Skip to main content

Biocontrol of Plant Diseases by Genetically Modified Microorganisms: Current Status and Future Prospects

  • Chapter
PGPR: Biocontrol and Biofertilization

Abstract

The biocontrol of plant diseases by microorganisms is a promising alternative to the chemical pesticides. Serratia marcescens strain B2 effectively controls fungal diseases of cyclamen and rice. Biocontrol by S. marcescens strain B2 is mediated by the combined effects of plural chitinases, antibiotic prodigiosin, induced systemic resistance. Activity of S. marcescens is often negatively affected by abiotic and biotic factors and antibiotic biosynthesis of this bacterium is reduced under the influence of rice-associated bacteria. A genetically modified rice-indigenous bacterium was developed by introducing genes encoding for antifungal factors. Disease inhibitory genes were isolated from S. marcescens and put under the control of several types of promoters, which were isolated from the recipient. These genetically modified microorganisms effectively suppressed rice blast disease caused by Pyricularia oryzae and are not affected by abiotic or biotic factors. Introduction of disease inhibitory genes controlled by promoters and derived from the recipient is a useful technology for the development of biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. B., and Wong, J. A.-L., 1991, The effect of chemical pesticides on the infection of sclerotia of Sclerotinia minor by the biocontrol agent Sporidesmium sclerotivorum, Phytopathology, 81:1340–1343.

    CAS  Google Scholar 

  • Akutsu, K., Hirata, A., Yamamoto, M., Hirayae, K., Okuyama S., and Hibi T., 1993, Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane, Ann. Phytopathol. Soc. Jpn. 59:18–25.

    CAS  Google Scholar 

  • Amarger, N., 2002, Genetically modified bacteria in agriculture, Biochimie 84:1061–1072.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, W. D., and Teplitski, M., 2001, Can plants manipulate bacterial quorum sensing?, Aust. J. Plant Physiol. 28:913–921.

    CAS  Google Scholar 

  • Bonsall, R. F., Weller, D. M., Thomashow, L. S., 1997, Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol. 63:951–955.

    CAS  Google Scholar 

  • Bruton, B. D., Mitchell, F., Fletcher, J., Pair, S. D., Wayadande, A., Melcher, U., Brady, J., Bextine, B., and Popham, T. W., 2003, Serratia marcescens, a phloem-colonizing, squash bug-transmitted bacterium: causal agent of cucurbit yellow vine disease, Plant Dis. 87:937–944.

    Google Scholar 

  • Burpee, L. L., 1990, The influence of abiotic factors on biological control of soilborne plant pathogenic fungi, Can. J. Plant Pathol. 12:308–317.

    Google Scholar 

  • Campbell, R., 1989, Biological Control of Microbial Plant Pathogens, Cambridge University Press., Cambridge, UK.

    Google Scholar 

  • Chernin, L. S., de la Fuente, L., Sobolev, V., Haran, S., Vorgias, C. E., Oppenheim, A. B., and Chet, I., 1997, Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans, Appl. Environ. Microbiol. 63:834–839.

    CAS  PubMed  Google Scholar 

  • Chernin, L. S., Winson, M. K., Thompson, J. M., Haran, S., Bycroft, B. W., Chet, I., Williams, P., and Stewart, G. S. A. B., 1998, Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing, J. Bactreriol. 180:4435–4441.

    CAS  Google Scholar 

  • Cook, R. J., 1996, Assuring the safe use of microbial biocontrol agents: a need for policy based on real rather than perceived risks, Can. J. Plant Pathol. 18:439–445.

    Google Scholar 

  • Cook, R. J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., Maddox, J. V., McManus, M. L., Moore, L., Meyer, S. F., Quimby Jr., P. C., Stack, J. P., and Vaughn, J. L., 1996, Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation, Biol. Control 7:333–351.

    Article  Google Scholar 

  • De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., Van der Sluis, I., Van Loon, L. C., and Bakker, P. A. H. M., 2003, Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms, Phytopathology 93:626–632.

    Google Scholar 

  • De Leij, F. A. A. M., Sutton, E. J., Whipps, J. M., Fenlon, J. S., and Lynch, J. M., 1995, Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat, Appl. Environ. Microbiol. 61:3443–3453.

    Google Scholar 

  • Delany, I. R., Walsh, U. F., Ross, I., Fenton, A. M., Corkery, D. M., and O’Gara, F., 2001, Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol, Plant Soil 232:195–205.

    Article  CAS  Google Scholar 

  • Desai, S., Reddy, M. S., and Kloepper, J. W., 2002, Comprehensive testing of biocontrol agents, in: Biological Control of Crop Diseases, S. S. Gnanamanickam ed., Marcell Dekker Inc., NY, pp. 387–420.

    Google Scholar 

  • Dowling, D. N., and O’Gara, F., 1994, Metabolites of Pseudomonas involved in the biocontrol of plant disease, Trends Biotechn. 12:133–141.

    CAS  Google Scholar 

  • Downing, K. J., and Thomson, J. A., 2000, Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi, Can. J. Microbiol. 46:363–369.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, B. K., and Défago, G., 1997, Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis, Phytopathology 87:1250–1257.

    CAS  Google Scholar 

  • Duffy, B. K., and Défago, G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains, Appl. Environ. Microbiol. 65:2429–2438.

    CAS  PubMed  Google Scholar 

  • Duffy, B., Schouten, A., and Raaijmakers, J. M., 2003, Pathogen self-defence: mechanisms to counteract microbial antagonism, Annu. Rev. Phytopathol. 41:501–538.

    Article  CAS  PubMed  Google Scholar 

  • Fray, R. G., Throup, J. P., Daykin, M., Wallace, A., Williams, P., Stewart, G. S. A. B., and Grierson, D., 1999, Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria, Nature Biotechn. 17:1017–1020.

    CAS  Google Scholar 

  • Fuchs, R. L., McPherson, S. A., and Drahos, D. J., 1986, Cloning of a Serratia marcescens gene encoding chitinase, Appl. Environ. Microbiol. 51:504–509.

    CAS  PubMed  Google Scholar 

  • Fukui, R., 2003, Suppression of soilborne plant pathogens through community evolution of soil microorganisms, Microb. Environ. 18:1–9.

    Article  Google Scholar 

  • Fukui, R., Fukui, H., and Alvarez, A. M., 1999, Comparisons of single versus multiple bacterial species on biological control of anthurium blight, Phytopathology 89:366–373.

    Google Scholar 

  • Giddings, G., 1998, Transley review no. 99. The release of genetically engineered microorganisms and viruses into the environment, New Phytol. 140:173–184.

    Article  Google Scholar 

  • Gooday, G. W., 1990, Physiology of microbial degradation of chitin and chitosan, Biodegradation 1:177–190.

    Article  CAS  Google Scholar 

  • Grimont, P. A. D., and Grimont, F., 1978, The genus Serratia, Ann. Rev. Microbiol. 32:221–248.

    CAS  Google Scholar 

  • Gullino, M. L., Migheli, Q., and Mezzalama, M., 1995, Risk analysis in the release of biological control agents, Plant Dis. 79:1193–1201.

    Google Scholar 

  • Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.-Y., Zhang, L.-X., and Sun, P.-H., 2004, Biocontrol of tomato wilt by plant growth-promoting rhizobacteria, Biol. Control 29:66–72.

    Article  Google Scholar 

  • Haas, D., and Keel, C., 2003, Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease, Annu. Rev. Phytopathol. 41:117–153.

    Article  CAS  PubMed  Google Scholar 

  • Hejazi, A., and Falkiner, F. R., 1997, Serratia marcescens, J. Med. Microbiol. 46:903–912.

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella, A., and Chet, I., 1999, Chitinases in biological control, in: Chitin and Chitinases, P. Jollès, and R. A. A. Muzzarelli, eds., Birkhäuser Verlag, Basel, pp. 171–184.

    Google Scholar 

  • Hirayae, K., Hirata, A., Akutsu, K., Hara, S., Havukkala, I., Nishizawa, Y., and Hibi T., 1996, In vitro growth inhibition of plant pathogenic fungi, Botrytis spp., by Escherichia coli transformed with a chitinolytic enzyme gene from a marine bacterium, Alteromonas sp. strain 79401, Ann. Phytopathol. Soc. Jpn. 62:30–36.

    CAS  Google Scholar 

  • Horng, Y.-T., Deng, S.-C., Daykin, M., Soo, P.-C., Wei, J.-R., Luh, K.-T., Ho, S.-W., Swift, S., Lai, H.-C., and Williams, P., 2002, The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens, Mol. Microbiol. 45:1655–1671.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, S., Toyoda, H., Matsuda, Y., Kurokawa, M., Tamai, T., Yoshida, K., Nami, C., Ikemoto, T., Enomoto, M., Shiraishi, K., Miyamoto, S., Hanaoka, M., and Ouchi, S., 1996, Cloning of a chitinase gene chiSH1 cloned from gram-positive bacterium Kurthia zopfii and control of powdery mildew of barley, Ann. Phytopathol. Soc. Jpn. 62:11–16.

    CAS  Google Scholar 

  • Iyozumi, H., Komagata, T., Hirayae, K., Tsuchiya, K., Hibi, T., and Akutsu, K., 1996, Biological control of cyclamen gray mould (Botrytis cinerea) by Serratia marcescens B2, Ann. Phytopathol. Soc. Jpn. 62:559–565.

    Google Scholar 

  • Kobayashi, D. Y., Guglielmoni, M., and Clarke, B. B., 1995, Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass, Soil Biol. Biochem. 27:1479–1487.

    Article  CAS  Google Scholar 

  • Kraus, J., and Loper, J. E., 1995, Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5, Appl. Environ. Microbiol. 61:849–854.

    CAS  Google Scholar 

  • Kravchenko, L. V., Azarova, T. S., Leonova-Erko, E. I., Shaposhnikov, A. I., Makarova, N. M., and Tikhonovich, I. A., 2003, Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains, Microbiology 72:37–41.

    CAS  Google Scholar 

  • Kredics, L., Antal, Z., Manczinger, L., Szekeres, A., Kevei, F., and Nagy, E., 2003., Influence of environmental parameters on Trichoderma strains with biocontrol potential, Food Technol. Biotech. 41:37–42.

    Google Scholar 

  • Landa, B. B., Navas-Cortés, J. A., Hervás, A., and Jiménez-Diaz, R. M., 2001, Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria, Phytopathology 91:807–816.

    Google Scholar 

  • Landa, B. B., Cachinero-Diaz, J. M., Lemanceau, P., Jiménez-Diaz, R. M., and Alabouvette, C., 2002, Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum, Can. J. Microbiol. 48:971–985.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Kloepper, J. W., and Tuzun, S., 1995, Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria, Phytopathology 85:695–698.

    Google Scholar 

  • Lutz, M. P., Feichtinger, G., Défago, G., and Duffy, B., 2003, Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1, Appl. Environ. Microbiol. 69:3077–3084.

    Article  CAS  PubMed  Google Scholar 

  • Mathre, D. E., Cook, R. J., and Callan, N. W., 1999, From discovery to use-traversing the world of commercializing biocontrol agents for plant disease control, Plant Dis. 83:972–983.

    Google Scholar 

  • Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., and Défago, G., 1992, Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity, Phytopathology 82:190–195.

    CAS  Google Scholar 

  • Mukohara, Y., 1998, Aspect for development of biological control agents (in Japanese), BIO INDUSTRY 15:31–40.

    Google Scholar 

  • Natsch, A., Keel, C., Hebecker, N., Laasik, E., and Défago, G., 1997, Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads, FEMS Microbiol. Ecol. 23:341–352.

    CAS  Google Scholar 

  • Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D., and Défago, G., 2001, Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere, Phytopathology 91:873–881.

    CAS  Google Scholar 

  • Notz, R., Maurhofer, M., Dubach, H., Haas, D., and Défago, G., 2002, Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol. 68:2229–2235.

    Article  CAS  PubMed  Google Scholar 

  • Numata, S., Ui, S., Tomiyama, M., Hasebe, A., Nakajima, M., and Akutsu, K., 2004, Cloning of various promoters for foreign gene expression in Erwinia ananas, J. Gen. Plant Pathol. 70:69–73.

    Article  CAS  Google Scholar 

  • Okamoto, H., Sato, M., Sato, Z., and Isaka, M., 1998, Biocontrol of Phytophthora capsici by Serratia marcescens F-1-1 and analysis of biocontrol mechanisms using transposon-insertion mutants, Ann. Phytopathol. Soc. Jpn. 64:287–293.

    CAS  Google Scholar 

  • Ordentlich, A., Elad, Y., and Chet, I., 1988, The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii, Phytopathology 78:84–88.

    CAS  Google Scholar 

  • Ownley, B. H., Weller, D. M., and Thomashow, L. S., 1992, Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79, Phytopathology 82:178–184.

    CAS  Google Scholar 

  • Ownley, B. H., Duffy, B. K., and Weller, D. M., 2003, Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens, Appl. Environ. Microbiol. 69:3333–3343.

    Article  CAS  PubMed  Google Scholar 

  • Pierson, E. A., and Weller, D. M., 1994, Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat, Phytopathology 84:940–947.

    Google Scholar 

  • Pierson III, L. S., and Pierson, E. A., 1996, Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression, FEMS Microbiol. Lett. 136:101–108.

    CAS  Google Scholar 

  • Raaijmakers, J. M., Weller, D. M., and Thomashow, L. S., 1997, Frequency of antibiotic-producing Pseudomonas spp. in natural environments, Appl. Environ. Microbiol. 63:881–887.

    CAS  Google Scholar 

  • Rascoe, J., Berg, M., Melcher, U., Mitchell, F. L., Bruton, B. D., Pair, S.D., and Fletcher, J., 2003, Identification, phylogenic analysis, and biological characterization of Serratia marcescens strains causing cucurbit yellow vine disease, Phytopathology 93:1233–1239.

    CAS  Google Scholar 

  • Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., and Kloepper, J. W., 1996, Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR), Plant Dis. 80:891–894.

    Google Scholar 

  • Ryder, M., 1994, Key issues in the deliberate release of genetically-manipulated bacteria, FEMS Microbiol. Ecol. 15:139–146.

    CAS  Google Scholar 

  • Schisler, D. A., Slininger, P. J., and Bothast, R. J., 1997, Effects of antagonist cell concentration and two-strain mixtures on biological control of Fusarium dry rot of potatoes, Phytopathology 87:177–183.

    Google Scholar 

  • Schmidt, C. S., Agostini, F., Leifert, C., Killham, K., and Mullins, C. E., 2004, Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis, Phytopathology 94:351–363.

    Google Scholar 

  • Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin, J. Bacteriol. 182:1215–1225.

    Article  CAS  PubMed  Google Scholar 

  • Schroth, M. N., and Hancock, J. G., 1982, Disease-suppressive soil and root-colonizing bacteria, Science 216:1376–1381.

    CAS  Google Scholar 

  • Shanahan, P., O’sullivan, D. J., Simpson, P., Glennon, J. D., O’Gara, F., 1992, Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production, Appl. Environ. Microbiol. 58:353–358.

    CAS  PubMed  Google Scholar 

  • Shapira, R., Ordentlich, A., Chet, I., and Oppenheim, A. B., 1989, Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli, Phytopathology 79:1246–1249.

    CAS  Google Scholar 

  • Shipton, P. J., Cook, R. J., and Sitton, J. W., 1973, Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in eastern Washington, Phytopathology 63:511–517.

    CAS  Google Scholar 

  • Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T., and Akutsu, K., 2000, Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2, Plant Dis. 84:334–340.

    Google Scholar 

  • Someya, N., Nakajima, M., Hirayae, K., Hibi, T., and Akutsu, K., 2001, Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea, J. Gen. Plant Pathol. 67:312–317.

    CAS  Google Scholar 

  • Someya, N., Nakajima, M., Hibi, T., Yamaguchi, I., and Akutsu, K., 2002, Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2, J. Gen. Plant Pathol. 68:177–182.

    CAS  Google Scholar 

  • Someya, N., Nakajima, M., Watanabe, K., Hibi, T., and Akutsu, K., 2003a, Influence of bacteria isolated from rice plants and rhizospheres on antibiotic production by the antagonistic bacterium Serratia marcescens strain B2, J. Gen. Plant Pathol. 69:342–347.

    CAS  Google Scholar 

  • Someya, N., Numata, S., Nakajima, M., Hasebe, A., Hibi, T., and Akutsu, K., 2003b, Biological control of rice blast by the epiphytic bacterium Erwinia ananas transformed with a chitinolytic enzyme gene from an antagonistic bacterium, Serratia marcescens strain B2, J. Gen. Plant Pathol. 69:276–282.

    CAS  Google Scholar 

  • Someya, N., Nakajima, M., Hamamoto, H., Yamaguchi, I., and Akutsu, K., 2004, Effects of light conditions on prodigiosin stability in the biocontrol bacterium Serratia marcescens strain B2, J. Gen. Plant Pathol. 70:in press.

    Google Scholar 

  • Someya, N., Nakajima, M., Watanabe, K., Hibi, T., and Akutsu, K., 2005a, Potential of Serratia marcescens strain B2 for biological control of rice sheath blight, Biocontrol Sci. Techn. 15:in press.

    Google Scholar 

  • Someya, N., Numata, S., Nakajima, M., Hasebe, A., Akutsu, K., 2005b, Influence of riceisolated bacteria on chitinase production by the biocontrol bacterium Serratia marcescens strain B2 and the genetically modified rice epiphytic bacterium, J. Gen. Plant Pathol. 71:in press.

    Google Scholar 

  • Stephenson, J. R., and Warnes, A., 1996, Release of genetically modified micro-organisms into the environment, J. Chem. Tech. Biotechnol. 65:5–14.

    Article  CAS  Google Scholar 

  • Stewart, A., 2001, Commercial biocontrol-reality or fantasy?, Austral. Plant Pathol. 30:127–131.

    Article  Google Scholar 

  • Sundheim, L., Poplawsky, A. R., and Ellingboe, A. H., 1988, Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species, Physiol. Mol. Plant Pathol. 33:483–491.

    Article  CAS  Google Scholar 

  • Swift, S., Throup, J. P., Williams, P., Salmond, G. P. C., and Stewart, G. S. A. B., 1996, Quorum sensing: a population-density component in the determination of bacterial phenotype, Trends Biochem. Sci. 21:214–219.

    Article  CAS  PubMed  Google Scholar 

  • Teplitski, M., Robinson, J. B., and Bauer, W. D., 2000, Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population densitydependent behaviors in associated bacteria, Mol. Plant-Microbe Interact. 13:637–648.

    CAS  PubMed  Google Scholar 

  • Thomson, N. R., Crow, M. A., McGowan, S. J., Cox, A., and Salmond, G. P. C., 2000, Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control, Mol. Microbiol. 36:539–556.

    Article  CAS  PubMed  Google Scholar 

  • Toyota, K., Miyashita, K., and Kimura, M., 1994, Introduction of a chitinase gene into Pseudomonas stutzeri A18 isolated from the surface of chlamydospores of Fusarium oxysporum f. sp. raphani, Soil Biol. Biochem. 26:413–416.

    Article  CAS  Google Scholar 

  • Utkhede, R. S., 1996, Potential and problems of developing bacterial biocontrol agents, Can. J. Plant Pathol. 18:455–462.

    CAS  Google Scholar 

  • Van Rij, E. T., Wesselink, M., Chin-A-Woeng, T. F. C., Bloemberg, G. V., and Lugtenberg, B. J. J., 2004, Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391, Mol. Plant-Microbe Interact. 17:557–566.

    PubMed  Google Scholar 

  • Vidhyasekaran, P., 2004, Biological control-microbial pesticides, in: Concise Encyclopedia of Plant Pathology, Food Products Press and the Haworth Reference Press, NY, pp. 239–270.

    Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M., 2003, Root exudation and rhizosphere biology, Plant Physiol. 132:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, U. F., Morrissey, J. P., and O’Gara, F., 2001, Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation, Curr. Opin. Biotechnol. 12:289–295.

    Article  CAS  PubMed  Google Scholar 

  • Wei, G., Kloepper, J. W., and Tuzun, S., 1996, Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions, Phytopathology 86:221–224.

    Google Scholar 

  • Wilson, M., and Lindow, S. E., 1993, Release of recombinant microorganisms, Annu. Rev. Microbiol. 47:913–944.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. W., Gong, F., Daykin, M. M., Williams, P., and Pierson III, L. S., 1997, N-acylhomoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere, J. Bacteriol. 179:7663–7670.

    CAS  PubMed  Google Scholar 

  • Yoda, J., 2004, Establishment of the bill on living modified organisms (LMOs) and its background (in Japanese), Protein, Nucleic acid and Enzyme 49:559–566.

    Google Scholar 

  • Zhou, H., Yao, F., Roberts, D. P., and Lessie, T. G., 2003, AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity, Curr. Microbiol. 47:174–179.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Someya, N., Akutsu, K. (2005). Biocontrol of Plant Diseases by Genetically Modified Microorganisms: Current Status and Future Prospects. In: Siddiqui, Z.A. (eds) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4152-7_11

Download citation

Publish with us

Policies and ethics