Skip to main content

Molecular Biology and Genetic Engineering of Polyamines in Plants

  • Chapter
Plant Biotechnology and Molecular Markers

Abstract

The involvement of polyamines in various cellular and metabolic processes has been well established, but their mechanism of action and extent of involvement and regulation in various responses is not clearly understood. The use of specific biosynthetic inhibitors as well as mutants has been employed to study the intricacies of their regulation but many queries still remain unanswered. The cloning of the genes of polyamine metabolism allowed for the generation of transgenic plants with over-expression or down-regulation of a particular gene. These transgenic plants could be used to study the effects on plant development, metabolic shifts as well as stress responses. Similarly, the up- or down-regulation of the entire polymine metabolism is also possible by introduction of two or more genes into plants which would provide greater insight into the mechanisms of polyamine functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Rajam, L.H. Weinstein, A.W. Galston, Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis, Proc. Nat. Acad. Sci. USA, 82 (1985) 6874–6878.

    CAS  PubMed  Google Scholar 

  2. M.V. Rajam, In: Plant Ecophysiology, M.N.V. Prasad (Ed), John Wiley & Sons, New York, 1997, pp. 343–374.

    Google Scholar 

  3. T.A. Smith, P.J. Davies, J.B. Reid, Role of polyamines in giberrellin-induced internode growth in peas, Plant Physiol. 78 (1985) 92–99.

    CAS  PubMed  Google Scholar 

  4. P.T. Evans, R.L. Malmberg, Do polyamines have role in plant development? Ann. Rev. Plant Physiol. Plant Mol. Biol. 40 (1989) 235–269.

    CAS  Google Scholar 

  5. M.V. Rajam, S. Dagar, B. Waie, J.S. Yadav, P.A. Kumar, F. Shoeb, R. Kumria, Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants, J. Biosci. 23 (1998) 473–482.

    Article  CAS  Google Scholar 

  6. J. Martin-Tanguy, The occurrence and possible function of hydroxycinnamoyl acid amides in plants, Plant Growth Regul. 3 (1985) 381–399.

    Article  CAS  Google Scholar 

  7. R. Kaur-Sawhney, A.F. Tiburcio, A.W. Galston, Spermidine and flower bud differentiation in thin layer explants of tobacco, Planta 173 (1988) 282–284.

    Article  CAS  Google Scholar 

  8. H. Felix, J. Harr, Influence of inhibitors of polyamine biosynthesis on polyamine levels and growth of plants, Z. Naturforsch 44 (1989) 55–59.

    CAS  Google Scholar 

  9. T. Oshima, Unusual polyamines in an extreme thermophile, Thermus thermophillus, in: Advances in Polyamine Research (Eds U. Bachrach, A. Keye, R. Chayan), Raven Press, New York, 4 (1983) pp 479–487.

    Google Scholar 

  10. T. Oshima, N. Senshu, In: Polyamines: basic and clinical aspects, K. Imanoh, F. Suzuki, O. Suzuki, U. Bachrach (Eds) VNU Science Press, Netherlands, 1985, pp 113–117.

    Google Scholar 

  11. A.W. Galston, R. Kaur-Sawhney, Polyamines in plant physiology, Plant Physiol. 94 (1990) 406–410.

    CAS  PubMed  Google Scholar 

  12. K. Hamana, S. Matsuzaki, Distribution of polyamines in prokaryotes, algae, plants and fungi, in: Polyamines: basic and clinical aspects (Eds K. Imanoh, F. Suzuki, O. Suzuki, U. Bachrach), VNU Science Press, Netherlands, 1985a, pp 105–112.

    Google Scholar 

  13. S.B. Agarwal, M. Agarwal, E.H. Lee, G.F. Kramer, P. Pillai, Changes in polyamine and glutathione content of green alga, Chlorogonium elongatum (Dang) France exposed to mercury, Envr. Exp. Bot. 32 (1992) 145–151

    Google Scholar 

  14. R. Kuttan, A.N. Radhakrishnan, T. Spande, B. Witkop, Sym-homo-spermidine, a naturally occurring polyamine, Biochem. 10 (1971) 361–365.

    CAS  Google Scholar 

  15. K. Hamana, S. Matsuzaki, Natural occurrence of guanidinooxypropyl-amine in Wistaria floribunch and the swordbean Canavalia gladiata, Biochem. Biophys. Res. Commun. 129 (1985) 46–51.

    Article  CAS  PubMed  Google Scholar 

  16. S. Matsuzaki, K. Hamana, K. Isobe, M. Niitsu, K. Samejima, Novel polyamines and guanidinoamines in higher plants, in: The Biology and Chemistry of Polyamines (S.H. Goldberg, I.d. Algranati Eds), 12 (1989) 159–167.

    Google Scholar 

  17. B. Rodriguez-Garay, G.G. Phillips, G.D. Kuehn, Detection of norspermidine and norspermine in Medicago sativa L. (alfalfa), Plant Physiol. 89 (1989) 525–529.

    CAS  PubMed  Google Scholar 

  18. N. Bagni, Aliphatic amines as a growth factor of coconut milk stimulating cellular proliferation of Helianthus tuberosus (Jerusalem artichoke), Experimentia 22 (1966) 732–733.

    CAS  Google Scholar 

  19. S.C. Minocha, R.K. Minocha, Role of polyamines in somatic embryogenesis, in: Biotechnology in Agriculture and Forestry, Somatic Embryogenesis and Synthetic Seeds I (Ed Y.P.S. Bajaj), Springer-Verlag, Berlin Heidelberg, 30 (1995) pp 53–70.

    Google Scholar 

  20. P. Sharma, M.V. Rajam, Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.), J. Exp. Bot. 46 (1995) 135–141.

    CAS  Google Scholar 

  21. J.S. Yadav, M.V. Rajam, Spatial distribution and temporal changes in free and bound polyamines in leaves of Solanum melongena L. Associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine, J. Exp. Bot. 48 (1997) 1537–1545.

    Article  CAS  Google Scholar 

  22. J.S. Yadav, M.V. Rajam, Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant, Plant Physiol. 116 (1998) 617–625.

    CAS  Google Scholar 

  23. A.W. Galston, H.W. Flores, Polyamines and plant morphogenesis, in: Biochemistry and Physiology of Polyamines in Plants (Eds R.D. Slocum, H.E. Flores), CRC Press, Boca Raton, London, 1991, pp 175–186.

    Google Scholar 

  24. P. Sharma, J.S. Yadav, M.V. Rajam, Induction of laterals in root cultures of eggplant (Solanum melongena L.) in hormone free liquid medium: A novel system to study the role of polyamines, Plant Sci. 125 (1997) 103–111.

    Article  CAS  Google Scholar 

  25. M.B. Watson, K.K. Emory, R.M. Piatak, R.L. Malmberg, Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth, Plant J. 13 (1998) 231–239.

    Article  CAS  PubMed  Google Scholar 

  26. R.K. Kakkar, V.K. Rai, Plant polyamines in flowering and fruit ripening, Phytochem. 33 (1993) 1281–1288.

    Article  CAS  Google Scholar 

  27. A.W. Galston, In: The Physiology of Polyamines (Eds U. Bachrach, Y.M. Heimer), CRC Press, Boca Raton, Florida, 2 (1989) pp 99–105.

    Google Scholar 

  28. A.F. Tiburcio, R.R. Besford, T. Capell, A. Borell, P.S. Testillano, M.C. Risueno, Mechanism of Polyamine action during senescence responses induced by osmotic stress, J. Exp. Bot. 45 (1994) 1789–1800.

    CAS  Google Scholar 

  29. F. Shoeb, J.S. Yadav, S. Bajaj, M.V. Rajam, Polyamines as biomarkers for plant regeneration capacity: improvement of regenration by modulation of polyamine metabolism in different genotypes of indica rice, Plant Sci. 160 (2001) 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  30. N. Bagni, A. Tassoni, Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants, Amino Acids 20 (2001) 301–317.

    Article  CAS  PubMed  Google Scholar 

  31. A. Santanen, L.K. Simola, Catabolism of putrescine and spermidine in embryogenic and non embryogenic callus lines in Picea abies, Physiol. Plant. 90 (1994) 125–129.

    Article  CAS  Google Scholar 

  32. R.D. Slocum, R. Kaur-Sawhney, A.W. Galston, The physiology and biochemistry of polyamines in plants, Arch. Biochem. Biophys. 235 (1984) 283–303.

    Article  CAS  PubMed  Google Scholar 

  33. R.T. Besford, C.M. Richardson, J.L. Campos, A.F. Tiburcio, Effect of polyamines on stabilization of molecular complexes in thyalkoid membranes of osmotically stressed leaves, Planta 189 (1993) 201–206.

    Article  CAS  Google Scholar 

  34. J. Martin-Tanguy, F. Cabanne, E. Perdrizet, C. Martin, The distribution of hydroxycinnamic amides in flowering plants, Phytochem. 17 (1978) 1927–1928.

    Article  CAS  Google Scholar 

  35. M. Bueno, D. Garrido, A. Matilla, Gene expression induced by spermine in isolated embryonic axes of chickpea seeds, Plant Physiol. 87 (1993) 381–388.

    CAS  Google Scholar 

  36. J. Messiaen, P. Cambier, P. Van Cutsem, Polyamines and pectin I. Ion exchange and selectivity, Plant Physiol. 113 (1997) 387–395.

    CAS  PubMed  Google Scholar 

  37. G. Berta, M.M. Altamura, A. Fusconi, F. Cerruti, F. Capitiani, N. Bagni, The plant cell wall is altered by inhibition of polyamine biosynthesis, New Phytol. 137 (1997) 569–577.

    Article  CAS  Google Scholar 

  38. Bharti, M.V. Rajam, Involvement of polyamines in resistance of wheat to Puccinia recondita, Phytochemistry, 71 (1996) 1009–1013.

    Google Scholar 

  39. A.M. Moustacas, J. Nari, M. Borel, G. Noat, J. Ricard, Pectin methyl esterase, metal ions and plant cell wall expansion, Biochem. J. 279 (1991) 351–354.

    CAS  PubMed  Google Scholar 

  40. A Tassoni, F. Antognoni, M.L. Battistini, O. Sanvido, N. Bagni, Characterization of spermidine binding to solubilized plasma membrane proteins from Zucchini hypocotyls, Plant Physiol. 117 (1998) 971–977.

    Article  CAS  PubMed  Google Scholar 

  41. B.G. Feuerstein, N. Pattabiraman, L.J. Marton, Spermine-DNA interactions: A theoretical study, Proc. Natl. Acad. Sci. USA, 83 (1986) 5948–5952.

    CAS  PubMed  Google Scholar 

  42. H. Ohishi, I. Nakanishi, K. Inubshi, G. Van Der Marel, J.H. Van Boom, A. Rich, A.H.J. Wang, T. Hakoshima, K. Tomita, Interactions between the left-handed Z-DNA and polyamine: The crystal structure of the d(CG)3 spermidine complex, FEBS Lett. 391 (1996) 153–156.

    Article  CAS  PubMed  Google Scholar 

  43. D. Balasundarum, A.K. Tyagi, Polyamine-DNA nexus: Structural ramifications and biological implications, Mol. Cell. Biochem. 100 (1991) 129–140.

    Google Scholar 

  44. M.L. Howell, G.P. Schroth, P.S. Ho, Sequence dependent effects of spermine on thermodynamics of B-DNA to Z-DNA transition, Biochem. 35 (1996) 15373–15382.

    CAS  Google Scholar 

  45. M. Musso, T. Thomas, A. Shirahata, L.H. Sigal, M.W. Van Dyke, T.J. Thomas, Effects of Chain length modification and bis (ethyl) substitution of spermine analogs on purine-purine-pyrimidine triplex DNA stabilization, aggregation and conformation transition, Biochem. 36 (1997) 1441–1449.

    CAS  Google Scholar 

  46. M. Auvinen, A. Paasinen, L.C. Anderson, E. Holta, Ornithine decarboxylase activity is critical for cell transformation, Nature 360 (1992) 355–358.

    Article  CAS  PubMed  Google Scholar 

  47. P. Pohjanpelto, E. Hölttä, Phosphorylation of Okazaki-like DNA fragments in mammalian cells and role of polyamines in the processing of this DNA, EMBO J. 15 (1996) 1193–1200.

    CAS  PubMed  Google Scholar 

  48. D. Serafini-Fracassini, P. Torrigiani, C. Branca, Polyamines bound to nucleic acids during dormancy and activation of tuber cells of Helianthus tuberosus, Physiol. Plant. 60 (1984) 351–357.

    CAS  Google Scholar 

  49. M.D. Morch, C. Bencourt, Polyamines stimulate expression of amber termination codons in vitro by normal tRNAs, Eur. J. Biochem. 105 (1980) 445–451.

    Article  CAS  PubMed  Google Scholar 

  50. R. Kaur-Sawhney, A.W. Galston, Histological and biochemical studies on the anti-senescence properties of polyamines in plants, in: Biochemistry and Physiology of Polyamines in Plants (Eds R.D. Slocum, H.E. Flores), CRC Press, Boca Raton, 1991, pp 201–211.

    Google Scholar 

  51. H. Tabor, C.W. Tabor, Polyamine requirement for efficient translation of amber codons in vivo, Proc. Natl. Acad. Sci. USA, 79 (1982) 7087–7091.

    CAS  PubMed  Google Scholar 

  52. C.M. Isola, L. Franzoni, Inhibition of net synthesis of ribonuclease by polyamines in potato tuber slices, Plant Sci. 63 (1989) 39–45.

    Article  CAS  Google Scholar 

  53. E. Rom, C. Kahana, Polyamine regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting, Proc. Natl. Acad. Sci. USA, 91 (1994) 3959–3963.

    CAS  PubMed  Google Scholar 

  54. N. Datta, M.B. Schell, S.J. Roux, Spermine stimulation of a nuclear NII kinase from pea plumule and its role in the phosphorylation of a nuclear polypeptide, Plant Physiol. 84 (1987) 1397–1401.

    CAS  PubMed  Google Scholar 

  55. S.J. Roux, Casein kinase-2 type protein kinases in plants: Possible targets of polyamine action during growth regulation? Plant Grow. Regul. 12 (1993) 189–193.

    CAS  Google Scholar 

  56. T. Uzawa, N. Hamasaki, T. Oshima, Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract, J. Biochem. 114 (1993) 478–486.

    CAS  PubMed  Google Scholar 

  57. R. Blatter, A. Ochsenvein, A. Boschetti, Polyamine and cytoplasmic preparations enhances light-driven protein synthesis in isolated chloroplasts of Chlamydomonas reinhardtii, Plant Physiol. 30 (1992) 743–752.

    Google Scholar 

  58. X.S. Ye, S.A. Avdishko, J. Kuc, Effects of polyamines on in vitro phosphorylation of soluble and plasma membrane proteins in tobacco, cucumber and Arabidopsis thaliana, Plant Sci. 97 (1994) 109–118.

    Article  CAS  Google Scholar 

  59. J.C. Mader, D.E. Hanke, Polyamine sparing may be involved in the prolongation of cell division due to inhibition of phenlypropanoid synthesis in cytokinin-starved soyabean oils, Plant Growth Regul. 16 (1997) 89–93.

    CAS  Google Scholar 

  60. A. Apelbaum, Z.N. Canellakis, P.B. Applewhite, R. Kaur-Sawhney, A.W. Galston, Binding of spermidine to a unique protein in thin-layer tobacco tissue culture, Plant Physiol. 88 (1988) 996–998.

    CAS  PubMed  Google Scholar 

  61. A.F. Tiburcio, J.L. Campos, X. Figueras, R.T. Besford, Recent advances in the understanding of polyamine function during plant development, Plant Grow. Regul. 12 (1993) 331–340.

    CAS  Google Scholar 

  62. T. Mustelin, H. Poso, S.P. Lapijoki, J. Gynther, S.E. Andersson, Growth signal transduction: rapid activation of covalently bound ornithine decarboxylase during phosphatidyl inositol breakdown, Cell 49 (1987) 171–176.

    Article  CAS  PubMed  Google Scholar 

  63. A. Kumar, T. Altabella, M.A. Taylor, A.F. Tiburcio, Recent advances in polyamine research, Trends Plant Sci. 2 (1997) 124–130.

    Article  Google Scholar 

  64. D.R. Morris, C.M. Jorstad, Isolation of conditionally putrescine deficient mutant of Escherichia coli, J. Bacteriol. 101 (1970) 731–737.

    CAS  PubMed  Google Scholar 

  65. D.R. Morris, C.M. Jorstad, Growth and macromolecular composition of a mutant of Escherichia coli during polyamine limitation, J. Bacteriol. 113 (1973) 271–277.

    CAS  PubMed  Google Scholar 

  66. I.N. Hirshfield, H.J. Rosenfeld, Z. Leifer, W.K. Maas, Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine, J. Bacteriol. 101 (1970) 725–730.

    CAS  PubMed  Google Scholar 

  67. C.W. Tabor, H. Tabor, Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis, J. Bacteriol. Chem. 253 (1978) 3671–3676.

    CAS  Google Scholar 

  68. H. Tabor, C.W. Tabor, Biochemical and genetic studies of polyamine in Saccharomyces cerevisiae, Adv. Polyamine Res. 4 (1983) 455–465.

    CAS  Google Scholar 

  69. M.S. Cohn, C.W. Tabor, H. Tabor, Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, Spermidine and Spermine, J. Bacteriol. 134 (1978) 208–213.

    CAS  PubMed  Google Scholar 

  70. M.L. Malmberg, J. McIndoo, Abnormal floral development of a tobacco mutant with elevated polyamine levels, Nature 305 (1983) 623–625.

    Article  CAS  Google Scholar 

  71. R.L. Malmberg, J. McIndoo, A.C. Hiatt, B.A. Lowe, Genetics of polyamine synthesis in tobacco: Developmental switches in flower, Cold Spring Harbour Symp. 50 (1985) 475–482.

    CAS  Google Scholar 

  72. K. Fritz, I. Czaja, R. Walden, T-DNA tagging of genes influencing polyamine metabolism: Isolation of mutant plants lines and rescue of DNA promoting growth in the presence of polyamine biosynthetic inhibitor, Plant J. 7 (1995) 261–271.

    Google Scholar 

  73. P. Bey, C. Danzin, M. Jung, in: Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies (Eds P.P. McCann, A.E. Pegg, A Sjoerdsma,), Academic Press, San Diego, 1987, pp 1–32.

    Google Scholar 

  74. B.W. Metcalf, P. Bey, C. Danzin, M. Jung, P. Casara, J.P. Vevert, Catalytic irreversible inhibition of mammalian ornithine decarboxylase by substrate and product analogues, J Amer. Chem. Soc. 100 (1978) 2251–2253.

    Article  Google Scholar 

  75. A. Kallio, P.P. McCann, P. Bey, DL-difluoromethylarginine: A potent enzyme activated inhibitor of bacterial arginine decarboxylase, Biochem. 20 (1981) 3163–3166.

    CAS  Google Scholar 

  76. A.J. Bitonti, P.J. Casara, P.P. McCann, P.P. Bey, Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogs, Biochem. J. 242 (1987) 69–74.

    CAS  PubMed  Google Scholar 

  77. A.E. Pegg, H.G. William-Ashman, Pharmacologic interference with enzymes of polyamine biosynthesis and of 5-methylthioadenosine metabolism, in: Inhibition of Polyamine Metabolism. Biological Significance and the Basis for New Therapies (Eds. P.P. McCann, A.E. Pegg, A. Sjoerdsma), Academic Press, San Diego, 1987, pp 33–48.

    Google Scholar 

  78. G. Drolet, E.B. Dumbroff, R.L. Legge, J.E. Thompson, Radical scavenging properties of polyamines, Phytochem. 25 (1986) 367–371.

    Article  CAS  Google Scholar 

  79. R.A. Descenzo, S.C. Minocha, Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA, Plant Mol. Biol. 22 (1993) 113–117.

    Article  CAS  PubMed  Google Scholar 

  80. W.N. Noh, S.C. Minocha, Expression of a human S-adenosylmethionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis, Transgenic Res. 3 (1994) 26–35.

    Article  CAS  PubMed  Google Scholar 

  81. A. Kumar, M.A. Taylor, S.A. Madarif, H.V. Davies, Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgene shows altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes, Plant J. 9 (1996) 147–158.

    Article  CAS  Google Scholar 

  82. T. Capell, C. Escobar, H. Liu, D. Burtin, O. Lepri, P. Christou, Over-expression of oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development pattern in vitro and results in putrescine accumulation in transgenic plants, Theor. Appl. Genet. 97 (1998) 246–254.

    Article  CAS  Google Scholar 

  83. D.R. Bastola, S.C. Minocha, Increase putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis, Plant Physiol. 109 (1995) 63–71.

    CAS  PubMed  Google Scholar 

  84. H.J. Van Kranen, L. Van De Zen, C.F. Van Kreijl, A. Bisschop, B. Wieringa, Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA, Gene 60 (1987) 145–155.

    PubMed  Google Scholar 

  85. A. Katz, C. Kahana, Isolation and characterization of the mouse ornithine decarboxylase gene, J. Biol. Chem. 263 (1988) 7604–7609.

    CAS  PubMed  Google Scholar 

  86. N.J. Hickok, J. Wahlfors, A. Crozat, M. Halmekyto, L. Alhonen, J. Jahne, O.A. Jahne, Human ornithine decarboxylase-encoding loci: nucleotide sequence of the expressed gene and characterisation of a pseudogene, Gene 93 (1990) 257–263.

    Article  CAS  PubMed  Google Scholar 

  87. L.J. Williams, G.R. Barnett, J.L. Ristow, J. Pitkin, M. Perriere, R.H. Davis, Ornithine decarboxylase gene of Neurospora crassa: Isolation, sequence and polyamine mediated regulation of its mRNA, Mol. Cell. Biol. 12 (1992) 347–359.

    CAS  PubMed  Google Scholar 

  88. J. Yao, D. Zadworny, U. Kuhnlein, J.F. Hayes, Molecular cloning of a bovine ornithine decarboxylase cDNA and its use in the detection of restriction fragment length polymorphism in Holsteins, Genome 38 (1995) 325–331.

    CAS  PubMed  Google Scholar 

  89. V. Malik, M.B. Watson, R.L. Malmberg, A tobacco ornithine decarboxylase partial cDNA clone, J. Plant Biochem. Biotch. 5 (1996) 109–112.

    CAS  Google Scholar 

  90. A.J. Michael, J.M. Furze, M.J.C. Rhodes, D. Burtin, Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA, Biochem. J. 314 (1996) 241–248.

    CAS  PubMed  Google Scholar 

  91. D. Alabadi, J. Carbonell, Expression of ornithine cecarboxylase is transiently increased by pollination, 2,4-Dichlorophenoxyacetic acid, and gibberllic acid in tomato ovaries, Plant Physiol. 118 (1998) 323–328.

    Article  CAS  PubMed  Google Scholar 

  92. E. Bell, R.L. Malmberg, Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing, Mol. Gen. Genet. 224 (1990) 431–436.

    Article  CAS  PubMed  Google Scholar 

  93. R. Rastogi, J. Dulson, S.J. Rothstein, Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening, Plant Physiol. 103 (1993) 829–834.

    Article  CAS  PubMed  Google Scholar 

  94. M.A. Perez Amador, J. Carbonell, A. Granell, Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.), Plant Mol. Bio. 28 (1995) 997–1009.

    CAS  Google Scholar 

  95. M.B. Watson, R.L. Malmberg, Regulation of Arabidopsis thaliana L. heynh arginine decarboxylase by potassium deficiency stress, Plant Physiol. 111 (1996) 1077–1983.

    Article  CAS  PubMed  Google Scholar 

  96. K.H. Nam, S.H. Lee, J.H. Lee, Differential expression of ADC mRNA during development and upon acid stress in soyabean (Glycine max) hypocotyls, Plant Cell Physiol. 38 (1997) 1156–1166.

    CAS  PubMed  Google Scholar 

  97. M.A. Taylor, S.A. MadArif, A. Kumar, H.V. Davis, L.A. Scobie, S.R. Pearce, F.J. Flavell, Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of potato plant (Solanum tuberosum L.), Plant Mol. Biol. 20 (1992) 641–651.

    Article  CAS  PubMed  Google Scholar 

  98. C. Bolle, R.G. Herrmann, R. Oelmuller, A spinach cDNA with homology to S-adenosylmethionine decarboxylase, Plant Physiol. 107 (1995) 1461–1462.

    Article  CAS  PubMed  Google Scholar 

  99. G. Schroder, J. Schroder, cDNA for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme processing site, evidence for the presence of both subunits in the active enzyme and a conserved region in the 5′ messenger RNA leader, Eur. J. Biochem. 228 (1995) 74–78.

    CAS  PubMed  Google Scholar 

  100. T. Dresselhaus, P. Barcela, C. Hagel, H. Lorez, K. Humbeek, Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian clock-regulated, Plant Mol. Biol. 30 (1996) 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  101. I. Yoshida, H. Yamagata, E. Hirasawa, Light regulated gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil, J. Exp. Bot. 49 (1998) 617–620.

    CAS  Google Scholar 

  102. Z.Y. Li, S.Y. Chen, Differential accumulation of the SAMDC transcript in rice seedlings in response to salt and drought stresses, Theor. App. Gen. 100 (200) 782–788.

    Google Scholar 

  103. A. Pajunen, A. Gozat, O.A. Janne, R. Ihalainen, P.H. Laitinen, B. Stanley, R. Madhubala, A.E. Pegg, Structure and regulation of mammalian S-adenosylmethionine decarboxylase, J. Biol. Chem. 263 (1988) 17040–17049.

    CAS  PubMed  Google Scholar 

  104. T. Hashimoto, K. Tamaki, K. Suzuki, Y. Yamada, Molecular cloning of plant spermidine synthases, Plant Cell Physiol. 39 (1998) 73–79.

    CAS  PubMed  Google Scholar 

  105. V.P. Korhonen, M. Halmekytö, L. Kauppinen, S. Myöhänen, J. Wahlfors, T. Keinänen, T. Hyvönen, L. Alhonen, T. Eloranta, J. Jänne, Molecular cloning of a cDNA encoding human spermine synthase, DNA Cell Biol. 14 (1995) 841–847.

    Article  CAS  PubMed  Google Scholar 

  106. S. Yamamoto, S. Nagata, K. Kusaba, Purification and characterization of homospermidine synthase in Actinobacer tartarogenes ATCC 31105, J. Biochem. 114 (1993) 45–49.

    CAS  PubMed  Google Scholar 

  107. D. Ober, Strategien zur immunologischen und molekularbiologischen untersuchung der homospermidin synthase, dem eingangsenzym der pyrrolizidinalkaloidbiosynthase, Ph.D dissertation (1997) TU Braunschweig.

    Google Scholar 

  108. A. Kaiser, Cloning and expression of a cDNA encoding homospermidine synthase from Senecio vulgaris (Asteraceae) in Escherichia coli, Plant J. 19 (1999) 195–201.

    Article  CAS  PubMed  Google Scholar 

  109. P. Tavadoraki, M.E. Schinia, F. Cecconi, S. Di Agostino, F. Manera, G. Rea, P. Mariottini, R. Federico, R. Angelini, Maize polyamine oxidase: primary structure from protein and cDNA sequencing, FEBS Lett. 426 (1998) 62–66.

    Google Scholar 

  110. A. Rossi, R. Petruzzelli, A.F. Agro, cDNA derived amino acid sequence of lentil seedlings amine oxidase, FEBS 301 (1992) 253–257.

    Article  CAS  Google Scholar 

  111. A.J. Tipping, M.J. McPherson, Cloning and molecular analysis of the pea seedling copper amine, J. Biol. Chem. (1995).

    Google Scholar 

  112. J.D. Hamill, R.J. Robins, A.J. Parr, D.M. Evans, J.M. Furze, M.J.C. Rhodes, Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation, Plant Mol. Biol. 15 (1990) 27–38.

    Article  CAS  PubMed  Google Scholar 

  113. S.E. Anderson, D.R. Bastola, S.C. Minocha, Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA, Plant Physiol. 116 (1998) 299–307.

    Google Scholar 

  114. R. Kumria, M.V. Rajam, Alteration in polyamine titres during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential, Plant Sci. 162 (2002) 769–777.

    Article  CAS  Google Scholar 

  115. O. Lepri, L. Bassie, G. Safwat, P. Thu-Hang, P. Trung-Nghia, E. Holtta, P. Christou, T. Cappel, Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner, Mol. Genet. Genomics, 266 (2001) 303–312.

    CAS  PubMed  Google Scholar 

  116. J. Martin-Tanguy, D. Tepfer, M. Paynot, D. Burtin, L. Heisler, C. Martin, Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the root inducing, left hand transferred DNA from Agrobacterium rhizogenes, Plant Physiol. 92 (1990) 912–918.

    Article  CAS  PubMed  Google Scholar 

  117. P. Bhatnagar, B.M. Glasheen, S.K. Bains, S.L. Long, R. Minocha, C. Walter, S.C. Minocha, Transgenic manipulation of the metabolism of polyamines in poplar (Populus nigra ’ Maximowiczii) cells, Plant Phyiol. 125 (2001) 2139–2153.

    CAS  Google Scholar 

  118. P. Bhatnagar, R. Minocha, S.C. Minocha, Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism, Plant Phyiol. 128 (2002) 1455–1469.

    CAS  Google Scholar 

  119. C. Masgrau, T. Altabella, R. Fareas, D. Flores, A.J. Thompson, R.T. Bestford, A.F. Tiburcio, Inducible over-expression of oat arginine decarboxylase in transgenic tobacco plants, Plant J. 11 (1997) 465–473.

    Article  CAS  PubMed  Google Scholar 

  120. L. Bassie, M. Noury, O. Lepri, T. lahaye, P. Christou, T. Capell, Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing oat adc cDNA constitutively, Transgenic Res. 9 (2000) 33–42.

    Article  CAS  PubMed  Google Scholar 

  121. M. Noury, L. Bassie, O. Lepri, I. Kurek, P. Christou, T. Capell, A transgenic rice cell lineage expressing oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissue, Plant Mol. Biol. 43 (2000) 537–544.

    Article  CAS  PubMed  Google Scholar 

  122. M. Roy, R. Wu, Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice, Plant Sci. 160 (2001) 869–875.

    Article  CAS  PubMed  Google Scholar 

  123. R. Kumria, M. V. Rajam, Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro–morphogenesis and response to salt stress, J. Plant Physiol. (in press).

    Google Scholar 

  124. F. Shoeb, Regulation of plant regeneration by modulating cellular polyamine levels in fresh and long-term cultures of indica rice (Oryza sativa L.), Ph.D thesis (1999) University of Delhi New Delhi.

    Google Scholar 

  125. S. Bajaj, M.V. Rajam, Polyamine accumulation and near loss of morphogenesis in long term callus cultures of rice: restoration of plant regeneration by manipulation of cellular polyamine levels, Plant Physiol. 112 (1996) 1343–1348.

    CAS  PubMed  Google Scholar 

  126. J.P. Wisniewski, E.A. Rathbun, J.P. Knox, N.J. Brewin, Involvement of diamine oxidase and peroxides in insolubilization of the extarcellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum, Mol. Plant-Microbe Interact. 13 (2000) 413–420.

    CAS  PubMed  Google Scholar 

  127. B. Waie, Genetic engineering of polyamine metabolism for osmotic stress tolerance in rice and tobacco, Ph.D thesis (2001) University of Delhi.

    Google Scholar 

  128. M.V. Rajam, Polyamine biosynthetic pathway: a potential target for plant chemotherapy, Curr. Sci. 74 (1998) 729–731.

    CAS  Google Scholar 

  129. R. Kumria, Modulation of polyamine biosynthesis, plant regeneration and stress response in transgenic rice and tobacco by introduction of ornithine decarboxylase gene, Ph.D. thesis (2000), University of Delhi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Anamaya Publishers

About this chapter

Cite this chapter

Rajam, M., Kumria, R., Singh, S. (2004). Molecular Biology and Genetic Engineering of Polyamines in Plants. In: Srivastava, P., Narula, A., Srivastava, S. (eds) Plant Biotechnology and Molecular Markers. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3213-7_5

Download citation

Publish with us

Policies and ethics