whitman L.J., Colton R.J., Hybrid macro-micro fluidics system for a chip-based biosensor, J. Micromech. Microeng. 2002; 12:N7.

    Article  CAS  Google Scholar 

  55. Edelstein R.L., Tamanaha C.R., Sheehan P.E., Miller M.M., Baselt D.R., Whitman L.J., Colton R.J., The BARC biosensor applied to the detection of biological warfare agents, Biosens. Bioelectron. 2000; 14: 805–813.

    Article  CAS  Google Scholar 

  56. Vo-Dinh T., Development of a DNA biochip: Principle and applications, Sensor Actual B-Chem. 1998; 51: 52–59.

    Article  Google Scholar 

  57. Vo-Dinh T., Alarie J.P., Isola N., Landis D., Wintenberg A.L., Ericson M.N., DNA biochip using a phototransistor integrated circuit, Anal. Chem. 1998; 71: 358–363.

    Article  Google Scholar 

  58. Moreno-Bondi M.C., Alarie J.P., Vo-Dinh T., Multianalyte analyses system using an antibody-based biochip, Anal. Bioanal. Chem. 2003; 375: 120–124.

    CAS  Google Scholar 

  59. Stratis-Cullum D.N., Griffin G.D., Mobley J., Vass A.A., Vo-Dinh T., A miniature biochip system for detection of aerosolized Bacillus globigii spores, Anal. Chem. 2003; 75: 275–280.

    Article  CAS  Google Scholar 

  60. Fulton R.J., Me Dade R.L., Smith P.L., Kienker L.J., Kettman J.R.Jr., Advanced multiplexed analysis with the FloMetrix system, din. Chem. 1997; 43: 1749–1756.

    CAS  Google Scholar 

  61. McDade R.L., Fulton R.J., True multiplexed analysis by computer-enhanced flow cytometry, Medical Device and Diagnostic Industry, 6 pp., April 1977.

    Google Scholar 

  62. Vora G.J, Meadors C.E., Stenger D.A., Andreadis J.D., Nucleic acid amplification strategies for DNA microarray-based pathogen detection, Appl. Environ. Microbiol. 2004; 70: 3047–3054.

    Article  CAS  Google Scholar 

  63. Anderson R.C., Xing S., Bogdan G.J., Fenton J., A miniature integrated device for automated multistep genetic assays, Nucleic Acids Research. 2000; 28: e60.

    Article  CAS  Google Scholar 

  64. Yang J.M, Bell B., Huang Y., Tirado M., Thomas D., Forster A.H., Haigis R.W., Swanson P.D., Wallace B., Martinsons B., Krihak M., An integrated stacked microlaboratory for biological agent detection with DNA and immunoassays, Biosens. Bioelectron. 2002; 17: 605–618.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Ligler, F.S., Phil., D., Sc., D. (2006). BIOSENSORS FOR DETECTION OF BIOTERRORIST THREATS. In: Baldini, F., Chester, A., Homola, J., Martellucci, S. (eds) Optical Chemical Sensors. NATO Science Series II: Mathematics, Physics and Chemistry, vol 224. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4611-1_21

Download citation

Publish with us

Policies and ethics