Skip to main content

Root nitrogen acquisition and assimilation

  • Chapter
Root Physiology: from Gene to Function

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Nitrogen (N) is the main mineral element in plant tissues and almost all of this nutrient is acquired from the soil by the roots. Nitrogen is available in many different forms in the soil, but the three most abundant forms are nitrate, ammonium and amino acids. The relative importance of these different soil N pools to a plant is difficult to measure and depends on many different environmental factors. Changes in the available amounts and imbalance in the supply of some N forms can even be toxic to plants and in extreme cases can lead to changes in the vegetation. However, the importance of this element for agriculture is reflected in the amounts of N-fertiliser applied to crops and this is a major cost (economic and environmental) for world agriculture. This review covers the molecular mechanisms that the plant uses for accessing these soil N pools and briefly includes consideration of the root N assimilatory pathways that exist in the plant. The soil forms of N that are used by plants depend on many factors, but a series of different transporter and assimilatory genes that can provide access to these pools have been identified. This information can now provide the molecular tools to identify the N sources accessed by a plant and the relative importance of these different pools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaanse F G and Human J J 1991 The effects of nitrate: ammonium ratios and dicyandiamide on the nitrogen response of Zea mays L. in a high rainfall area on an acid soil. Plant Soil 135, 43–52.

    Article  CAS  Google Scholar 

  • Andaluz S, López-Mill A F, Peleato M L, Abadíal J and Abadía N 2002 Increases in phosphoenolpyruvate carboxylase activity in iron-deficient sugar beet roots: Analysis of spatial localization and post-translational modification. Plant Soil 241, 43–48.

    Article  CAS  Google Scholar 

  • Andrews M 1986a The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9, 511–519.

    CAS  Google Scholar 

  • Andrews M 1986b Nitrate and reduced-N concentrations in the xylem sap of Stellaria media, Xanthium strumarium and six legume species. Plant Cell Environ. 9, 605–608.

    CAS  Google Scholar 

  • Arnozis P A, Nelemans J A and Findenegg G R 1988 Phosphoenolpyruvate carboxylase activity in plants grown with either NO-3 or NH+4 as inorganic nitrogen source. J. Plant Physiol. 132, 23–27.

    CAS  Google Scholar 

  • Ashley D A, Jackson W A and Volk R 1975 Nitrate uptake and assimilation by wheat seedlings during initial exposure to nitrate. Plant Physiol. 55, 1102–1106.

    CAS  Google Scholar 

  • Aslam M, Travis R L and Huffaker R C 1992 Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol. 99, 1124–1133.

    CAS  PubMed  Google Scholar 

  • Aslam M, Travis R L and Rains D W 1996 Evidence for substrate induction of a nitrate efflux system in barley roots. Plant Physiol. 112, 1167–1175.

    CAS  PubMed  Google Scholar 

  • Atkin O K 1996 Reassessing the nitrogen relations of Arctic plants. A mini-review. Plant Cell Environ. 19, 695–704.

    Google Scholar 

  • Ayling S M 1993 The effect of ammonium ions on membrane potential and anion flux in roots of barley and tomato. Plant Cell Environ. 16, 297–303.

    CAS  Google Scholar 

  • Bachmann M, Huber J L, Liao P-C, Gage D A and Huber S C 1996 The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3-protein. FEBS Lett. 387, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Baldani J I, Reis V M, Baldani V L D and Döbereiner J 2002 A brief story of nitrogen fixation in sugarcane-reasons for success in Brazil. Funct. Plant Biol. 29, 417–423.

    Article  Google Scholar 

  • Barber S A 1984 Soil nutrient bioavailability. A mechanistic approach. John Wiley and Sons, New York, NY. 398 p.

    Google Scholar 

  • Barneix A J, James D M, Watson E F and Hewitt E J 1984 Some effects of nitrate abundance and starvation on metabolism and accumulation of nitrogen in barley (Hordeum vulgare L. cv Sonja). Planta 162, 469–476.

    Article  CAS  Google Scholar 

  • Barth I, Meyer S and Sauer N 2003 PmSUC3: characterization of a SUC2/SUC3-type sucrose transporter from Plantago major. Plant Cell 15, 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  • Becker D, Ruediger S, Fendrik I, Frommer W B, Vanderleyden J, Kaiser W M and Hedrich R 2002 Expression of the NH+4-transporter gene LeAMT1;2 is induced in tomato roots upon association with N2-fixing bacteria. Planta 215, 424–429.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Mare J C 2000 Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol. Fert. Soils 33, 152–156.

    Google Scholar 

  • Bevan M, Mayer K, White O, Eisen J A, Preuss D, Bureau T, Salzberg S L and Mewes H-W 2001 Sequence and analysis of the Arabidopsis genome. Curr. Opinion Plant Biol. 4, 105–110.

    Article  CAS  Google Scholar 

  • Black B L, Fuchigami L H and Coleman G D 2002 Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Tree Physiol. 22, 717–724.

    CAS  PubMed  Google Scholar 

  • Bloom A J 1988 Ammonium and nitrate as nitrogen sources for plant growth. Atlas of Science: Animal Plant Sci. 1, 55–59.

    Google Scholar 

  • Bock B R 1987 Increases in maximum yield of spring wheat by maintaining relatively high ammonium/nitrate ratios in soil. J. Fert. Issues 4, 68–72.

    Google Scholar 

  • Botrel A and Kaiser W M 1997 Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201, 496–501.

    Article  CAS  PubMed  Google Scholar 

  • Bowsher C G, Long D M, Oaks A and Rothstein S J 1991 Effect of light/dark cycles on exposure of nitrate assimilatory genes in maize shoots and roots. Plant Physiol. 95, 281–285.

    CAS  Google Scholar 

  • Breteler H and Luczak W 1982 Utilization of nitrite and nitrate by dwarf bean. Planta 156, 226–232.

    Article  CAS  Google Scholar 

  • Britto D T and Kronzucker H J 2002 NH+4 toxicity in higher plants: A critical review. J. Plant Physiol. 159, 567–584.

    Article  CAS  Google Scholar 

  • Britto D T, Siddiqi M Y, Glass A D M and Kronzucker H J 2001b. Futile transmembrane NH+4 cycling: A cellular hypothesis to explain ammonium toxicity in plants. PNAS 98, 4255–4258.

    Article  CAS  PubMed  Google Scholar 

  • Britto D, Glass A, Kronzucker H and Siddiqi M 2001a. Cytosolic concentrations and transmembrane fluxes of NH+4 /NH3. An evaluation of recent proposals. Plant Physiol. 125, 523–526.

    Article  CAS  PubMed  Google Scholar 

  • Brouwer R 1981 Coordination of growth phenomena within a rootsystem of intact maize plants. Plant Soil 63, 65–72.

    Google Scholar 

  • Brugière N, Suzuki A and Hirel B 2001 Ammonium assimilation. In Nitrogen assimilation by plants: Physiological, biochemical and molecular aspects. Ed. J-F Morot-Gaudry. pp. 71–94. Science Publishers Inc., New Hampshire, USA.

    Google Scholar 

  • Buscot F, Munch J C, Charcosset J Y, Gardes M, Nehls U and Hampp R 2000 Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol. Rev. 24, 601–614

    CAS  PubMed  Google Scholar 

  • Cen Y-P and Layzell D B 2003 In vivo gas exchange measurement of the site and dynamics of nitrate reduction in Soybean. Plant Physiol. 131, 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  • Cen Y-P, Turpin D H and Layzell D B 2001 Whole-plant gas exchange and reductive biosynthesis in White Lupin. Plant Physiol. 126, 1555–1565.

    Article  CAS  PubMed  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F and Gojon A 2001 Major alterations of the regulation of root NO-3 uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiol. 127, 262–271.

    Article  CAS  PubMed  Google Scholar 

  • Chaillou S and Lamaze T 2001 Ammonical nutrition of plants. In Nitrogen assimilation by plants. Ed. J-F Morot-Gaudry. pp. 53–69. Science Publishers Inc., New Hampshire, USA.

    Google Scholar 

  • Chalot M and Brun A 1998 Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22, 21–44.

    CAS  PubMed  Google Scholar 

  • Cheng C-L, Acedo G N, Cristinsin M and Conkling M A 1992 Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA 89, 1861–1864.

    CAS  PubMed  Google Scholar 

  • Cheng C-L, Acedo G, Dewdney J, Goodman H and Conkling M 1991 Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 96, 275–279.

    CAS  Google Scholar 

  • Cheng C-L, Dewdney J, Kleinhofs A and Goodman H 1989 Cloning and nitrate induction of nitrate reductase mRNA. Proc. Natl. Acad. Sci. USA 83, 6825–6828.

    Google Scholar 

  • Clarkson D T and Warner A J 1979 Relationships between air temperature and transport of ammonium and nitrate ions by Italian and perennial ryegrass. Plant Physiol. 64, 557–561.

    CAS  Google Scholar 

  • Colmer T D and Bloom A J 1998 A comparison of NH+4 and NO-3 net fluxes along roots of rice and maize. Plant Cell Environ. 21, 240–246.

    Article  CAS  Google Scholar 

  • Comparot S, Lingiah G and Martin T 2003 Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. J. Exp. Bot. 54, 595–604.

    Article  CAS  PubMed  Google Scholar 

  • Cooper H D and Clarkson D T 1989 Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-A possible mechanism integrating shoot and root regulation of nutrient uptake. J. Exp. Bot. 40, 753–762.

    CAS  Google Scholar 

  • Coruzzi G and Bush D R 2001 Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol. 125, 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Coschigano K T, Melo-Oliveira R, Lim J and Coruzzi G M 1998 Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen metabolism. Plant Cell 10, 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Costa J-L, Paulsrud P and Lindblad P 1999 Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol. Ecol. 28, 85–91.

    CAS  Google Scholar 

  • Costacurta A and Vanderleyden J 1995 Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol 21, 1–18.

    PubMed  Google Scholar 

  • Cramer M D and Lewis O A M 1993 The influence of NO-3 and NH+4 nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. Ann. Bot. 72, 359–365.

    CAS  Google Scholar 

  • Cramer M D and Titus C H A 2001 Elevated root zone dissolved inorganic carbon can ameliorate Al toxicity in tomato seedlings. New Phytol. 152, 29–39.

    Article  CAS  Google Scholar 

  • Cramer M D, Lewis O A M and Lips S H 1993 Inorganic carbon fixation and metabolism in maize roots as affected by nitrate and ammonium nutrition. Physiol. Plant 94, 425–432.

    Google Scholar 

  • Cramer M D, Nagel O W, Lips S H and Lambers H 1995 Reduction, assimilation and transport of N in wild type and gibberellindeficient tomato plants. Physiol. Plant. 95, 347–354.

    Article  CAS  Google Scholar 

  • Crawford N M 1995 Nitrate: Nutrient and signal for plant growth. Plant Cell 7, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Crawford N M and Glass A D M 1998 Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389–395.

    Google Scholar 

  • Crawford N M, Kahn M, Leustrek T and Long S 2000 Nitrogen and sulphur. In Biochemistry & Molecular Biology of Plants. Eds. R Buchanan, W Gruissem and R Jones. pp. 786–849. The American Society of Plant Physiology, Waldorf.

    Google Scholar 

  • Crété P, Caboche M and Meyer C 1997 Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J. 11, 625–634.

    PubMed  Google Scholar 

  • Criddle R S, Ward M R and Huffaker R C 1988 Nitrogen uptake by wheat seedlings, interactive effect of four nitrogen sources: NO-3, NO2-, NH+4, and urea. Plant Physiol. 86, 166–175.

    CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Filleur S and Caboche M 1998 Nitrate transport: A key step in nitrate assimilation. Curr. Opin. Plant Biol. 1, 235–239.

    Article  CAS  PubMed  Google Scholar 

  • De Nisi P and Zocchi G 2000 Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J. Exp. Bot. 51, 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer C H and Zhang H 2003 An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33, 543–555.

    PubMed  Google Scholar 

  • De Willigen P 1986 Supply of soil nitrogen to the plant during the growing season. In Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Eds. H Lambers, J J Neeteson and I Stulen. pp. 417–432. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster.

    Google Scholar 

  • Dejoux J F, Recous S, Meynard J M, Trinsoutrot I and Leterme P 2000 The fate of nitrogen from winter-frozen rapeseed leaves: mineralisation, fluxes to the environment and uptake by rapeseed crop in spring. Plant Soil 218, 257–272.

    Article  CAS  Google Scholar 

  • Delhaize E and Ryan P 1995 Al toxicity and tolerance in plants. Plant Physiol. 107, 315–321.

    CAS  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon R and Lamb C 1998 Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588.

    CAS  PubMed  Google Scholar 

  • Deng M-D, Moureaux T, Cherel I, Boutin J-P and Caboche M 1991 Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol. Biochem. 29, 237–247.

    Google Scholar 

  • Desimone M, Catoni E, Ludewig U, Hilpert M, Schneider A, Kunze R, Tegeder M, Frommer W B and Schumacher K S 2002 A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. Plant Cell 14, 847–856.

    Article  CAS  PubMed  Google Scholar 

  • Döbereiner J, Day J M and Dart P J 1972 Nitrogenase activity in the rhizosphere of sugarcane and some other tropical grasses. Plant Soil 37, 191–196.

    Article  Google Scholar 

  • Douglas P, Pigaglio E, Ferrer A, Halford N G and MacKintosh C 1997 Three spinach leaf nitrate reductase-3-hydroxy-3-methyglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem. J. 325, 101–109.

    CAS  PubMed  Google Scholar 

  • Downey P, Szabo I, Ivashikina N, Negro A, Guzzo F, Ache P, Hedrich R, Terzi M and Lo Schiavo F 2000 KDC1, a novel carrot root hair channel — cloning characterization and expression in mammalian cells. J. Biol. Chem. 275, 39420–39426.

    Article  CAS  PubMed  Google Scholar 

  • Drew M C and Saker L R 1975 Nutrient supply and the growth of the seminal root system of barley. Part II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79–90.

    CAS  Google Scholar 

  • Fedorova E, Greenwood J S and Oaks A 1994 In-situ localization of nitrate reductase in maize roots. Planta 194, 279–286.

    CAS  Google Scholar 

  • Filleur S, Dorbe M F, Cerezo M, Orsel M, Granier F, Gojon A and Daniel-Vedele F 2001 An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett. 489, 220–224.

    Article  CAS  PubMed  Google Scholar 

  • Findenegg G R 1987 A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103, 239–243.

    CAS  Google Scholar 

  • Finnemann J and Schjoerring J 2000 Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J. 24, 171–181.

    Article  CAS  PubMed  Google Scholar 

  • Fischer W-N, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K and Frommer W B 1998 Amino acid transport in plants. Trends Plant Sci. 3, 188–195.

    Article  Google Scholar 

  • Forde B G 2000 Nitrate transporters in plants: Structure, function and regulation. Biochim. Biophys. Acta Biomembr. 1465, 219–235.

    CAS  Google Scholar 

  • Forde B G and Clarkson D T 1999 Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. In Advances in Botanical Res. 30, 1–90.

    CAS  Google Scholar 

  • Foyer C H, Parry M and Noctor G 2003 Markers and signals associated with nitrogen assimilation in higher plants. J. Exp. Bot. 54, 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Galangau F, Daniel-Vedele F, Maureaux T, Dorbe M, Leydecker M and Caboche M 1988 Expression of nitrate reductase genes from tomato in relation to light-dark regimes and nitrate supply. Plant Physiol. 88, 383–388.

    CAS  Google Scholar 

  • Galván A, Quesada A and Fernández E 1996 Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J. Biol. Chem. 271, 2088–2092.

    PubMed  Google Scholar 

  • Gastal F and Lemaire G 2002 N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 53, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer W and von Wirén N 1999 Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11, 937–947.

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Oliver J E, Forde B G, Saarelainen R and Miflin B J 1986 Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris. EMBO J. 5, 1429–1435.

    CAS  Google Scholar 

  • Geiger M, Walch-Liu P, Engels C, Harnecker J, Schulze E-D, Ludewig F, Sonnewald U, Scheible W-R and Stitt M 1998 Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a larg stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Eviron. 21, 253–268.

    CAS  Google Scholar 

  • Gerendás J and Sattelmacher B 1997 Significance of N source (urea vs. NH4NO3) and Ni supply for growth, urease activity and nitrogen metabolism of zucchini (Cucurbita pepo convar. giromontiina). Plant Soil 196, 217–222.

    Article  Google Scholar 

  • Gerendás J and Sattelmacher B 1999 Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source. Ann. Bot. 83, 65–71.

    Article  Google Scholar 

  • Giller K E and Merckx R 2003 Exploring the boundaries of N2-fixation in cereals and grasses: An hypothetic and experimental framework. Symbiosis 35, 3–17.

    CAS  Google Scholar 

  • Gillissen B, Burkle L, Andre B, Kuhn C, Rentsch D, Brandl B and Frommer W 2000 A new family of high affinity transporters for adenine, cytosine and purine derivatives in Arabidopsis. Plant Cell 12, 291–300.

    Article  CAS  PubMed  Google Scholar 

  • Glaab J and Kaiser W M 1993 Rapid modulation of nitrate reductase in pea roots. Planta 191, 173–179.

    Article  CAS  Google Scholar 

  • Glass A D M and Siddiqi M Y 1995 Nitrogen Absorption by plant roots. In Nitrogen nutrition in higher plants. Eds. H Srivastava and R Singh. pp. 21–56. Associated Publishing Company, New Dehli, India.

    Google Scholar 

  • Glass A D M, Shaff J and Kochian L 1992 Studies of the uptake of nitrate in barley. IV. Electrophysiology. Plant Physiol. 99, 456–463.

    CAS  Google Scholar 

  • Graham J H Miller R m (2005) Mycorrhizas: Gene to function. Plant and Soil 274, 79–100.

    Article  CAS  Google Scholar 

  • Graham P H and Vance C P 2000 Nitrogen fixation in perspective: An overview of research and extension needs. Field Crop. Res. 65, 93–106.

    Google Scholar 

  • Granato T C and Raper Jr C D 1989 Proliferation of maize (Zea maize L.) roots in response to localized supply of nitrate. J. Exp. Bot. 40, 263–275.

    CAS  PubMed  Google Scholar 

  • Grouzis J-P, Pouliquin P, Rigand J, Grignon C and Gibrat R 1997 In vitro study of passive nitrate transport by native and reconstituted corn root cells. Biochim. Biophys. Acta. 1325, 329–342.

    CAS  PubMed  Google Scholar 

  • Guo F-Q, Okamoto M and Crawford N M 2003 Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100–103.

    Article  CAS  PubMed  Google Scholar 

  • Guo F-Q, Wang R C, Chen M S and Crawford N M 2001 The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.I. (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell 13, 1761–1777.

    CAS  PubMed  Google Scholar 

  • Guo F-Q, Wang R and Crawford N M 2002 The Arabidopsis dualaffinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. J. Exp. Bot. 53, 835–844.

    Article  CAS  PubMed  Google Scholar 

  • Gut A, Neftel A, Staffelbach T, Riedo M and Lehmann B E 1999 Nitric oxide flux from soil during the growing season of wheat by continuous measurements of the NO soil-atmosphere concentration gradient: A process study. Plant Soil 216, 165–180.

    Article  CAS  Google Scholar 

  • Hagedorn F, Bucher J B and Schleppi P 2001 Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols. Geoderma 100, 173–192.

    Article  CAS  Google Scholar 

  • Harper J F 1984 Uptake of Organic Nitrogen Forms by Roots and Leaves. In Nitrogen in Crop Production. Ed. R D Hauck. pp. 165–170. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Hartje S, Zimmerman S, Klonus D and Müller-Röber B 2000 Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel after expression in Xenopus oocytes. Planta 210, 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Haynes R and Goh K M 1978 Ammonium and nitrate nutrition of plants. Biol. Rev. 53, 465–510.

    CAS  Google Scholar 

  • Henriksen G, Bloom A and Spanswick R 1990 Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol. 93, 271–280.

    CAS  Google Scholar 

  • Hill S A 1997 Carbon metabolism in mitochondria. In Plant Metabolism, 2nd Edition. Eds. D T Dennis, D H Turpin, D D Lefebvre and D B Layzell. pp. 181–199. Longman, Singapore.

    Google Scholar 

  • Hirose N and Yamaya T 1999 Okadaic acid mimics nitrogenstimulated transcription of the NADH-glutamate synthase gene in rice cell cultures. Plant Physiol. 121, 805–812.

    Article  CAS  PubMed  Google Scholar 

  • Hirose N, Hayakawa T and Yamaya T 1997 Inducible accumulation of mRNA for NADH-dependent glutamate synthase in rice roots in response to ammonium ions. Plant Cell Physiol. 38, 1295–1297.

    CAS  Google Scholar 

  • Hocking P J, Steer B T and Pearson C J 1984 Nitrogen nutrition of non-leguminous crops: A review. Part 1. Field Crop Abstr. 37, 625–636.

    Google Scholar 

  • Hodge A 2001 Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol. 151, 725–734.

    Article  CAS  Google Scholar 

  • Hodge A 2002 N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J. Exp. Bot. 54, 2331–2342.

    Google Scholar 

  • Hodge A 2003 N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J. Exp. Bot. 54, 2331–2342.

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Robinson D and Fitter A H 2000a Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 5, 304–308.

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Robinson D and Fitter A H 2000b An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol. 145, 575–584.

    Article  CAS  Google Scholar 

  • Howitt S M and Udvardi M K 2000 Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta 1465, 152–170.

    CAS  PubMed  Google Scholar 

  • Huang N C, Liu K H, Lo H J and Tsay Y F 1999 Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low affinity uptake. Plant Cell 11, 1381–1392.

    Article  CAS  PubMed  Google Scholar 

  • Hugh A, Henry L and Jefferies R L 2003 Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. J. Ecol. 91, 627–636.

    Google Scholar 

  • Husted S and Schjoerring J K 1995 Apoplastic pH and ammonium concentration in leaves of Brassica napus L. Plant Physiol. 109, 1453–1460.

    CAS  PubMed  Google Scholar 

  • Imsande J and Touraine B 1994 N demand and the regulation of nitrate uptake. Plant Physiol. 105, 3–7.

    CAS  PubMed  Google Scholar 

  • Ireland R J and Lea P J 1999 The enzymes of Glutamine, Glutamate, Asparagine and Apartate Metabolism. In Plant amino acids biochemistry and biotechnology. Ed. B K Singh. pp. 49–111. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Jaeger III C H, Lindow S E, Miller W, Clark E and Firestone M K 1999 Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 65, 2685–2690.

    CAS  PubMed  Google Scholar 

  • James E K 1999 Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65, 197–209.

    Google Scholar 

  • Jensen E S 1996 Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biol. Biochem. 28, 65–71.

    CAS  Google Scholar 

  • Jones D L, Owen A G and Farrar J F 2002 Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem. 34, 1893–1902.

    CAS  Google Scholar 

  • Kaiser B N, Rawat S R, Siddiqi M Y, Masle J and Glass A D M 2002 Functional analysis of an Arabidopsis T-DNA ‘knock-out’ of the high affinity transporter AtAM1;1. Plant Physiol. 130, 1263–1275.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser W M and Brendle-Behnisch E 1991 Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. I. Modulation in vivo by CO2 availability. Plant Physiol. 96, 363–367.

    CAS  Google Scholar 

  • Kaiser W M and Förster J 1989 Low CO2 prevents nitrate reduction in leaves. Plant Physiol. 91, 970–974.

    CAS  Google Scholar 

  • Kaiser W M and Huber S 1994 Modulation of nitrate reductase in vivo and in vitro: Effects of phosphoprotein phosphatase inhibitors, free Mg2+ and 5′ AMP. Planta 193, 358–364.

    Article  CAS  Google Scholar 

  • Kaiser W M, Kandlbinder A, Stoimenova M and Glaab J 2000 Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: What limits nitrate reduction in situ? Planta 210, 801–807.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser W M, Weiner H and Huber S C 1999 Nitrate reductase in higher plants: A case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plant. 105, 385–390.

    Article  CAS  Google Scholar 

  • Kang J and Turano F J 2003 The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 6872–6877.

    CAS  PubMed  Google Scholar 

  • Khamis S and Lamaze T 1990 Maximal biomass production can occur in corn (Zea mays) in the absence of NO-3 accumulation in either leaves or roots. Physiol. Plant. 78, 388–394.

    Article  CAS  Google Scholar 

  • Kim C H, Jun S S and Hong Y N 2001 GmNiR-1, a soybean nitrite reductase gene that is regulated by nitrate and light. Aust. J. Plant Physiol. 28, 1031–1038.

    CAS  Google Scholar 

  • Kochy M and Wilson S D 2001 Nitrogen deposition and forest expansion in the northern Great Plains. J. Ecol. 89, 807–817.

    Article  Google Scholar 

  • Koh S, Wiles A, Sharp J, Naider F, Becker J and Stacey G 2002 An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 128, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Kohler B and Raschke K 2000 The delivery of salts to the xylem. Three types of anion conductance in the plasmamemma of the xylem parenchyma of roots of barley. Plant Physiol. 122, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Kohler B, Wegner L H, Osipov V and Raschke K 2002 Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylemparenchyma cells of barley roots. Plant J. 30, 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker H J, Britto D T, Davenport R J and Tester M 2001 Ammonium toxicity and the real cost of transport. Trends Plant Sci. 6, 335–337.

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker H J, Siddiqi M Y, Glass A D M and Britto D T 2003 Root ammonium transport efficiency as a determinant in forest colonization patterns: An hypothesis. Physiol. Plant. 117, 164–170.

    Article  CAS  Google Scholar 

  • Kumar A, Silim S, Okamoto M, Siddiqi M Y and Glass A D M 2003 Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH+4 transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ. 26, 907–914.

    Article  CAS  PubMed  Google Scholar 

  • Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliveira I, Shin M and Coruzzi G 1998 Glutamate-receptor genes in plants. Nature 396, 125–126.

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Simpson R J, Beilharz V C and Dalling M J 1982 Growth and translocation of C and N in wheat (Triticum aestivum) grown with a split root system. Physiol. Plant. 56, 421–429.

    CAS  Google Scholar 

  • Lancien M, Gadal P and Hodges M 2000. Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol. 123, 817–824.

    Article  CAS  PubMed  Google Scholar 

  • Larcher M, Muller B, Mantelin S, Rapior S and Cleyet-Mare J-C 2003 Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol. 160, 119–125.

    Article  Google Scholar 

  • Lauter F R, Ninnemann O, Bucher M, Riemeier J W and Frommer W B 1996 Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. P. Natl. Acad. Sci. USA 93, 8139–8144.

    Article  CAS  Google Scholar 

  • Lazof D B, Rufty T W and Redinbaugh M G 1992 Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiol. 100, 1251–1258.

    CAS  Google Scholar 

  • Leacox J D and Syvertsen J P 1995 Nitrogen Uptake By Citrus Leaves. J. Am. Soc. Hortic. Sci. 120, 505–509.

    CAS  Google Scholar 

  • Lee R B and Rudge K A 1986 Effects of nitrogen deficiency on the absorption of nitrate and ammonium by barley plants. Ann. Bot. 57, 471–486.

    Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wirén N, Daniel-Vedele F and Gojon A 2003 Regulation of root ion transporters by photosynthesis: Functional importance and relation with hexokinase. Plant Cell 15, 2218–2232.

    Article  CAS  PubMed  Google Scholar 

  • Lejay L, Tillard P, Domingo Olive F, Lepetit M, Filleur S, Daniel-Vedele F and A G 1999 Molecular and functional regulation of two NO3- uptake systems by N-and C-status of Arabidopsis plants. Plant J. 18, 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Lewis O A M 1986 Plants and nitrogen. Edward Arnold Publishers Ltd., London.

    Google Scholar 

  • Lewis O A M, James D M and Hewitt E J 1982 Nitrogen assimilation in barley (Hordeum vulgare L. cv. Mazurka) in response to nitrate and ammonium nutrition. Ann. Bot. 49, 39–49.

    CAS  Google Scholar 

  • Leyser O and Fitter A 1998 Roots are branching out in patches, Trends Plant Sci. 3, 203–204.

    Article  Google Scholar 

  • Li G, Liu K, Baldwin S A and Wang D 2003 Equilibrative nucleoside transporters of Arabidopsis thaliana: cDNA cloning, expression pattern, and analysis of transport activities. J. Biol. Chem. 278, 35732–35742.

    CAS  PubMed  Google Scholar 

  • Li X-Z and Oaks A 1993 Induction and turnover of nitrate reductase in Zea mays Influence of NO-3. Plant Physiol. 102, 1251–1257.

    CAS  PubMed  Google Scholar 

  • Lillo C 1983 Studies of diurnal variations of nitrate reductase activity in barley leaves using various assay methods. Physiol. Plant. 57, 357–362.

    CAS  Google Scholar 

  • Lillo C 1994 Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 90, 616–620.

    Article  CAS  Google Scholar 

  • Lin C M, Koh S, Stacey G, Yu S M, Lin T Y and Tsay Y F 2000 Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1 from rice. Plant Physiol. 122, 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Liu K-H and Y-F Tsay 2003 Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005–1013.

    CAS  PubMed  Google Scholar 

  • Liu K-H, Huang C-H and Tsay Y-F 1999 CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Liu L-H, Ludewig U, Frommer W B and von Wirén N 2003 AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15, 790–800.

    CAS  PubMed  Google Scholar 

  • Lorenz M and Heitman J 1998 The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cervisiae. Embo J. 17, 1236–1247.

    CAS  PubMed  Google Scholar 

  • Ludewig U, von Wirén N and Frommer W B 2002 Uniport of NH+4 by the root hair plasma membrane ammonium transporter LeAMT1;1. J. Biol. Chem. 277, 13548–13555.

    Article  CAS  PubMed  Google Scholar 

  • Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini A-M, Andre B, Hamacher T, Boles E, von Wirén N and Frommer W B 2003 Homo-and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J. Biol. Chem. 278, 45603–45610.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Tillman R W and Ball P R 2000 Nitrogen loss through denitrification in a soil under pasture in New Zealand. Soil Biol. Biochem. 32, 497–509.

    Article  CAS  Google Scholar 

  • MacKintosh C 1992 Regulation of spinach leaf nitrate reductase by reversible phosphorylation. Biochim. Biophys. Acta 1137, 121–126.

    CAS  PubMed  Google Scholar 

  • MacKintosh C and Meek S E M 2001 Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis. Cell Mol. Life Sci. 58, 205–214.

    CAS  PubMed  Google Scholar 

  • Mahmood T, Woitke M, Gimmler H and Kaiser W M 2002 Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Planta 214, 887–94.

    Article  CAS  PubMed  Google Scholar 

  • Malamy J E and Ryan K S 2001 Environmental Regulation of Lateral Root Initiation in Arabidopsis. Plant Physiol. 127, 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Mantelin S and Touraine B 2004 Plant growth-promoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. J. Exp. Bot. 55, 27–34.

    CAS  PubMed  Google Scholar 

  • Marschner H 1991 Root-induced changes in the availability of micro-nutrients in the rhizosphere. In Plant roots: The hidden half. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 503–528. Marcel Dekker Inc., New York.

    Google Scholar 

  • Marschner H 1995 Mineral nutrition of higher plants. Academic Press, London.

    Google Scholar 

  • Martins-Loução M A and Cruz C 1999 Role of nitrogen source in carbon balance. In Nitrogen Nutrition and Plant Growth. Eds. H S Srivastava and R P Singh. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi. ISBN 81-204-1282-6

    Google Scholar 

  • Mata C, van Vemde N, Clarkson D T, Martins-Loução M A and Lambers H 2000 Influx, efflux and net uptake of nitrate in Quercus suber seedlings. Plant Soil 221, 25–32.

    Article  CAS  Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A and Stitt M 2001 Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when growing on ammonium nitrate. Plant Cell Environ. 24, 1119–1137.

    CAS  Google Scholar 

  • McClure P R, Kochian L V, Spanswick R M and Shaff J E 1990 Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiol. 93, 281–289.

    CAS  Google Scholar 

  • Meharg A and Blatt M 1995 NO-3 transport across the plasma membrane of Arabidopsis thaliana root hairs: Kinetic control by pH and membrane voltage. J. Membrane Biol. 145, 49–66.

    Article  CAS  Google Scholar 

  • Meyer C and Stitt M 2001 Nitrate reduction and signalling. In Plant nitrogen. Eds. P J Lea and J F Morot-Gaudry. pp. 61–78. Berlin, Springer-Verlag.

    Google Scholar 

  • Miflin B J and Habash D Z 2002 The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops J. Exp. Bot. 53, 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Miller A J, Cookson S J, Smith S J and Wells D M 2001 The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J. Exp. Bot. 52, 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Miller A J and Smith S J 1996 Nitrate transport and compartmentation. J. Exp. Bot. 47, 843–854.

    CAS  Google Scholar 

  • Miller A J and Smith S J 1992 The mechanism of nitrate transport across the tonoplast of barley root cells. Planta 187, 554–557.

    Article  CAS  Google Scholar 

  • Miller A J and Zhou J-J 2000 Xenopus oocytes as an expression system for plant transporters. Biochim. Biophys. Acta 1465, 343–358.

    CAS  PubMed  Google Scholar 

  • Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A and MacKintosh C 1996 Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusiccocin. Curr. Biol. 6, 1104–1113.

    Article  CAS  PubMed  Google Scholar 

  • Murphy A T and Lewis O A M 1987 Effect of nitrogen feeding source on the supply of nitrogen from root to shoot and the site of nitrogen assimilation in maize (Zea mays L. cv. R201). New Phytol. 107, 327–333.

    Google Scholar 

  • Murphy P J, Langridge P and Smith S E 1997 Cloning plant genes differentially expressed during the colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 135, 291–301.

    Article  CAS  Google Scholar 

  • Nagel O W and Lambers H 2002 Changes in the acquisition and partitioning of carbon and nitrogen in the gibberellin-deficient mutants A70 and W335 of tomato (Solanum lycopersicum L.). Plant Cell Environ. 25, 883–891.

    Article  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M and Högberg P 1998 Boreal forest plants take up organic nitrogen. Nature 392, 914–916.

    Article  Google Scholar 

  • Nazoa P, Vidmar J J, Tranbarger T J, Mouline K, Damiani I, Tillard P, Zhou D, Glass A D M and Touraine B 2003 Regulation of the nitrate transporter gene ATNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol. Biol. 52, 689–703.

    Article  CAS  PubMed  Google Scholar 

  • Neininger A, Kronenberger J and Mohr H 1992 Coaction of light, nitrate and a plastidic factor in controlling nitrite reductase gene expression in tobacco. Planta 187, 381–387.

    Article  CAS  Google Scholar 

  • Niemietz C M and Tyerman S D 2000 Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Ninnemann O, Jauniaux J C and Frommer W B 1994 Identification of a high affinity NH+4 transporter from plants. EMBO J. 13, 3464–3471.

    CAS  PubMed  Google Scholar 

  • Nohrstedt H-Ö, Jacobson S and Stikström U 2000 Effects of repeated urea doses on soil chemistry and nutrient pools in a Norway spruce stand. Forest Ecol. Manage. 130, 47–56.

    Google Scholar 

  • Nosengo N 2003 Fertilized to death. Nature 425, 894–895.

    CAS  PubMed  Google Scholar 

  • Oaks A 1986 Biochemical aspects of nitrogen metabolism in a whole plant context. In Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Eds. H Lambers, J J Neeteson and I Stulen. pp. 133–151. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster.

    Google Scholar 

  • Okamoto M, Vidmar J J and Glass A D M 2003 Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 44, 304–317.

    Article  CAS  PubMed  Google Scholar 

  • Ono F, Frommer W B and von Wirén N 2000 Coordinated diurnal regulation of low-and high-affinity nitrate transporters in tomato. Plant Biol. 2, 17–23.

    Article  CAS  Google Scholar 

  • Orea A, Pajuelo P, Pajuelo E, Marquez A J and Romero J M 2001 Characterisation and expression of a root cDNA encoding for ferredoxin-nitrite reductase from Lotus japonicus. Physiol. Plant. 113, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Krapp A and Daniel-Vedele F 2002 Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol. 129, 886–896.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Lopez A, Chang H C and Bush D R 2000 Amino acid transporters in plants. Biochim. Biophys. Acta 1465, 275–280.

    CAS  PubMed  Google Scholar 

  • Owen A G and Jones D L 2001 Competition for amino acids between wheat roots and rhizosphere microoorganisms and the role of amino acids in plant N acquisition. Soil Biol. Biochem. 33, 651–657.

    CAS  Google Scholar 

  • Ozcan S, Dover J and Johnston M 1998 Glucose sensing and signalling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17, 2566–2573.

    Article  CAS  PubMed  Google Scholar 

  • Pal’ove-Balang P and Mistrik I 2002 Control of nitrate uptake by phloem-translocated glutamine in Zea mays L. seedlings. Plant Biol. 4, 440–445.

    CAS  Google Scholar 

  • Pate J S 1980 Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 31, 313–340.

    Article  CAS  Google Scholar 

  • Paulsen I and Skurray R 1994 The POT family of transport proteins. TIBS 19, 404.

    CAS  PubMed  Google Scholar 

  • Pearson J, Woodall J, Clough E C M, Nielsen K H and Schjorring J K 2002 Production and consumption of NH+4 and NH3 in trees. In Trace gas exchange in forest ecosystems. Eds. R Gasche, H Papen and H Rennenberg. pp. 53–77. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Persson J and Näsholm T 2001 Amino acid uptake: a widespread ability among boreal forest plants. Ecol. Lett. 4, 434–439.

    Article  Google Scholar 

  • Persson J, Hogberg P, Ekblad A, Hogberg M N, Nordgren A and Nasholm T 2003 Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137, 252–257.

    Article  PubMed  Google Scholar 

  • Peuke A, Glaab J, Kaiser W and Jeschke W 1996 The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J. Exp. Bot. 47, 377–385.

    CAS  Google Scholar 

  • Pitcairn C E R, Fowler D, Leith I D, Sheppard L J, Sutton M A, Kennedy V and Okello E 2003 Bioindicators of enhanced nitrogen deposition. Environ. Pollut. 126, 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Pohlmeyer K, Soll J, Steinkamp S, Hinnah S and Wagner R 1997 Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc. Natl. Acad. Sci. USA 94, 9504–9509.

    Article  CAS  PubMed  Google Scholar 

  • Popova O V, Dietz K J and Golldack D 2003 Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol. Biol. 52, 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Pouteau S, Cherel I, Vaucheret H and Caboche M 1989 Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitratereductase-deficient mutants. Plant Cell 1, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  • Qian J H, John W, Doran J W, Daniel T and Walters D T 1997 Maize plant contributions to root zone available carbon and microbial transformations of nitrogen. Soil Biol. Biochem. 29, 1451–1462.

    Article  CAS  Google Scholar 

  • Raven J and Smith F 1976 Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 76, 415–431.

    CAS  Google Scholar 

  • Rawat S R, Silim S N, Kronzucker H J, Siddiqi M Y and Glass A D M 1999 AtAMT1 gene expression and uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J. 19, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh M and Campbell W 1991 Higher plant responses to environmental nitrate. Physiol. Plant. 82, 640–650.

    Article  CAS  Google Scholar 

  • Reisenauer H M 1978 Absorption and utilization of ammonium nitrogen by plants. In Nitrogen in the environment, Vol II. Eds. D R Nielsen and J G McDonald. pp. 157–170. Academic Press, London New York.

    Google Scholar 

  • Rennenberg H, Kreutzer K, Papen H and Weber P 1998 Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol. 139, 71–86.

    Article  CAS  Google Scholar 

  • Robinson D 1986 Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations in growth. Ann. Bot. 58, 841–848.

    Google Scholar 

  • Robinson D 2001 Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232, 41–50.

    Article  CAS  Google Scholar 

  • Rosswall T 1983 C, N, P, and S Cycles: Major Reservoirs and Fluxes — The Nitrogen Cycle. In The Major Biogeochemical Cycles and Their Interactions. Eds. B Bolin and R B Cook. Scientific Committee on Problems of the Environment (SCOPE)

    Google Scholar 

  • Rothstein S and Sivasankar S 1999 Nitrate inducibility of gene expression using the nitrite reductase gene promoter. In Inducible gene expression. Ed. P Reynolds. CAB international, Wallingford.

    Google Scholar 

  • Rufty Jr. T W, Huber S C and Volk R J 1988 Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol. 88, 725–730.

    CAS  Google Scholar 

  • Rufty Jr. T W, MacKown C T and Volk R J 1990 Alterations in nitrogen assimilation and partitioning in nitrogen stressed plants. Physiol. Plant. 79, 85–95.

    CAS  Google Scholar 

  • Rufty Jr. T W, Volk R J and MacKown C T 1987 Endogenous NO-3 in the root as a source of substrate for reduction in the light. Plant Physiol. 84, 1421–1426.

    CAS  Google Scholar 

  • Scheible W-R, GonzalesFontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schultz E and Stitt M 1997b Tobacco mutants with decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203, 304–319.

    Article  CAS  PubMed  Google Scholar 

  • Scheible W-R, Krapp A and Stitt M 2000 Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ. 23, 1155–1167.

    Article  CAS  Google Scholar 

  • Scheible W-R, Lauerer M, Schulze E, Caboche M and Stitt M 1997c Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11, 671–691.

    Article  CAS  Google Scholar 

  • Scheible W-R, Gonzalez-Fontes A, Laurer M, Müller-Röber B, Caboche M and Stitt M 1997a Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783–798.

    Article  CAS  PubMed  Google Scholar 

  • Scheurwater I, Koren M, Lambers H and Atkin O K 2002 The contribution of roots and shoots to whole plant nitrate reduction in fast-and slow-growing grass species. J. Exp. Bot. 53, 1635–1642.

    Article  CAS  PubMed  Google Scholar 

  • Schjørring J K 1998 Atmospheric ammonia and impacts of nitrogen deposition: uncertainties and challenges (Atmospheric ammonia and impacts of nitrogen deposition). New Phytol. 139, 59–60.

    Google Scholar 

  • Schjoerring J K, Husted S, Mäck G and Mattsson M 2002 The regulation of ammonium translocation in plants J. Exp. Bot. 53, 883–890.

    Article  CAS  PubMed  Google Scholar 

  • Schobert C and Komor E 1990 Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta 181, 85–90.

    Article  CAS  Google Scholar 

  • Schuster C and Mohr H 1990 Appearance of nitrite-reductase mRNA in mustard seedlings cotyledons is regulated by phytochrome. Planta 181, 327–334.

    CAS  Google Scholar 

  • Sehnke P C, DeLille J D and Ferl R J 2002 The role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14, S339–S354.

    CAS  PubMed  Google Scholar 

  • Seith B, Schuster C and Mohr H 1991 Coaction of light, nitrate and a plastidic factor in controlling nitrite-reductase gene expression in spinach. Planta 184, 74–80.

    Article  CAS  Google Scholar 

  • Seith B, Sherman A, Wray J and Mohr H 1994 Photocontrol of nitrite reductase gene expression in the barley seedling (Hordeum vulgare L.). Planta 192, 110–117.

    CAS  Google Scholar 

  • Sentenac H and Grignon C 1985 Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 77, 136–141.

    CAS  Google Scholar 

  • Sharp R E, Silk W K and Hsiao T C 1988 Growth of the maize primary root at low water potentials. 1. Spatial-distribution of expansive growth. Plant Physiol. 87, 50–57.

    Google Scholar 

  • Shelden M C, Dong B, de Bruxelles G L, Trevaskis B, Whelan J, Ryan P R, Howitt S M and Udvardi M K 2001 Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 231, 151–160.

    Article  CAS  Google Scholar 

  • Siddiqi M Y, Glass A D M, Ruth T J 1991 Studies of the uptake of nitrate in barley. III. Compartmentation of NO-3. J. Exp. Bot. 42, 1455–1463.

    CAS  Google Scholar 

  • Siddiqi M Y, Glass A D M, Ruth T J and Rufty T J 1990 Studies of the uptake of nitrate in barley 2. Energetics. Plant Physiol. 93, 1585–1589.

    Google Scholar 

  • Siebrecht S, Herdel K, Schurr U and Tischner R 2003 Nutrient translocation in the xylem of poplar — diurnal variations and spatial distribution along the shoot axis. Planta 217, 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Signora L, De Smet I, Foyer C H and Zhang H 2001 ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J. 28, 655–662.

    Article  CAS  PubMed  Google Scholar 

  • Simon-Rosin U, Wood C and Udvardi M K 2003 Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Mol. Biol. 51, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Simpson R J, Lambers H and Dalling M J 1982 Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum). Physiol. Plant. 56, 11–17.

    CAS  Google Scholar 

  • Sivasankar S, Rothstein S and Oaks A 1997 Regulation of the accumulation and reduction of nitrate and carbon metabolites in Zea mays L. seedlings. Plant Physiol. 114, 583–589.

    CAS  PubMed  Google Scholar 

  • Smith R D and Walker J C 1996 Plant protein phosphatases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 101–125.

    Article  CAS  PubMed  Google Scholar 

  • Smith C S, Weljie A M and Moorhead G B G 2003 Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant J. 33, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Shelden M, Howitt S and Udvardi M K 2000 Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 467, 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Wood C C, Roeb G W and Udvardi M K 2002 Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol. 130, 1788–1796.

    Article  CAS  PubMed  Google Scholar 

  • Sokolovski S G, Meharg A A and Maathuis F J M 2002 Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae. New Phytol. 155, 525–530.

    Article  Google Scholar 

  • Solomonson L and Barber M 1990 Assimilatory nitrate reductase: functional properties and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 225–253.

    Article  CAS  Google Scholar 

  • Song W, Koh S, Czako M, Marton L, Drenkard E, Becker J M and Stacey G 1997 Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants. Plant Physiol. 114, 927–935.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T and Yamaguchi J 2003 Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol. 44, 726–734.

    CAS  PubMed  Google Scholar 

  • Spalding R F, Watts D G, Schepers J S, Burbach M E, Exner M E, Poreda R J and Martin G E 2001 Controlling Nitrate Leaching in Irrigated Agriculture. J. Environ. Qual. 30, 1184–1194.

    CAS  PubMed  Google Scholar 

  • Steiner H-Y, Song W, Zhang L, Naider F, Becker J M and Stacey G 1994 An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6, 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  • Steingröver E, Ratering P and Siesling J 1986 Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 66, 550–556.

    Google Scholar 

  • Stöhr C and Mäck G 2001 Diurnal changes in nitrogen assimilation of tobacco roots. J. Exp. Bot. 52, 1283–1289.

    PubMed  Google Scholar 

  • Stöhr C and Ullrich W R 2002 Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53, 2293–2303.

    PubMed  Google Scholar 

  • Stoimenova M, Libourel I, Ratcliffe R and Kaiser W 2003 The role of nitrate reduction in the anoxic metabolism of roots II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253, 155–167.

    CAS  Google Scholar 

  • Strong D T and Fillery I R P 2002 Denitrification response to nitrate concentrations in sandy soils. Soil Biol. Biochem. 34, 945–954.

    Article  CAS  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wirén N, Hayakawa T, Yamaguchi J and Yamaya T 2003 Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol. 44, 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Sueyoshi K, Kleinhofs A and Warner R 1995 Expression of NADH-specific and NAD(P)H-bispecific nitrate reductase genes in response to nitrate in barley. Plant Physiol. 107, 1301–1311.

    Google Scholar 

  • Suzuki A and Gadal P 1984 Glutamate synthase-physicochemical and functional-properties of different forms in higher-plants and in other organisms. Physiol. Veg. 22, 471–486.

    CAS  Google Scholar 

  • Suzuki A, Oaks A, Jacquot J, Vidal J and Gadal P 1985 An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase: Physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol. 78, 374–378.

    CAS  Google Scholar 

  • Ta T C and Joy K W 1984 Transamination, deamination, and the utilisation of asparagine amino nitrogen in pea leaves. Can. J. Bot. 63, 881–884.

    Google Scholar 

  • Tan X W, Ikeda H and Oda M 2000 The absorption, translocation, and assimilation of nitrate or assimilation of urea, nitrate or ammonium in tomato plants at different plant growth stages in hydroponic culture. Sci. Hortic. 84, 275–283.

    CAS  Google Scholar 

  • Tanaka T, Ida S, Irifune K, Oeda K and Morikawa H 1994 Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence 5, 57–61.

    CAS  PubMed  Google Scholar 

  • Taylor A R and Bloom A J 1998 Ammonium, nitrate, and proton fluxes along the maize root. Plant Cell Environ. 21, 1255–1263.

    CAS  Google Scholar 

  • Teyker R H, Jackson W A, Volk R J and Moll R H 1988 Exogenous 15NO-3 influx and endogenous 14NO-3 efflux by two maize (Zea mays L.) inbreds during nitrogen deprivation. Plant Physiol. 86, 778–781.

    CAS  Google Scholar 

  • Tillard P, Passama L and Gojon A 1998 Are phloem amino, acids involved in the shoot to root control of NO-3 uptake in Ricinus communis plants? J. Exp. Bot. 49, 1371–1379.

    Article  CAS  Google Scholar 

  • Tischner R, Waldeck B, Goyal S and Rains W 1993 Effect of nitrate pulses on the nitrate-uptake rate, synthesis of mRNA coding for nitrate reductase, and nitrate reductase activity in the roots of barley seedlings. Planta 189, 533–537.

    Article  CAS  Google Scholar 

  • Tobin A K and Yamaya T 2001 Cellular compartmentation of ammonium assimilation in rice and barley. J. Exp. Bot. 52, 591–604.

    Article  CAS  PubMed  Google Scholar 

  • Tolley-Henry L and Raper Jr. C D 1986 Expansion and photosynthetic rate of leaves of soybean plants during onset of and recovery from nitrogen stress. Bot. Gaz. 147, 400–406.

    CAS  PubMed  Google Scholar 

  • Touraine B, Daniel-Vedele F and Forde B 2001 Nitrate uptake and its regulation. In Plant Nutrition. Eds. P Lea and J-F Morot-Gaudry. pp. 1–36. Springer-Verlag, Berlin.

    Google Scholar 

  • Tranbarger T J, Al-Ghazi Y, Muller B, Teyssendier De La Serve B, Doumas P, Touraine B 2003 Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ. 26, 459–469.

    Article  CAS  Google Scholar 

  • Trewavas A J 1983 Nitrate as a plant hormone. In British plant growth regulator group monograph 9. Ed. M B Jackson. pp. 97–110. Oxford, British Plant Growth Regulator Group.

    Google Scholar 

  • Tsay Y-F, Schroeder J I, Feldmann K A and Crawford N M 1993 The herbicide sensivity gene CHL1 of Arabidopsis encodes a nitrateinducible nitrate transporter. Cell 72, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Uhde-Stone C, Gilbert G, Johnson J M-F, Litjens R, Zinn K E, Temple S J, Vance C P and Allan D L 2003 Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248, 99–116.

    Article  CAS  Google Scholar 

  • Van der Leij M, Smith S and Miller A J 1998 Remobilisation of vacuolar stored nitrate in barley root cells. Planta 205, 64–72.

    Google Scholar 

  • Vance C P 2002 Root-bacteria interactions. Symbiotic Nitrogen fixation. In Plant roots; The hidden half, 3rd edition. Eds. Y Waisel, A Eschel and U Kafkafi. New York,: Marcel Dekker, 839 pp. 868.

    Google Scholar 

  • Vance C P, Gregerson R G, Robinson D L, Miller S S and Gantt J S 1994 Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci. 101, 51–64.

    Article  CAS  Google Scholar 

  • Vessey J K and Layzell D B 1987 Regulation of assimilate partitioning in soybean. Initial effects following change in nitrate supply. Plant Physiol. 83, 341–348.

    CAS  Google Scholar 

  • Vessey J K, Pawlowski K and Bergman B 2004 Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp and cycads. Plant and Soil 266, 205–230.

    CAS  Google Scholar 

  • Vessey J K 2003 Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586.

    Article  CAS  Google Scholar 

  • Vidmar J, Zhuo D, Siddiqi M, Schjoerring J, Touraine B and Glass A 2000 Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol. 123, 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Vincentz M and Caboche M 1991 Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifoli plants. EMBO J. 10, 1027–1035.

    CAS  PubMed  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker M T, Vaucheret H and Caboche M 1993 Regulation of nitrate and nitrite reductase expression in Nicotiana-plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 3, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • von Wirén N, Gazzarrini S, Gojon A and Frommer W 2000a The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol. 3, 254–261.

    Google Scholar 

  • von Wiren N, Lauter F R, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W and Frommer W B 2000b Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J. 21, 167–175.

    Google Scholar 

  • Vuylsteker C, Prinsen E, Boutin J, Van Onckelen H and S Rambour 1998 Evidence for nitrate reductase expression during initiation of lateral roots by NAA in chicory. J. Exp. Bot. 49, 937–944.

    Article  CAS  Google Scholar 

  • Wang C X, Knill E, Glick B R and Defago G 2000 Effect of transferring 1-minocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46, 898–907.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Glass A, Shaff J and Kochian L 1994 Ammonium uptake by rice roots. III. Electrophysiology. Plant Physiol. 104, 899–906.

    CAS  PubMed  Google Scholar 

  • Wang R, Guegler K, LaBrie S T and Crawford N M 2000 Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12, 1491–1509.

    CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X and Crawford N M 2003 Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 132, 556–567.

    CAS  PubMed  Google Scholar 

  • Wang Y-H, Garvin D F and Kochian L V 2001 Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127, 345–359.

    CAS  PubMed  Google Scholar 

  • Watson C J, Miller H, Poland P, Kilpatrick D J, Allen M B D, Garret M K and Christianson C B 1994 Soil properties and the ability of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biol. Biochem. 26, 1165–1171.

    Article  CAS  Google Scholar 

  • Wells D M and Miller A J 2000 Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil 221, 103–106.

    Article  CAS  Google Scholar 

  • White P J 1996 The permeation of ammonium through a voltageindependent K+ channel in the plasma membrane of rye roots. J. Membr. Biol. 152, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson J Q and Crawford N M 1993 Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol. Gen. Genet. 239, 289–297.

    CAS  PubMed  Google Scholar 

  • Williams L E and Miller A J 2001 Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 659–688.

    Article  CAS  PubMed  Google Scholar 

  • Witte C-P, Tiller S A, Taylor M A and Davies H V 2002 Leaf urea metabolism in potato. urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol. 128, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Wray J 1989 Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiol. Plant. 89, 607–612.

    Google Scholar 

  • Xu W, Zhou Y and Chollet R 2003 Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NEPpcK) that shows striking up-/down-regulation in vivo. Plant J. 34, 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama T and Kumuzawa K 1975. A Kinetic study of the assimilation of 15N-labelled nitrate in rice seedlings. Plant Cell Physiol. 16, 21–26.

    CAS  Google Scholar 

  • Yu X, Sukumaran S and Marton L 1998 Differential expression of the Arabidopsis Nia1 and Nia2 genes. Plant Physiol. 116, 1091–1096.

    CAS  PubMed  Google Scholar 

  • Zhang H and Forde B 1998 An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H M and Forde B G 2000 Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A, Barlow P W and Forde B G 1999 Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. 96, 6529–6534.

    CAS  PubMed  Google Scholar 

  • Zhen R G, Koyro H W, Leigh R A, Tomos A D and Miller A J 1991 Compartmental nitrate concentrations in barley root-cells measured with nitrate-selective microelectrodes and by singlecell sap sampling. Planta 185, 356–361.

    Article  CAS  Google Scholar 

  • Zhou J J, Fernandez E, Galvan A and Miller A J 2000 A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett. 466, 225–227.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J J, Theodoulou F, Muldin I, Ingemarsson B and Miller A J 1998 Cloning and functional characterization of a Brassica napus transporter which is able to transport nitrate and histidine. J. Biol. Chem. 273, 12017–12033.

    CAS  PubMed  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar J and Glass A D M 1999 Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J. 17, 563–568.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.D. Cramer .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Miller, A., Cramer, M. (2005). Root nitrogen acquisition and assimilation. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_1

Download citation

Publish with us

Policies and ethics