Skip to main content

Pathways of Biotransformation — Phase I Reactions

  • Chapter
Drug Metabolism

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor JB, Kennewell PD. 1993. Biotransformation. Metabolic pathways. In: Modern Medicinal Chemistry, New York: Ellis Horwood Ltd, pp 102–108; 109–116.

    Google Scholar 

  2. Wilkinson GR. 2001. Pharmacokinetics: The Dynamics of Drug Absorption, Distribution, and Elimination. In: Hardman JG, Limbird LE, Gilman GA, editors. Goodman & Gilman’s The pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill International Ltd. (Medical Publishing Division), pp 12–13.

    Google Scholar 

  3. Ritter JM, Lewis LD, Mant T.GK. 1999. Drug metabolism. In: Radojicic R, Goodgame F, editors. A Textbook of Clinical Pharmacology, 4th Ed. Oxford University Press Inc., pp 36–40.

    Google Scholar 

  4. Rang HP, Dale MM, Ritter JM. 1999. Absorption, distribution and fate of drugs. In: Pharmacology, 4th ed. Edinburgh: Churchill Livingstone, pp 74–76.

    Google Scholar 

  5. Gibson GG, Skett P. 1994. Pathways of drug metabolism. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An imprint of Chapman & Hall, pp 1–13.

    Google Scholar 

  6. Mabic S, Castagnoli K, Castagnoli Jr, N. 1999. Oxidative Metabolic Bioactivation of Xenobiotics. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc, pp 49–79.

    Google Scholar 

  7. Wingard LB Jr, Brody TM, Larner J, Schwartz A. 1991. General Principles. In: Kist K, Steinborn E, Salway J, editors. Human Pharmacology, Molecular-to-Clinical. St. Louis (Missouri): Mosby Year Book Inc, pp 55–57.

    Google Scholar 

  8. Testa B. 1994. Xenobiotic Metabolism: The Biochemical View. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 15–40.

    Google Scholar 

  9. Smith PC. 1999. Pharmacokinetics of Drug Metabolites. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc, pp 2–47.

    Google Scholar 

  10. Noriyuki K, Toshiyuki S, Raku S, Shin-ichi I, Takashi I, Maya K, Toshio O, Miho O, Kuniyo I. 2004. Sequential metabolism of 2,3,7-trichlorodibenzo-p-dioxin (2,3,7-triCDD) by cytochrome P450 and UDP-glucuronosyltransferase in human liver microsomes. Drug Metab Dispos 32:870–875.

    Google Scholar 

  11. Walle T, Conradi EC, Walle UK, Fagan TC, Gaffney TE. 1980. 4-Hydroxypropranolol and its glucuronide after single and long-term doses of propranolol. Clin Pharmacol Ther 27:22–31.

    PubMed  CAS  Google Scholar 

  12. Jann MW, Lam Y, Francis W, Gray EC, Chang W-H. 1994. Reversible metabolism of drugs. Drug Metab Interact 11:1–24.

    CAS  Google Scholar 

  13. Linder MW, Prough RA, Valdes Jr R. 1997. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 43:254–266.

    PubMed  CAS  Google Scholar 

  14. Shibata S. 1999. Biological clock and chronopharmacology. Nippon Yakuzaishikai Zasshi 51:1879–1885.

    CAS  Google Scholar 

  15. Gibson GG, Skett P. 1994. Induction and inhibition of drug metabolism. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An imprint of Chapman & Hall, pp 77–106.

    Google Scholar 

  16. Morris JS, Stockley IH. 2000. Fundamentals of drug interactions. In: Sirtori CR, Kuhlmann J, Tillement J-P, Vrhovac B, Reidenberg MM, editors. Clinical Pharmacology. London: Mc-Graw-Hill International (UK) Ltd, pp 51–65.

    Google Scholar 

  17. Gibson GG, Skett P. 1994. Enzymology and molecular mechanisms of drug metabolism reactions. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An imprint of Chapman&Hall, pp 35–76.

    Google Scholar 

  18. Elfarra AA. 2005. Renal cytochrome P450s and flavin-containing monooxygenases: potential roles in metabolism and toxicity of 1,3-butadiene, trichloroethylene, and tetrachloroethylene. In: Lawrence LH editor. Drug Metabolism and Transport. Humana Totowa, N.J. Press Inc., pp 1–18.

    Google Scholar 

  19. Gibson GG, Skett P. 1994. Pharmacological and toxicological aspects of drug metabolism. In: Introduction to Drug Metabolism. London: Blackie Academic&Professional, an imprint of Chapman&Hall, pp 157–179.

    Google Scholar 

  20. Ortiz de Montellano PR. 1999. The Cytochrome P450 System. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 109–130.

    Google Scholar 

  21. Burchell B, Ethell B, Coffey MJ, Findlay K, Jedlitschky G, Soars M, Smith D, Hume R. 2001. Interindividual variation of UDP-glucuronosyltransferases and drug glucuronidation. Interindividual Variability in Human Drug Metabolism: 358–394.

    Google Scholar 

  22. Cryle MJ, Stok JE, James J. 2003. Reactions catalyzed by bacterial cytochromes P450. Aust J Chem 56:749–762.

    CAS  Google Scholar 

  23. Parrill AL. University of Memphis, Tennessy, USA, available on: http://www.chem.memphis.edu/parrill/chem4315/Drug%20Metabolism.pdf. For details of the NIH shift mechanism, see also: (a) Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S. 1967. Science 157:1524 (b) Jerina D. 1973. Chem Technol 4:120.

    Google Scholar 

  24. Park W, Jeon CO, Cadillo H, DeRito C, Madsen EL. 2004. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Appl Microb Biotech 64:429–435.

    CAS  Google Scholar 

  25. Paselk R. 2003. Biochemical Toxicology Lecture Notes, available at http://www.humboldt.edu/~rap1/C451.S03/C451LecNotes/451nFeb26.html

    Google Scholar 

  26. Ibuki Y, Goto R. 2004. Dysregulation of apoptosis by benzene metabolites and their relationships with carcinogenesis. Acta Biochim Biophys 1690:11–21.

    CAS  Google Scholar 

  27. Testa B. 1994. Xenobiotic Metabolism: The Biochemical View. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), p 146.

    Google Scholar 

  28. Parales RE, Resnick SM. 2004. Aromatic hydrocarbon dioxygenases. Soil Biol 2:175–195.

    CAS  Google Scholar 

  29. Testa B. 1994. Xenobiotic Metabolism: The Biochemical View. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 102, 125, 236, 348.

    Google Scholar 

  30. Guengerich FP, Kim DH. 1991. Enzymatic oxidation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1,N6-etheno-adenosine. Chem Res Toxicol 4:413–421.

    PubMed  CAS  Google Scholar 

  31. Yun CH, Okerholm RA, Guengerich FP. 1993. Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P4503A4 in N-dealkylation and C-hydroxylation. Drug Metab Dispos 21:403–409.

    PubMed  CAS  Google Scholar 

  32. Jurima-Romet M, Huang HS, Beck DJ, Li AP. 1996. Evaluation of drug interactions in intact hepatocytes: inhibitors of terfenadine metabolism. Toxicol in Vitro 10:655–663.

    CAS  Google Scholar 

  33. Akhtar M, Njar VCO, Wright JN. 1993. Mechanistic studies on aromatase and related C-C bond cleaving P-450 enzymes. J Ster Biochem Molec Biol 44:375–387.

    CAS  Google Scholar 

  34. Eberhart D, Fitzgerald K, Parkinson A. 1992. Evidence for the involvement of a distinct form of cytochrome P450 3A in the oxidation of digitoxin by rat liver microsomes. J Biochem Toxicol 7:53–64.

    PubMed  CAS  Google Scholar 

  35. Yanase T, Suzuki S, Goto K, Nawata H, Takayanagi R. 2003. DHEA and bone metabolism. Clin Calcium 13:1419–1424.

    PubMed  CAS  Google Scholar 

  36. Tsuruo Y. 2000. The localization and function of androgen metabolizing enzymes in the brains. Denshi Kenbikyo 35:230–235.

    CAS  Google Scholar 

  37. Garcia-Segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. 2003. Aromatase: a neuroprotective enzyme. Prog Neurobiol 71:31–41.

    PubMed  CAS  Google Scholar 

  38. Gilbert JNT, Powell JW, Templeton J. 1975. A study of the human metabolism of secbutobarbitone. J Pharm Pharmacol 27:923–927.

    PubMed  CAS  Google Scholar 

  39. Testa B, Jenner P. 1976. The concept of regioselectivity in drug metabolism. J Pharm Pharmacol 28:731–744.

    PubMed  CAS  Google Scholar 

  40. Al Sharifi MA, Gilbert JNT, Powell JW. 1983. 3′-hydroxylated derivatives as urinary metabolites of two barbiturates. Xenobiotica 13:179–183.

    PubMed  Google Scholar 

  41. Fischbach T, Lenk W. 1990. Additional routes in the metabolism of phenacetin. Xenobiotica 20:209–222.

    Google Scholar 

  42. Sesardic D, Cole KJ, Edwards RJ, Davies DS, Thomas PE, Levin W, Boobis AR. 1990. The inducibility and catalytic activity of cytochromes P450c (P450IA1) and P450d (P450IA2) in rat tissues. Biochem Pharmacol 39:499–506.

    PubMed  CAS  Google Scholar 

  43. Starek A. 1992. Circadian variations of phenacetin metabolism in rats in vivo and in vitro. Pol J Pharmacol Phar 44:663–670.

    CAS  Google Scholar 

  44. Peters JM, Morishima H, Ward JM, Coakley CJ, Kimura S, Gonzales FJ. 1999. Role of CYP1A2 in the toxicity of long-term phenacetin feeding in mice. Toxicol Sci 50:82–89.

    PubMed  CAS  Google Scholar 

  45. Thomas RC, Judy RW. 1972. Metabolic fate of chlorpropamide in man and in the rat. J Med Chem 15:964–968.

    PubMed  CAS  Google Scholar 

  46. Waxman DJ. 1988. Interaction of hepatic cytochromes P-450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression. Biochem Pharmacol 37:71–84.

    PubMed  CAS  Google Scholar 

  47. Korzekwa KR, Trager WF, Nagata K, Parkinson A, Gillette JR. 1990. Isotope effect studies on the mechanism of the cytochrome P-450IIA1-catalyzed formation of Δ6-testosterone from testosterone. Drug Metab Dispos 18:974–979.

    PubMed  CAS  Google Scholar 

  48. Rosenshein B, Flockhart DA, Ho H. 2004. Induction of testosterone metabolism by esomeprazole in a CYP2C19*2 heterozygote. Am J Med Sci 327:289–293.

    PubMed  Google Scholar 

  49. Lin DCK, Fentiman Jr AF, Foltz RL, Forney RD Jr, Sunshine I. 1975. Quantification of phencyclidine in body fluids by GC/CI/MS and identification of two metabolites. Biomed Mass Spectrom 2:206–214.

    CAS  Google Scholar 

  50. Hallstrom G, Kammerer RC, Nguyen CH, Schmitz DA, Di Stefano EW, Cho AK. 1983. Phencyclidine metabolism in vitro. The formation of a carbinolamine and its metabolites by rabbit liver preparations. Drug Metab Dispos 11:47–53.

    PubMed  CAS  Google Scholar 

  51. Laurenzana EM, Owens SM. 1997. Metabolism of phencyclidine by human liver microsomes. Drug Metab Dispos 25:557–563.

    PubMed  CAS  Google Scholar 

  52. Veselovskaya NV, Savchuk SA, Izotov BN. 1999. Chromatographic analysis of phencyclidine, its metabolites and analogs in biological fluids. Sudebno-Meditsinskaya Ekspertiza 42:20–25.

    CAS  Google Scholar 

  53. Karam JH, Matin SB, Forsham PH. 1975. Antidiabetic Drugs After the University Group Diabetes Program (UGDP). Ann Rev Pharmacol 15:351–366.

    PubMed  CAS  Google Scholar 

  54. Thomas RC, Duchamp DJ, Judy RW, Ikeda GJ. 1978. Metabolic fate of tolazamide in man and in the rat. J Med Chem 21:725–732.

    PubMed  CAS  Google Scholar 

  55. Ascalone V, Flaminio L, Guinebault P, Thenot JP, Morselli PL. 1992. Determination of zolpidem, a new sleep-inducing agent and its metabolites in biological fluids — Pharmacokinetics, drug metabolism and overdosing investigations in humans. J Chromatogr-Biomed Appl 581:237–250.

    CAS  Google Scholar 

  56. Chouinard G, Lefko-Singh K, Teboul E Louis H. 1999. Role of cytochrome P450 isozymes in the metabolism of benzodiazepines. Cell Mol Neurobiol 19:533–552.

    PubMed  CAS  Google Scholar 

  57. Von Moltke LL, Greenblatt DJ, Granda BW, Duan SX, Grassi JM, Venkatakrishnan K, Harmatz JS, Shader RI. 1999. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Brit J Clin Pharmacol 48:89–97.

    Google Scholar 

  58. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA. 1989. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 36:89–96.

    PubMed  CAS  Google Scholar 

  59. Fabre G, Rahmani R, Placidi M, Combalbert J, Covo J, Cano JP, Coulange C, Ducros M, Rampal M. 1988. Characterization of midazolam metabolism using human hepatic microsomal fractions and hepatocytes in suspension obtained by perfusing whole human livers. Biochem Pharmacol 37:4389–4397.

    PubMed  CAS  Google Scholar 

  60. Ito K, Ogihara K, Kanamitsu S-I, Itoh T. 2003. Prediction of in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos 31:945–954.

    PubMed  CAS  Google Scholar 

  61. Shetty HU, Nelson WL. 1988. Chemical aspects of metoprolol metabolism. J Med Chem 31:55–59.

    PubMed  CAS  Google Scholar 

  62. Wan J, Xie Y-H, Xia H, Lu Y-Q. 1997. Age might influence the frequency distribution of metoprolol hydroxylation polymorphism in a Chinese population. Pharmacol Toxicol (Copenhagen) 80:167–170.

    CAS  Google Scholar 

  63. Van der Graaff M, Vermeulen NPE, Breimer DD. 1988. Disposition of hexobarbital: 15 years of an intriguing model substrate. Drug Metab Rev 19:109–164.

    PubMed  Google Scholar 

  64. Kennedy KA, Ambre JJ, Fischer LG. 1978. A selected ion monitoring method for glutethimide and six metabolites: application to blood and urine from humans intoxicated with glutethimide. Biomed Mass Spectrom 5:679–685.

    PubMed  CAS  Google Scholar 

  65. Shulgin AT. 1975. Drugs of Abuse in the Future. Clin Toxicol 8:405–456.

    PubMed  CAS  Google Scholar 

  66. Silver EH, Kuttab SH, Hasan T, Hassan M. 1982. Structural considerations in the metabolism of nitriles to cyanide in vivo. Drug Metab Dispos 10:495–498.

    PubMed  CAS  Google Scholar 

  67. Testa B. 1994. Xenobiotic Metabolism: The Biochemical View. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 138–139.

    Google Scholar 

  68. Bartok M, Lang KL. 1985. Oxiranes. In: Hassner A, editor. Small Ring Heterocycles. (Part 3). Wiley: NY, pp 1–196.

    Google Scholar 

  69. Faigle JW, Böttcher I, Godbillon J, Kriemler HP, Schlumpf E, Schneider W, Schweizer A, Stierlin H and Winkler T. 1988. A new metabolite of diclofenac sodium in human plasma. Xenobiotica 18:1191–1197.

    PubMed  CAS  Google Scholar 

  70. Yasumori T, Yamazoe Y and Kato R. 1991. Cytochrome P-450 human-2 (P-450IIC9) in mephenytoin hydroxylation polymorphism in human livers: Differences in substrate and stereoselectivities among microheterogeneous P-450IIC species expressed in yeast. J Biochem 109:711–717.

    PubMed  CAS  Google Scholar 

  71. Meier UT, Kronbach T, Meyer UA. 1985. Assay of mephenytoin metabolism in human liver microsomes by high-performance liquid chromatograpy. Anal Biochem 151:286–291.

    PubMed  CAS  Google Scholar 

  72. Talaat RE, Nelson WL. 1988. Regiosomeric aromatic dihydroxylation of propranolol. Drug Metab Dispos 16:207–216.

    PubMed  CAS  Google Scholar 

  73. Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M. 1994. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 22:909–915.

    PubMed  CAS  Google Scholar 

  74. Butler TC, Dudley KH, Johnson D, Roberts SB. 1976. Studies on the metabolism of 5,5-diphenylhydantoin relating principally to the stereoselectivity of the hydroxylation reactions in man and the dog. J Pharmacol Exp Ther 199:82–92.

    PubMed  CAS  Google Scholar 

  75. Moustafa MAA, Claesen M, Adline J, Vandevorst D, Poupaert JH. 1983. Evidence for an arene-3,4-oxide as a metabolic intermediate in the meta-and para-hydroxylation of phenytoin in the dog. Drug Metab Dispos 11:574–580.

    PubMed  CAS  Google Scholar 

  76. Cuttle L, Munns AJ, Hogg NA, Scott JR, Hooper WD, Dickinson RG, Gillam EMJ. 2000. Phenytoin Metabolism by Human Cytochrome P450: Involvement of P450 3A and 2C Forms in Secondary Metabolism and Drug-Protein Adduct Formation. Drug Metab Dispos 28:945–950.

    PubMed  CAS  Google Scholar 

  77. Howell SR, Kotsoskie LA, Dills RL, Klaassen CD. 1988. 3-Hydroxylation of salicylamide in mice. J Pharm Sci 77:309–313.

    PubMed  CAS  Google Scholar 

  78. Cavalieri EL, Rogan EG. 1992. The approach to understanding aromatic hydrocarbon carcinogenesis — the central role of radical cations in metabolic activation. Pharmacol Therapeut 55:183–199.

    CAS  Google Scholar 

  79. Lowe JP, Silverman BD. 1981. Simple molecular orbital explanation for ‘bay-region’ carcinogenic reactivity. J Amer Chem Soc 103:2852–2855.

    CAS  Google Scholar 

  80. Fitzpatrick FA, Murphy RC. 1989. Cytochrome P-450 metabolism of arachidonic acid: Formation and biological actions of “epoxygenase”-derived eicosanoids. Pharmacol Rev 40:229–241.

    Google Scholar 

  81. Testa B. 1990. Mechanisms of inhibition of xenobiotic-metabolizing enzymes. Xenobiotica 20:1129–1137.

    PubMed  CAS  Google Scholar 

  82. Rambeck B, May T, Juergens U. 1987. Serum concentrations of carbamazepine and its epoxide and diol metabolites in epileptic patients: the influence of dose and comedication. Therap Drug Monit 9:298–303.

    CAS  Google Scholar 

  83. Furst SM, Uetrecht JP. 1993. Carbamazepine metabolism to a reactive intermediate by the myeloperoxidase system of activated neutrophils. Biochem Pharmacol 45:1267–1275.

    PubMed  CAS  Google Scholar 

  84. Gatti G, Furlanut M, Perucca E. 2001. Interindividual variability in the metabolism of anti-epileptic drugs and its clinical implications. In: Interindividual Variability in Human Drug Metabolism, pp 157–180.

    Google Scholar 

  85. Slack JA, Ford-Hutchinson AW, Richold M, Choi BCK. 1981. Some biochemical and pharmacological properties of an epoxide metabolite of alclofenac. Chem-Biol Interact 34:95–107.

    PubMed  CAS  Google Scholar 

  86. Brown LM, Ford-Hutchinson AW. 1982. The destruction of cytochrome P-450 by alclofenac: possible involvement of an epoxide metabolite. Biochem Pharmacol 31:195–199.

    PubMed  CAS  Google Scholar 

  87. Ortiz de Montellano PR, Kunze KL. 1981. Cytochrome P-450 inactivation: structure of the prosthetic heme adduct with propyne. Biochemistry-US 20:7266–7271.

    CAS  Google Scholar 

  88. Schmid SE, Au WYW, Hill DE, Kadlubar FF, Slikker Jr W. 1983. Cytochrome P-450-dependent oxidation of the 17 α-ethynyl group of synthetic steroids. Drug Metab Dispos 11:531–536.

    PubMed  CAS  Google Scholar 

  89. Beckett AH, Belanger PM. 1978. The disposition of phentermine and its N-oxidized metabolic products in the rabbit. Xenobiotica 8:555–560.

    Google Scholar 

  90. Mori MA, Uemura H, Kobayashi M, Miyahara T, Kozuka H. 1993. Metabolism of phentermine and its derivatives in the male Wistar rat. Xenobiotica 23:709–716.

    PubMed  CAS  Google Scholar 

  91. Budinski RA, Roberts SM, Coats EA, Adams L, Hess EV. 1987. The formation of procainamide hydroxylamine by rat and human liver microsomes. Drug Metab Dispos 15:37–43.

    Google Scholar 

  92. Uetrecht JP. 1985. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide. J Pharmacol Exp Ther 232:420–425.

    PubMed  CAS  Google Scholar 

  93. Testa B, Jenner P. 1976. Chemical and Biochemical Aspects. In: Drug Metabolism. Decker, New York, pp 61–73.

    Google Scholar 

  94. Patterson LH, Hall G, Nijar BS, Khatra PK, Cowan DA. 1986. In vitro metabolism of lignocaine to its N-oxide. J Pharm Pharmacol 38:326–331.

    PubMed  CAS  Google Scholar 

  95. Bargetzi MJ, Aoyama T, Gonzales FJ, Meyer UA. 1989. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther 46:521–527.

    PubMed  CAS  Google Scholar 

  96. Tanaka E, Inomata S, Yasuhara H. 2000. The clinical importance of conventional and quantitative liver function tests in Liver Transplant. J Clin Pharm Therapeut 25:411–419.

    CAS  Google Scholar 

  97. Duquette PH, Erickson RR, Holtzman JL. 1983. Role of substrate lipophilicity on the N-demethylation and type I binding of 3-O-alkylmorphine analogues. J Med Chem 26:1343–1348.

    PubMed  CAS  Google Scholar 

  98. McQuay HJ, Moore RA. Opioid problems, and morphine metabolism and excretion. Available at: http://www.jr2.ox.ac.uk/bandolier/booth/painpag/wisdom/c14.htm1#RTFT.

    Google Scholar 

  99. Oguri K. 2000. An active metabolite of morphine and the responsible glucuronosyltransferase for its formation. Yakubutsu Dotai 15:136–142.

    CAS  Google Scholar 

  100. Sharke C, Loetsch J. 2002. Morphine metabolites: clinical implications. Semin Anesth Periop Med Pain 21:258–264.

    Google Scholar 

  101. Bäärnhielm C, Weterlund C. 1986. Quantitative relationships between structure and microsomal oxidation rate of 1,4-dehydropyridines. Chem Biol Interact 58:277–288.

    PubMed  Google Scholar 

  102. Bäärnhielm C, Skanberg I, Borg KO. 1984. Cytochrome P-450-dependent oxidation of felodipine-a 1,4-dihydropyridine-to the corresponding pyridine. Xenobiotica 14:719–726.

    PubMed  Google Scholar 

  103. Gorrod JW. 1985. Amine-imine tautomerism as a determinant of the site of biological N-oxidation. In: Gorrod J W, Damani LA, editors. Biological Oxidation of Nitrogen in Organic Molecules. Chemistry, Toxicology and Pharmacology. Horwood, Chichester, pp 219–230.

    Google Scholar 

  104. Berndt C, Thomas K. 1990. Hepatic microsomal N-hydroxylation of adenine to 6-Nhydroxylamineopurine. Biochem Pharmacol 39:925–933.

    Google Scholar 

  105. Clement B, Kunze T. 1990. Hepatic microsomal N-hydroxylation of adenine to 6-hydroxyaminopurine. Biochem Pharmacol 39:925–933.

    PubMed  CAS  Google Scholar 

  106. Ford GP, Griffin GR, Galen R. 1992. Relative stabilities of nitrenium ions derived form heterocyclic amine food carcinogens. Relationships to mutagenicity. Chem Biol Interact 81:19–33.

    PubMed  CAS  Google Scholar 

  107. Dias RMB, Vieira AJSC. 1997. Effect of oxygen on the hydroxylation of adenine by photolytically generated hydroxyl radical. J Photoch Photobio A 109:133–136.

    CAS  Google Scholar 

  108. LaCagnin LB, Colby HD, O’Donnell JP. 1986. The oxidative metabolism of hydralazine by rat liver microsomes. Drug Metab Dispos 14:549–554.

    PubMed  CAS  Google Scholar 

  109. Weinkaum RJ. Shiba DA. 1978. Metabolic activation of procarbazine. Life Sci 22:937–946.

    Google Scholar 

  110. Inaba T, Tait A, Nakano M, Mahon WA, Kalow W. 1988. Metabolism of diazepam in vitro by human liver. Independent variability of N-demethylation and C3-hydroxylation. Drug Metab Dispos 16:605–608.

    PubMed  CAS  Google Scholar 

  111. Marcucci F, Airoldi L, Zavattini G, Mussini E. 1981. Metabolism of pinazepam by rat liver microsomes. Eur J Drug Metab Ph 6:109–114.

    CAS  Google Scholar 

  112. Bertilsson L, Baillie TA, Reviriego J. 1990. Factors influencing the metabolism of diazepam. Pharmacol Ther 45:85–91.

    PubMed  CAS  Google Scholar 

  113. Janbroers JM. 1984. Pinazepam: review of pharmacological properties and therapeutic efficacy. Clin Ther 6:434–450.

    PubMed  CAS  Google Scholar 

  114. Berthou F, Flinois JP, Ratanasavanh D, Beaune P, Riche C, Guillouzo A. 1991. Evidence for the involvement of several cytochromes P-450 in the first steps of caffeine metabolism by human liver microsomes. Drug Metab Dispos 19:561–567.

    PubMed  CAS  Google Scholar 

  115. Ashihara H, Crozier A. 1999. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:117–205.

    CAS  Google Scholar 

  116. Nelson WL, Bartels MJ. 1984. N-Dealkylation of propranolol in rat, dog and man. Chemical and stereochemical aspects. Drug Metab Dispos 12:345–352.

    PubMed  CAS  Google Scholar 

  117. 2000. In: Gennaro AR editor. Remington: The Science and Practice of Pharmacy, 20th ed. Philadelphia: Lippincott Williams&Wilkins, pp 1326, 1757.

    Google Scholar 

  118. Sipes IG, Gandolfi AJ, Pohl LR, Krishna G, Brown BR Jr. 1980. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J Pharmacol Exp Therap 214:716–720.

    CAS  Google Scholar 

  119. Kenna JG, Van Pelt FNAM. 1994. The metabolism and toxicity of inhaled anesthetic agents. Anaesth Pharmacol Rev 2:29–42.

    CAS  Google Scholar 

  120. Bedford CT, Crayford JV, Hutson DH, Wiggins DE. 1978. An example of the oxidative de-esterification of an isopropyl ester. Its role in the metabolism of the herbicide flampropisopropyl. Xenobiotica 8:383–395.

    PubMed  CAS  Google Scholar 

  121. Testa B. 1995. Reaction Catalyzed by monoamine oxidase. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 313–323.

    Google Scholar 

  122. Gerlach M, Riederer P. 1993. Human brain MAO. In: Yasuhara H, Parvez SH, Oguchi K, Sandler M, Nagatsu T, editors. Monoamine oxidase: Basic and Clinical Aspects. Utrecht (Netherlands), pp 147–158.

    Google Scholar 

  123. Shih JC. 1991. Molecular basis of human MAO A and B. Neuropsychopharmacol 4:1–7.

    CAS  Google Scholar 

  124. Silverman RB, Zelechonok Y. 1992. Evidence for a hydrogen atom transfer mechanism or a proton/fast electron transfer mechanism for monoamine oxidase. J Org Chem 57:6373–6374.

    CAS  Google Scholar 

  125. Weiler W, Hsu YPP, Breakfield XO. 1990. Biochemistry and genetics of monoamine oxidase. Pharmacol Therapeut 47:391–417.

    Google Scholar 

  126. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek, F. 2004. Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993.

    PubMed  CAS  Google Scholar 

  127. 2001. In: Hardman JG, Limbird LE, Gilman GA, editors. Goodman&Gilman’s The Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill (Medical Publishing Division), pp 313, 643, 645–651.

    Google Scholar 

  128. Repka-Ramirez MS, Baraniuk JN. 2002. Histamine in health and disease. Clin Allergy Immunol 17:1–25.

    PubMed  CAS  Google Scholar 

  129. Testa B. 1995. Cytochromes P450 and flavin containing monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 109–111.

    Google Scholar 

  130. Rettie AE, Fisher MB. 1999. Transformation Enzymes: Oxidative; Non-P450. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 132–137.

    Google Scholar 

  131. Ziegler, Daniel M. 2002. An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–511.

    PubMed  CAS  Google Scholar 

  132. Guengerich FP. 1999. Inhibition on Drug Metabolizing Enzymes: Molecular and Biochemical Aspects. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 215–216.

    Google Scholar 

  133. Gibson GG, Skett P. 1994. Enzymology and molecular mechanisms of drug metabolism reactions. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 35–76.

    Google Scholar 

  134. Testa B. 1994. Reactions catalyzed by peroxidases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 353–363.

    Google Scholar 

  135. Rettie AE, Fisher MB. 1999. Transformation Enzymes: Oxidative; Non-P450. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 137–141.

    Google Scholar 

  136. Testa B. 1994. Oxidations catalyzed by various oxidases and monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 323–334.

    Google Scholar 

  137. Lowe DJ, Richards RL, Bray RC. 1997. Role of Mo-C bonds in xanthine oxidase action. Biochem Soc T 25:774–778.

    CAS  Google Scholar 

  138. Hille R, Massey V. 1985. Molybdenum-containing hydroxylases: xanthine oxidase, aldehyde oxidase, and sulfite oxidase. Met Ions Biol 7 443–518.

    CAS  Google Scholar 

  139. Beedham C. 1987. Molybdenum hydroxylases: biological distribution and substrate-inhibitor specificity. Progr Med Chem 12:35–48.

    Google Scholar 

  140. Testa B. 1994. Oxidations catalyzed by various oxidases and monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 323–334.

    Google Scholar 

  141. Rettie AE, Fisher MB. 1999. Transformation Enzymes: Oxidative; Non-P450. In: Woolf TF editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 142–151.

    Google Scholar 

  142. Wermuth B, Omar A, Forster A, di Francesco Ch, Wolf M, von Wartburg JP, Bullock B, Gabbay KH. 1987. Primary structure of aldehyde reductase from human liver. In: Weiner H, Flynn TG, editors. Enzymology and Molecular Biology of Carbonyl Metabolism. New York: Liss, pp 297–307.

    Google Scholar 

  143. Testa B. 1994. Oxidations catalyzed by various oxidases and monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 334–337.

    Google Scholar 

  144. Buffoni F, Ignesti G. 2003. Biochemical aspects and functional role of the copper-containing amine oxidases. Inflammopharmacol 11:203–209.

    CAS  Google Scholar 

  145. Beresford AP, Macrae PV, Stopher DA. 1988. Metabolism of amlodipine in the rat and the dog: a species difference. Xenobiotica 18:169–182.

    PubMed  CAS  Google Scholar 

  146. Baillie TA. 1992. Metabolism of valproate to hepatotoxic intermediates. Pharm Weekbl Sci Ed 14:122–125.

    CAS  Google Scholar 

  147. Kyburz E. 1990. New developments in the field of MAO inhibitors. Drug News Perspect 3:592–599.

    Google Scholar 

  148. Krenitski TA, Neil SM, Elion GB, Hitchings GC. 1972. A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150:585–599.

    Google Scholar 

  149. McDaniel HG, Podgainy H and Bressler R. 1969. The metabolism of tolbutamide in the rat liver. J Pharmacol Exp Therap 167:91–97.

    CAS  Google Scholar 

  150. Yubisui T, Shirabe K, Takeshita M, Kobayashi Y, Fukumaki Y, Sakaki Y, Takano T. 1991. Structural role of serine 127 in the NADH-binding site of human NADH-cytochrome b5 reductase. J Biol Chem 266:66–77.

    PubMed  CAS  Google Scholar 

  151. Testa B. 1994. Oxidations catalyzed by various oxidases and monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press Ltd. (Harcourt Brace and Company, Publishers), pp 105–106.

    Google Scholar 

  152. Gibson GG, Skett P. 1994. Enzymology and molecular mechanisms of drug metabolism reactions. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 54–57.

    Google Scholar 

  153. Zubay GL, Parson WW, Vance DE. 1995. In: Sievers EM, editor. Principles of Biochemistry. Dubuque, Iowa: Wm C Brown Publishers, pp 308–309.

    Google Scholar 

  154. Hoult JRS. 1986. Pharmacological and biochemical actions of sulfasalazine. Drugs 32:18–26.

    PubMed  CAS  Google Scholar 

  155. Gibson GG, Skett P. 1994. Pathways of drug metabolism. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 9–10.

    Google Scholar 

  156. Lohr JW, Willsky GR, Acara MA. 1998. Renal Drug Metabolism. Pharmacol Rev 50:118–119.

    Google Scholar 

  157. Baker MT, Nelson RM, van Dyke RA. 1983. The release of inorganic fluoride from halothane and halothane metabolites by cytochrome P-450, hemin, and haemoglobin. Drug Metab Dispos 11:308–311.

    PubMed  CAS  Google Scholar 

  158. 2000. In: Gennaro AR editor. Remington: The Science and Practice of Pharmacy, 20th ed. Philadelphia: Lippincott Williams&Wilkins, p 1404.

    Google Scholar 

  159. Von Daehne W, Godtfredsen WO, Roholt K, Tybring L. 1971. Pivampicillin, a new orally active ampicillin ester. Antimicrob Agents Ch Vol 1971:431–437.

    Google Scholar 

  160. Ovidiu O, Tiperciuc B. 2003. Antibiotice antibacteriene, In: “I. Haţieganu” Universitary Medical Printing House, Cluj-Napoca, Romania, pp 58, 83–84, 97, 121–125, 208–212.

    Google Scholar 

  161. Caira MR, Zanol M, Peveri T, Gazzaniga A, Giordano F. 1998. Structural Characterization of Two Polymorphic Forms of Piroxicam Pivalate. J Pharm Sci 87:1608–1614.

    PubMed  CAS  Google Scholar 

  162. Yamanaka K, Munehasu S, Suzuki M, Ishiko J. 1991. Pharmacological actions of ampiroxicam, a new prodrug of nonsteroidal anti-inflammatory agent. Oyo Yakuri 41:597–612.

    CAS  Google Scholar 

  163. Spurling NW, Harcourt RA, Hyde JJ. 1986. An evaluation of the safety of cefuroxime axetil during six months oral administration to beagle dogs. J Toxicol Sci 11:237–77.

    PubMed  CAS  Google Scholar 

  164. Matsuoka M, Hosomi R, Maki T, Banno K, Sato T. 1995. Determination of ritipenem in human plasma and urine by high performance liquid chromatography. Nippon Kagaku Ryoho Gakkai 43:91–96.

    CAS  Google Scholar 

  165. Dall’Asta L, Comini A, Garegnani E, Alberti D, Coppi G, Quadro G. 1988. Studies on the bioavailability of some new erythromycin esters. J Antibiot 41:139–141.

    PubMed  CAS  Google Scholar 

  166. 2000. In: Gennaro AR editor. Remington: The Science and Practice of Pharmacy, 20th ed. Philadelphia: Lippincott Williams & Wilkins, p 1457.

    Google Scholar 

  167. Gibson GG, Skett P. 1994. Pathways of drug metabolism. In: Introduction to Drug Metabolism. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 9–10.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Pathways of Biotransformation — Phase I Reactions. In: Ionescu, C., Caira, M.R. (eds) Drug Metabolism. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4142-X_2

Download citation

Publish with us

Policies and ethics