Skip to main content

QTLs and Genes for Tolerance to Abiotic Stress in Cereals

  • Chapter
Cereal Genomics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo E. Potential of carbon isotope discrimination as a selection criterion in barley breeding. In: J.R. Ehleringer, A.E. Hall, G.D. Farquhar (eds.) Stable isotopes and plant carbon-water relations, Academic Press, New York, 1993, pp. 399–416

    Google Scholar 

  • Agrama H.A.S., Moussa M.E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 1996; 91: 89–97

    CAS  Google Scholar 

  • Agrama H.A.S., Zakaria A.G., Said F.B., Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 1999; 5: 187–195

    Article  Google Scholar 

  • Ali M.L., Pathan M.S., Zhang J., Bai G., Sarkarung S., Nguyen H.T. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 2000; 101: 756–766

    Article  CAS  Google Scholar 

  • Amtmann A., Sanders D. Mechanisms of Na+ uptake by plant cells. Adv Bot Res 1999; 29: 75–112

    CAS  Google Scholar 

  • Andaya V.C., Mackill D.J. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet 2003; 106: 1084–1090

    CAS  PubMed  Google Scholar 

  • Apse M.P., Aharon G.S., Snedden W.A., Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 1999; 285: 1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 2002; 89: 925–940

    Article  PubMed  Google Scholar 

  • Ashraf M. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 2002; 21: 1–30

    CAS  Google Scholar 

  • Asins M.J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 2002; 121: 281–291

    Article  Google Scholar 

  • Asseng S., Turner N.C., Ray J.D., Keating B.A. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur Jour Agron 2002; 17: 123–141

    Google Scholar 

  • Asseng S., Turner N.C., Botwright Y., Condon A.G. Evaluating the impact of a trait for increased specific leaf area on wheat yields using a crop simulation model. Agron Jour 2003; 95: 10–19

    Google Scholar 

  • Atlin G.N., Lafitte H.R. Marker-assisted breeding versus direct selection for drought tolerance in rice. In: N.P. Saxena, J.C. O’Toole (eds.) Field screening for drought tolerance in crop plants with emphasis on rice. Proceedings of an International Workshop on Field Screening for Drought Tolerance in Rice, 2002, pp. 71–81

    Google Scholar 

  • Babu R.C., Nguyen B.D., Chamarerk V., Shanmugasundaram P., Chezhian P., Jeyaprakash P., Ganesh S., Palchamy A., Sadasivam S., Sarkarung S., et al. Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance. Crop Sci 2003; 43: 1457–1469

    CAS  Google Scholar 

  • Barker S.J., Duplessis S., Tagu D. The application of genetic approaches for investigations of mycorrhizal symbioses. Plant and Soil 2002; 244: 85–95

    CAS  Google Scholar 

  • Barrière Y., Gibelin C., Argillier O., Méchin V. Genetic analysis in recombinant inbred lines of early dent forage maize. I-QTL mapping for yield, earliness, starch and crude protein contents from per se value and top cross experiments. Maydica 2001; 46: 253–266

    Google Scholar 

  • Baum M., Grando S., Backes G., Jahoor A., Sabbagh A., Ceccarelli S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41-1. Theor Appl Genet 2003; 107: 1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Beavis W.D. QTL analysis: power, precision, and accuracy. In: A. Paterson (ed.) Molecular dissection of complex traits, CRC Press, Boca Raton, 1998, pp. 145–162

    Google Scholar 

  • Ben-Haj-Salah H., Tardieu F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length. Analysis of the coordination between cell division and cell expansion. Plant Physiol 1995; 109: 861–870

    CAS  PubMed  Google Scholar 

  • Ben-Haj-Salah H., Tardieu F. Quantitative analysis of the combined effects of temperature, evaporative demand and light on leaf elongation rate in well-watered field and laboratory-grown maize plants. Jour Exp Bot 1996; 47: 1689–1698

    CAS  Google Scholar 

  • Bertin P., Gallais A. Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines II-QTL detection and coincidences. Maydica 2001; 46: 53–68

    Google Scholar 

  • Bevan M., Mayer K., White O., Eisen J.A., Preuss D., Bureau T., Salzberg S.L., Mewes H.W. Sequence and analysis of the Arabidopsis genome. Curr Opin Plant Biol 2001; 4: 105–110

    Article  CAS  PubMed  Google Scholar 

  • Blum A. Breeding for Stress Environments, CRC Press, Boca Raton, 1988

    Google Scholar 

  • Blum A. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 1996; 20: 135–148

    Article  CAS  Google Scholar 

  • Blum A., Munns R., Passioura J.B., Turner N.C. Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? Plant Physiol 1996; 110: 1051–1053

    CAS  PubMed  Google Scholar 

  • Bohnert H.J., Cushman J.C. The ice plant cometh: Lessons in abiotic stress tolerance. Plant Growth Regul 2000; 19: 334–346

    CAS  Google Scholar 

  • Bolaños J., Edmeades G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Fields Crop Res 1993; 31: 233–252

    Google Scholar 

  • Bolaños J., Edmeades G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Fields Crop Res 1996; 48: 65–80

    Google Scholar 

  • Bolaños J., Edmeades G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. In: G.O. Edmeades, M. Bänziger, H.R. Mickelson, C.B. Peña Valdivia (eds.) Developing Drought-and Low N-Tolerant Maize, Proceedings of a Symposium, CIMMYT, 1997, pp. 355–368

    Google Scholar 

  • Bolaños J., Edmeades G.O., Martinez L. Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought adaptive physiological and morphological traits. Fields Crop Res 1993; 31: 269–286

    Google Scholar 

  • Bowers J.E., Chapman B.A., Rong J.K., Paterson A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003; 422: 433–438

    Article  CAS  PubMed  Google Scholar 

  • Boyer J.S. Plant productivity and the environment. Science 1982; 218: 443–448

    Google Scholar 

  • Boyko E., Kalendar R., Korzun V., Fellers J., Korol A., Schulman A.H., Gill B.S. A highdensity cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 2002; 48: 767–790

    Article  CAS  PubMed  Google Scholar 

  • Broman K.W., Wu H., Sen S., Churchill G.A. QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890

    Article  CAS  PubMed  Google Scholar 

  • Bruce W.B., Edmeades G.O., Barker T.C. Molecular and physiological approaches to maize improvement for drought tolerance. Jour Exp Bot 2002; 53: 13–25

    CAS  Google Scholar 

  • Buckler E.S.I., Thornsberry J.M. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 2002; 5: 107–111

    Article  CAS  PubMed  Google Scholar 

  • Burgos M.S., Messmer M.M., Stamp P., Schmid J.E. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.)-a physiological and genetic approach. Euphytica 2001; 122: 287–295

    Google Scholar 

  • Cattivelli L., Baldi P., Crosatti C., Di Fonzo N., Faccioli P., Grossi M., Mastrangelo A.M., Pecchioni N., Stanca A.M. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 2002a; 48: 649–665

    Article  CAS  Google Scholar 

  • Cattivelli L., Baldi P., Crosatti C., Grossi M., Valè G., Stanca A. Genetic bases of barley physiological response to stressful conditions. In: G. Slafer, J.L. Molina-Cano, R. Savin, J.L. Araus, I. Romagosa (eds.) Barley Science-Recent advances from molecular biology to agronomy of yield and quality, Haworth Press Inc., NewYork, 2002b, pp. 307–360

    Google Scholar 

  • Ceccarelli S. Plant responses to water stress: a review. Genetica Agraria 1984; 38: 43–73

    Google Scholar 

  • Ceccarelli S., Grando S. Drought as a challenge for the plant breeder. Plant Growth Regul 1996; 20: 149–155

    Article  CAS  Google Scholar 

  • Champoux M.C., Wang G., Sarkarung S., Mackill D.J., O’Toole J.C., Huang N., McCouch S.R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 1995; 90: 969–981

    Article  CAS  Google Scholar 

  • Chapman S.C., Edmeades G.O. Selection improves drought tolerance in tropical maize populations: II Direct and correlated responses among secondary traits. Crop Sci 1999; 39: 1315–1324

    Google Scholar 

  • Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002; 14: 559–574

    CAS  PubMed  Google Scholar 

  • Choi D.W., Koag M.C., Close T.J. Map locations of barley Dhn genes determined by genespecific PCR. Theor Appl Genet 2000; 101: 350–354

    Article  CAS  Google Scholar 

  • Churchill G.A., Doerge R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971

    CAS  PubMed  Google Scholar 

  • Close T.J. Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 1997; 100: 291–296

    Article  CAS  Google Scholar 

  • Cogoni C., Macino G. Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev 2000; 10: 638–643

    Article  CAS  PubMed  Google Scholar 

  • Condon A.G., Richards R.A., Farquhar, G.D. Relationships between carbon isotope discrimination, water use efficiency and transpiration efficiency for dryland wheat. Aust Jour Agric Res 1993; 44: 1693–1711

    CAS  Google Scholar 

  • Condon A., Richards R., Rebetzke G., Farquhar G. Improving intrinsic water-use efficiency and crop yield. Crop Sci 2002; 42: 122–131

    PubMed  Google Scholar 

  • Consoli L., Lefévre C.L., Zivy M., de Vienne D., Damerval C. QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol 2002; 48: 575–581

    Article  CAS  PubMed  Google Scholar 

  • Courtois B., McLaren G., Sinha P.K., Prasad K., Yadav R., Shen L. Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 2000; 6: 55–66

    Article  CAS  Google Scholar 

  • Courtois B., Shen L., Petalcorin W., Carandang S., Mauleon R., Li Z. Locating QTLs controlling constitutive root traits in the rice population IAC 165 x Co39. Euphytica 2003; 134: 335–345

    Article  CAS  Google Scholar 

  • Crasta O.R., Xu W.W., Rosenow D.T., Mullet J., Nguyen H.T. Mapping of post flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 1999; 262: 579–588

    CAS  PubMed  Google Scholar 

  • Crouch J.H., Serraj R. DNA marker technology as a tool for genetic enhancement of drought tolerance at ICRISAT. In: N.P. Saxena, J.C. O’Toole (eds.) Field Screening for Drought Tolerance in Crop Plants with Emphasis on Rice. Proceed Intern Workshop on Field Screening for Drought Tolerance in Rice, 2002, pp. 155–170

    Google Scholar 

  • Cushman J.C., Bohnert H.J. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 2000; 3: 117–124

    Article  CAS  PubMed  Google Scholar 

  • Damerval C., Maurice A., Josse J.M., de Vienne D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 1994; 137: 289–301

    CAS  PubMed  Google Scholar 

  • Dashti H., Yazdi-Samadi B., Abd-Mishani C., Ghannadha M.R. QTL analysis on cold resistance and heading date in wheat, using doubled haploid lines. Iran Jour Agric Sci 2001; 32: 157–177

    Google Scholar 

  • Davis G.L., McMullen M.D., Baysdorfer C., Musket T., Grant D., Staebell M., Xu G., Polacco M., Koster L., Melia-Hancock S., et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736 locus map. Genetics 1999; 152: 1137–1172

    CAS  PubMed  Google Scholar 

  • de Vienne D., Leonardi A., Damerval C., Zivy M. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. Jour Exp Bot 1999; 50: 303–309

    Google Scholar 

  • Deyholos M., Galbraith D. High-density microarrays for gene expression analysis. Cytometry 2001; 43: 229–238

    Article  CAS  PubMed  Google Scholar 

  • Duvick D.N., Coors J.G., Pandey S. Heterosis: feeding people and protecting natural resources. In: J.G. Coors (ed.) The genetics and exploitation of heterosis in crops. Proceedings of an international symposium, CIMMYT, 1999, pp. 19–29

    Google Scholar 

  • Edmeades G.O., Bolanõs J., Elings A., Ribaut J.M., Bänziger M., Westgate M.E. The role and regulation of the anthesis-silking interval in maize. In: M.E. Westgate, K.J. Boote (eds.) CSSA Special Publication No 29, Madison, 2000, pp. 43

    Google Scholar 

  • Ehdaie B., Waines J.G. Genetic analysis of carbon isotope discrimination and agronomic characters in a bread wheat cross. Theor Appl Genet 1994; 88: 1023–1028

    Article  Google Scholar 

  • Ellis R.P., Forster B.P., Robinson D., Handley L.L., Gordon D.C., Russell J.R., Powell W. Wild barley: a source of genes for crop improvement in the 21st century? Jour Exp Bot 2000; 51: 9–17

    CAS  Google Scholar 

  • Ellis R.P., Forster B.P., Gordon D.C., Handley L.L., Keith R.P., Lawrence P., Meyer R., Powell W., Robinson D., Scrimgeour C.M., Young G.R., Thomas W.T.B. Phenotype/genotype associations for yield and salt tolerance in a mapping population segregating for two dwarfing genes. Jour Exp Bot 2002; 53: 1–14

    Google Scholar 

  • Eshed Y., Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995; 141: 1147–1162

    CAS  PubMed  Google Scholar 

  • Fan P., Tao Q.N., Wu P. Quantitative trait loci (QTL) underlying N-absorbing capacity and Nutilization efficiency in paddy rice and their genetic effects. Plant Nutr Fert Sci 2001; 7: 159–165

    Google Scholar 

  • Farquhar G.D., Ehleringer J.R., Hubick K.T. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 1989; 4: 503–537

    Google Scholar 

  • Fell D.A. Beyond genomics. Trends Genet 2001; 17: 680–682

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 2002; 48: 155–171

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O., Kloska S., Altmann T. Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotech 2001; 12: 82–86

    CAS  PubMed  Google Scholar 

  • Flowers T.J., Yeo A.R. Breeding for salinity tolerance in crop plants: where next? Aust Jour of Plant Physiol 1995; 22: 875–884

    Google Scholar 

  • Foolad M.R. Recent advances in genetics of salt tolerance in tomato. Plant, Cell, Tissue, Organ Cult 2004; 72: 101–119

    Google Scholar 

  • Forster B.P., Ellis R.P., Thomas W.T.B., Newton A.C., Tuberosa R., This D., El Enein R.A., Bahri M.H., Ben Salem M. The development and application of molecular markers for abiotic stress tolerance in barley. Jour Exp Bot 2000; 51: 19–27

    CAS  Google Scholar 

  • Frova C., Sari-Gorla M. Quantitative expression of maize HSPs: genetic dissection and association with thermotolerance. Theor Appl Genet 1993; 86: 213–220

    Article  CAS  Google Scholar 

  • Frova C., Sari-Gorla M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet 1994; 245: 424–430

    Article  CAS  PubMed  Google Scholar 

  • Frova C., Krajewski P., Di Fonzo N., Villa M., Sari Gorla M. Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor Appl Genet 1999; 99: 280–288

    Article  Google Scholar 

  • Gahoonia T.S., Nielsen N.E. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 1997; 98: 177–182

    Article  Google Scholar 

  • Gale M.D., Devos K.M. Plant comparative genetics after 10 years. Science 1998; 282: 656–659

    Article  CAS  PubMed  Google Scholar 

  • Galiba G., Quarrie S.A., Sutka J., Morgounov A., Snape&J.W. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 1995; 90: 1174–1179

    Article  CAS  Google Scholar 

  • Glazier A.M., Nadeau J.H., Aitman T.J. Finding genes that underlie complex traits. Science 2002; 298: 2345–2349

    Article  CAS  PubMed  Google Scholar 

  • Goff S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002; 296: 92–100

    Article  CAS  PubMed  Google Scholar 

  • Gowda M., Venu R.C., Roopalakshmi K., Sreerekha M.V., Kulkarni R.S. Advances in rice breeding, genetics and genomics. Mol Breed 2003; 11: 337–352

    Article  CAS  Google Scholar 

  • Hackett C.A. Statistical methods for QTL mapping in cereals. Plant Mol Biol 2002; 48: 585–599

    Article  CAS  PubMed  Google Scholar 

  • Hanin M., Paszkowski J. Plant genome modification by homologous recombination. Curr Opin Plant Biol 2003; 6: 157–162

    Article  CAS  PubMed  Google Scholar 

  • Hash C.T., Schaffert R.E., Peacock J.M. Prospects for using conventional techniques and molecular biological tools to enhance performance of ‘orphan’ crop plants on soils low in available phosphorus. Plant and Soil 2002; 245: 135–146

    Article  CAS  Google Scholar 

  • Hash C.T., Folkertsma R.T., Ramu P., Reddy B.V.S., Mahalakshmi V., Sharma H.C., Rattunde H.F.W., Weltzien E.R., Haussmann B.I.G., Ferguson M.E., et al. Marker-assisted breeding across ICRISAT for terminal drought tolerance and resistance to shoot fly and striga in sorghum. In: “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 2003, pp. 81 (available at www.doublehelix.too.it)

    Google Scholar 

  • Haussmann B.I., Mahalakshmi V., Reddy B.V., Seetharama N., Hash C.T., Geiger H.H. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 2002; 106: 133–142

    CAS  PubMed  Google Scholar 

  • Hayes P.M., Blake T., Chen T.H.H., Tragoonrung S., Chen F., Pan A., Liu B. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 1993; 36: 66–71

    Google Scholar 

  • Hirel B., Bertin P., Quilleré I., Bourdoncle W., Attagnant C., Dellay C., Gouy A., Cadiou S., Retailliau C., Falque M., Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 2001; 125: 1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Hu B., Wu P., Liao C.Y., Zhang W.P., Ni J.J. QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice (Oryza sativa L.). Plant and Soil 2001; 230: 99–105

    Article  CAS  Google Scholar 

  • Hund A., Fracheboud Y., Soldati A., Frascaroli E., Salvi S., Stamp P. Mapping QTL regulating morpho-physiological root and shoot traits in maize seedlings grown at low temperature. Theor Appl Genet 2004, submitted.

    Google Scholar 

  • Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold R., Hood L. Integrated genomic and proteomic analyzes of a systematically perturbed metabolic network. Science 2001; 292: 929–934

    Article  CAS  PubMed  Google Scholar 

  • Innes P., Blackwell R.D., Quarrie S.A. Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. Jour of Agri Sci 1984; 102: 341–351

    CAS  Google Scholar 

  • Ishimaru K., Kobayashi N., Ono K., Yano M. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? Jour Exp Bot 2001a; 52: 1827–1833

    CAS  Google Scholar 

  • Ishimaru K., Shirota K., Higa M., Kawamitsu Y. Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Plant Physiol Biochem 2001b; 39: 173–177

    Article  CAS  Google Scholar 

  • Ishimaru K., Yano M., Aoki N., Ono K., Hirose T., Lin S.Y., Monna L., Sasaki T., Ohsui R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 2001c; 102: 793–800

    Article  CAS  Google Scholar 

  • Ito O., O’Toole J., Hardy B. Genetic improvement of rice for water-limited environments. In: Workshop on Genetic Improvement of Rice for Water-Limited Environment, 1999, pp.

    Google Scholar 

  • Ivandic V., Hackett C.A., Zhang Z.J., Staub J.E., Nevo E., Thomas W.T.B., Forster B.P. Phenotypic responses of wild barley to experimentally imposed water stress. Jour Exp Bot 2000; 51: 2021–2029

    CAS  Google Scholar 

  • Jackson M.B., Ram P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Botany 2003; 91: 227–241

    CAS  Google Scholar 

  • Jaglo Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998; 280: 104–106

    CAS  PubMed  Google Scholar 

  • Jansen R.C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994; 136: 1447–1455

    CAS  PubMed  Google Scholar 

  • Jansen R.C., Jannick J.L., Beavis W.D. Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 2003; 43: 829–834

    CAS  Google Scholar 

  • Jeanneau M., Gerentesb D., Foueillassarc X., Zivy, M., Vidala J., Toppand A., Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water-use efficiency by over-expressing C4PEPC. Biochimie 2002; 84: 1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Jensen A.B., Busk P.K., Figueras M., Albà M.M., Peracchia G., Messeguer R., Goday A., Pagès M. Drought signal transduction in plants. Plant Growth Regul 1996; 20: 105–110

    Article  CAS  Google Scholar 

  • Jones R.J., Setter T.L. Hormonal regulation of early kernel development. In: M.E. Westgate, K.J. Boote (eds.) Physiology and modelling kernel set in maize, Crop Science Society of America, Madison, 2000, pp. 25–42

    Google Scholar 

  • Kaeppler S.M., Parke J.L., Mueller S.M., Senior L., Stuber C., Tracy W.F. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to Arbuscular mycorrhizal fungi. Crop Sci 2000; 40: 358–364

    Google Scholar 

  • Kamoshita A., Wade L.J., Ali M.L., Pathan M.S., Zhang J., Sarkarung S., Nguyen H.T. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 2002; 104: 880–893

    CAS  PubMed  Google Scholar 

  • Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 1999; 17: 287–291

    CAS  Google Scholar 

  • Kawasaki S., Deyholos M., Borchert C., Brazille S., Kawai K., Galbraith D.W., Bohnert H.J. Temporal succession of salt stress responses in rice by microarray analysis. Plant Cell 2001; 12: 889–906

    Google Scholar 

  • Kebede H., Subudhi P.K., Rosenow D.T., Nguyen H.T. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 2001; 103: 266–276

    Article  CAS  Google Scholar 

  • Khush G.S. Green revolution: preparing for the 21st century. Genome 1999; 42: 646–655

    Article  CAS  PubMed  Google Scholar 

  • Korstanje R., Paigen B. From QTL to gene: the harvest begins. Nature Genet 2002; 31: 235–236

    Article  CAS  PubMed  Google Scholar 

  • Koumproglou R., Wilkes T.M., Townson P., Wang X.Y., Beynon J., Pooni H.S., Newbury H.J., Kearsey M.J. STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant Jour 2002; 31: 355–364

    CAS  Google Scholar 

  • Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nature Genetics 2002; 31: 235–236

    Article  CAS  PubMed  Google Scholar 

  • Koyama M.L., Levesley A., Koebner R.M.D., TJ F., Yeo A.R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 2001; 125: 406–422

    Article  CAS  PubMed  Google Scholar 

  • Lafitte H.R., Courtois B., Arraudeau M. Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crop Res 2002; 75: 171–190

    Google Scholar 

  • Landi P., Sanguineti M.C., Conti S., Tuberosa R. Direct and correlated responses to divergent selection for leaf abscisic acid concentration in two maize populations. Crop Sci 2001; 41: 335–344

    CAS  Google Scholar 

  • Landi P., Salvi S., Sanguineti M.C., Stefanelli S., Tuberosa R. Development and preliminary evaluation of near-isogenic lines differing for a QTL which affects leaf ABA concentration. Maize Genet Coop Newslett 2002a; 76: 7–8

    Google Scholar 

  • Landi P., Sanguineti M.C., Darrah L.L., Giuliani M.M., Salvi S., Tuberosa R. Detection of QTLs for vertical root pulling resistance in maize and overlaps with QTLs for root traits in hydroponics and for grain yield at different water regimes. Maydica 2002b; 47: 233–243

    Google Scholar 

  • Lebreton C., Lazic-Jancic V., Steed A., Pekic S., Quarrie S.A. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. Jour Exp Bot 1995; 46: 853–865

    CAS  Google Scholar 

  • Lee M. DNA markers and plant breeding programmes. Advances in Agronomy 1995; 55: 265–344

    CAS  Google Scholar 

  • Li Z.K., Khush G.S., Brar D.S., Hardy B. QTL mapping in rice: a few critical considerations. In: G. Khush, D. Brar (eds.) Fourth International Rice Genetics Symposium, 2001, pp. 153–171

    Google Scholar 

  • Lilley J.M., Ludlow M.M., McCouch S.R., O’Toole J.C. Locating QTL for osmotic adjustment and dehydration tolerance in rice. Jour Exp Bot 1996; 47: 1427–1436

    CAS  Google Scholar 

  • Liu B.H. Statistical Genomics: Linkage, Mapping and QTL Analysis, CRC Press, Boca Raton, 1998

    Google Scholar 

  • Ludlow M.M., Muchow R.C. A critical evaluation of traits for improving crop yields in waterlimited environments. Adv Agron 1990; 43: 107–153

    Google Scholar 

  • Ma J.F., Shen R.F., Zhao Z.Q., Wissuwa M., Takeuchi Y., Ebitani T., Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant and Cell Physiol 2002; 43: 652–659

    CAS  Google Scholar 

  • Maathuis F.J.M., Filatov V., Herzyk P., Krijger G.C., Axelsen K.B., Chen S.X., Green B.J., Li Y., Madagan K.L., Sanchez Fernandez R., et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Jour 2003; 35: 675–692

    CAS  Google Scholar 

  • Mackill D.J., Nguyen H.T., Zhang J.X. Use of molecular markers in plant improvement programs for rainfed lowland rice. Fields Crop Res 1999; 64: 177–185

    Google Scholar 

  • Maggio A., Hasegawa P.M., Bressan R.A., Consiglio M.F., Joly R.J. Unravelling the functional relationship between root anatomy and stress tolerance. Aust Jour Plant Physiol 2001; 28: 999–1004

    Google Scholar 

  • Mano Y., Takeda K. Mapping quantitative trait loci for salt tolerance at germination and at the seedling stage of barley (Hordeum vulgare L.). Euphytica 1997; 94: 263–272

    Article  Google Scholar 

  • Mei H.W., Luo L.J., Ying C.S., Wang Y.P., Yu X.Q., Guo L.B., Paterson A.H., Li Z.K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 2003; 107: 89–101

    CAS  PubMed  Google Scholar 

  • Menz M.A., Klein R.R., Mullet J.E., Obert J.A., Unruh N.C., Klein P.E. A high density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Biol 2002; 48: 483–499

    Article  CAS  PubMed  Google Scholar 

  • Messmer M.J., Lambert R.J., Hageman R.H. Classification of certain N traits as criteria for the identification of production maize genotypes. Crop Sci 1984; 24: 605–610

    Google Scholar 

  • Miflin B. Crop improvement in the 21st century. Jour Exp Bot 2000; 51: 1–8

    CAS  Google Scholar 

  • Miftahudin R., Scoles G.J., Gustafson J.P. AFLP markers tightly linked to the aluminumtolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 2002; 104: 626–631

    CAS  Google Scholar 

  • Milborrow B.W. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Jour Exp Bot 2001; 52: 1145–1164

    CAS  Google Scholar 

  • Milla M.A., Gustafson J.P. Genetic and physical characterization of chromosome 4DL in wheat. Genome 2001; 44: 883–892

    Article  CAS  PubMed  Google Scholar 

  • Ming F., Zheng X.W., Mi G.H., Zhu L.H., Zhang F.S. Detection and verification of quantitative trait loci affecting tolerance to low phosphorus in rice. Jour Plant Nutr 2001; 24: 1399–1408

    Google Scholar 

  • Misawa S., Mori N., Takumi S., Yoshida S., Nakamura C. Mapping of QTLs for low temperature response in seedlings of rice (Oryza sativa L.). Cereal Res Commun 2000; 28: 33–40

    CAS  Google Scholar 

  • Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 2001; 80: 758–763

    CAS  Google Scholar 

  • Moncada P., Martinez C., Borrero J.M.C., Gauch H.J., Guimaraes E., Tohme J., McCouch S. Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 2001; 102: 41–52

    Article  CAS  Google Scholar 

  • Morandini P., Salamini F. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 2003; 8: 70–75

    Article  CAS  PubMed  Google Scholar 

  • Morgante M., Salamini F. From plant genomics to breeding practice. Curr Opin Biotech 2003; 14: 214–219

    CAS  PubMed  Google Scholar 

  • Morris M., Dreher K., Ribaut J.M., Khairallah M. Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 2003; 11: 235–247

    Article  Google Scholar 

  • Mott R., Flint J. Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 2002; 160: 1609–1618

    CAS  PubMed  Google Scholar 

  • Munns R. Physiological processes limiting plant-growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 1993; 16: 15–24

    CAS  Google Scholar 

  • Munns R., Passioura J.B., Guo J., Chazen O., Cramer G.R. Water elations and leaf expansion: importance of timing. Jour Exp Bot 2000; 51: 1495–1504

    CAS  Google Scholar 

  • Nandi S., Subudhi P.K., Senadhira D., Manigbas N.L., Sen-Mandi S., Huang N. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 1997; 255: 1–8

    CAS  PubMed  Google Scholar 

  • Ni J.J., Wu P., Senadhira D., Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 1998; 97: 1361–1369

    Article  CAS  Google Scholar 

  • Nguyen H.T., Babu R.C., Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 1997; 37: 1426–1434

    Google Scholar 

  • Nguyen B.D., Brar D.S., Bui B.C., Nguyen T.V., Pham L.N., Nguyen H.T. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 2003; 106: 583–593

    CAS  PubMed  Google Scholar 

  • Ninamango-Cardenas F.E., Guimaraes C.T., Martins P.R., Parentoni S.N., Carneiro N.P., Lopes M.A., Moro J.R., Paiva E. Mapping QTLs for aluminum tolerance in maize. Euphytica 2003; 130: 223–232

    CAS  Google Scholar 

  • Nuccio M.L., Rhodes D., McNeil S.D., Hanson A.D. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 1999; 2: 128–134

    Article  CAS  PubMed  Google Scholar 

  • Oono Y., Seki M., Nanjo T., Narusaka M., Fujita M., Satoh R., Satou M., Sakurai T., Ishida J., Akiyama K., et al. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant Jour 2003; 34: 868–887

    CAS  Google Scholar 

  • Ottaviano E., Sari-Gorla M., Pe E., Frova C. Molecular markers (RFLPs and HSPs) for genetic dissection of thermotolerance in maize. Theor Appl Genet 1991; 81: 713–719

    Article  CAS  Google Scholar 

  • Ozturk Z.N., Talamé V., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H.J. Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 2002; 48: 551–573

    Article  CAS  Google Scholar 

  • Pakniyat H., Powell W., Baird E., Handley L.L., Robinson D., Scrimgeour C.M., Nevo E., Hackett C.A., Caligari P.D.S., Forster B.P. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 1997; 40: 332–341

    CAS  Google Scholar 

  • Pan A., Hayes P.M., Chen F., Chen T.H.H., Blake T., Wright S., Karasi I., Bedo Z. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 1994; 89: 900–910

    Article  CAS  Google Scholar 

  • Passioura J.B. Drought and drought tolerance. Plant Growth Regul 1996; 20: 79–83

    Article  CAS  Google Scholar 

  • Passioura J.B. Environmental biology and crop improvement. Funct Plant Biol 2002; 29: 537–546

    Article  Google Scholar 

  • Patel J., McLeod L.E., Vries R.G.J., Flynn A., Wang X.M., Proud C.G. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur Jour Biotech 2002; 269: 3076–3085

    CAS  Google Scholar 

  • Paterson A.H., Damon S., Hewitt J.K., Zamir D., Rabinowitch H.D., Lincoln S.E., Lander E.S., Tanksley S.D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 1991; 127: 181–197

    CAS  PubMed  Google Scholar 

  • Paterson A.H., Lan T.-H., Reischmann K.P., Chang C., Lin Y.-R., Liu S.-C., Burow M.D., Kowalski S.P., Katsar C.S., Del Monte T.A. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genet 1996; 14: 380–382

    Article  CAS  PubMed  Google Scholar 

  • Pelleschi S., Guy S., Kim J.Y., Pointe C., Mahe A., Barthes L., Leonardi A., Prioul J.L. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol Biol 1999; 39: 373–380

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S., Lefebvre V., Causse, M. The candidate gene approach in plant genetics: a review. Mol Breed 2001; 7: 275–291

    Article  CAS  Google Scholar 

  • Prasad S.R., Bagali P.G., Hittalmani S., Shashidhar H.E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 2000; 78: 162–164

    CAS  Google Scholar 

  • Price A.H., Tomos A.D. Genetic dissection of root growth in rice (Oryza sativa L.). II: Mapping quantitative trait loci using molecular markers. Theor Appl Genet 1997; 95: 143–152

    CAS  Google Scholar 

  • Price A., Young E., Tomos A. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytologist 1997; 137: 83–91

    Article  CAS  Google Scholar 

  • Price A., Steele K., Moore B., Barraclough P., Clark L. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 2000; 100: 49–56

    Article  CAS  Google Scholar 

  • Price A.H., Cairns J.E., Horton P., Jones H.G., Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Jour Exp Bot 2002a; 53: 989–1004

    CAS  Google Scholar 

  • Price A., Steele K., Gorham J., Bridges J., Moore B., Evans J., Richardson P., Jones R. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes I. Root distribution, water use and plant water status. Field Crop Res 2002b; 76: 11–24

    Google Scholar 

  • Price A., Townend J., Jones M., Audebert A., Courtois B. Mapping QTLs associated with drought avoidance in upland rice approach grown in the Philippines and West Africa. Plant Mol Biol 2002c; 48: 683–695

    Article  CAS  PubMed  Google Scholar 

  • Prioul J.L., Quarrie S., Causse M., de Vienne D. Dissecting complex physiological functions through the use of molecular quantitative genetics. Jour Exp Bot 1997; 48: 1151–1163

    CAS  Google Scholar 

  • Quarrie S.A. Implications of genetic differences in ABA accumulation for crop production. In: W.J. Davies, H.G. Jones (eds.) Abscisic Acid: Physiology and Biochemistry, Bios Scientific Publishers, Oxford, UK, 1991, pp. 227–243

    Google Scholar 

  • Quarrie S.A. New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regul 1996; 20: 167–178

    Article  CAS  Google Scholar 

  • Quarrie S.A., Laurie D.A., Zhu J.H., Lebreton C., Semikhodskii A., Steed A., Witsenboer H., Calestani C. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 1997; 35: 155–165

    Article  CAS  PubMed  Google Scholar 

  • Quarrie S.A., Steed A., Semikhdoski A., Lebreton C., Calestani C., Clarkson D.A., Tuberosa R., Sanguineti M.C., Melchiorre R., Prioul J. Identification of quantitative trait loci regulating water and nitrogen-use efficiency in wheat. In: 2nd STRESSNET Conference, 1995, pp. 175–180

    Google Scholar 

  • Quarrie S.A., Lazic Jancic V., Kovacevic D., Steed A., Pekic S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Jour Exp Bot 1999a; 50: 1299–1306

    CAS  Google Scholar 

  • Quarrie S.A., Stojanovic J., Pekic S. Improving drought resistance in small grained cereals: A case study, progress and prospects. Plant Growth Regul 1999b; 29: 1–21

    Article  CAS  Google Scholar 

  • Quarrie S.A., Steed A., Calestani C., Semikhodskii A., Lebreton C., Chinoy C., Steele N., Pljevljakusic D., Waterman E., Weyen J., et al. A genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 2004; submitted

    Google Scholar 

  • Ramsay L.D., Jennings D.E., Bohuon E.J.R., Arthur A.E., Lydiate D.J., Kearsey M.J., Marshall D.F. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 1996; 39: 558–567

    CAS  Google Scholar 

  • Rao S.A., McNeilly T. Genetic basis of variation for salt tolerance in maize (Zea mays L). Euphytica 1999; 108: 145–150

    Article  Google Scholar 

  • Reymond M., Muller B., Leonardi A., Charcosset A., Tardieu F. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 2003; 131: 664–675

    Article  CAS  PubMed  Google Scholar 

  • Ribaut J.M., Betran J. Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 2000; 5: 531–541

    Google Scholar 

  • Ribaut J.M., Hoisington D. Marker-assisted selection: new tools and strategies. Trends Plant Sci 1998; 3: 236–239

    Article  Google Scholar 

  • Ribaut J.M., Hoisington D.A., Deutsh J.A., Jiang C., Gonzalez-de-Leon D. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 1996; 92: 905–914

    CAS  Google Scholar 

  • Ribaut J.M., Hu X., Hoisington D., Gonzales-de-Leon D. Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection backcross scheme. Plant Mol Biol Rep 1997a; 15: 156–164

    Google Scholar 

  • Ribaut J.M., Jiang C., Gonzalez-de-Leon D., Edmeades G., Hoisington D.A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 1997b; 94: 887–896

    Article  Google Scholar 

  • Ribaut J.M., Gonzalez de Leon D., Jiang C., Edmeades G.O., Hoisington D. Identification and transfer of ASI quantitative trait loci (QTL): a strategy to improve drought tolerance in maize lines and populations. In: G.O. Edmeades, M. Bänziger, H.R. Mickelson, C.B. Peña Valdivia (eds.) Proc Symp Developing Drought-and Low N-tolerant Maize, CIMMYT, 1997c, pp. 396–400

    Google Scholar 

  • Ribaut J.M., Banziger M., Betran J., Jiang C., Edmeades G.O., Dreher K., Hoisington D. Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: M.S. Kang (ed.) Quantitative Genetics, Genomics, and Plant Breeding, CABI Publishing, Wallingford, 2002, pp. 85–99

    Google Scholar 

  • Richards R.A. Defining selection criteria to improve yield under drought. Plant Growth Regul 1996; 20: 157–166

    Article  CAS  Google Scholar 

  • Richards R.A. Selectable traits to increase crop photosynthesis and yield of grain crops. Jour Exp Bot 2000; 51: 447–458

    CAS  Google Scholar 

  • Richards R.A., Condon A.G. Challenges ahead in using carbon isotope discrimination in plantbreeding programs. In: J.R. Ehleringer, A.E. Hall, G.D. Farquhar (eds.) Stable isotopes and plant carbon-water relations, Academic Press, San Diego, CA, USA, 1993, pp. 451–462

    Google Scholar 

  • Richards R., Dennet C., Qualset C., Epstein E., Norlyn J., Winslow M. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Fields Crop Res 1987; 15: 277–287

    Google Scholar 

  • Richards R., Rebetzke G., Condon A., van Herwaarden A. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 2002; 42: 111–121

    PubMed  Google Scholar 

  • Robertson D.S. A possible technique for isolating genic DNA for quantitative traits in plant. Jour Theor Biol 1985; 117: 1–10

    CAS  Google Scholar 

  • Robin S., Pathan MS., Courtois B., Lafitte R., Carandang S., Lanceras S., Amante M., Nguyen HT., Li Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 2003, 107, 1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Robinson D., Handley L.L., Scrimgeour C.M., Gordon D.C., Forster B.P., Ellis R.P. Using stable isotope natural abundances (ä15N and ä13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch) genotypes. Jour Exp Bot 2000; 51: 41–50

    CAS  Google Scholar 

  • Royo R., Villegas D., García del Moral L.F., El Hani S., Aparicio N., Rharrabti Y., Araus, J.L. Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotype differences in durum wheat yield in Spain. Aust Jour Agric Res 2001; 53: 1–9

    Google Scholar 

  • Saini H.S., Westgate M.E. Reproductive development in grain crops during drought. Adv Agron 2000; 68: 59–96

    Google Scholar 

  • Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., Bennett J. A proteomic approach to analyzing drought-and salt-responsiveness in rice. Fields Crop Res 2002; 76: 199–219

    Google Scholar 

  • Salvi S., Tuberosa R., Sanguineti M.C., Landi P., Conti S. Molecular marker analysis of maize populations divergently selected for abscisic acid concentration in the leaf. Maize Genet Coop Newslett 1997; 71: 15–16.

    Google Scholar 

  • Salvi S., Tuberosa R., Phillips R.L. Development of PCR-based assays for allelic discrimination in maize by using the 5-nuclease procedure. Mol Breed 2001; 8: 169–176

    Article  CAS  Google Scholar 

  • Salvi S., Tuberosa R., Chiapparino E., Maccarerri M., Veillet S., Van Beuningen L., Isaac P., Edwards K., Phillips R.L. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 2002; 48: 601–613

    Article  CAS  PubMed  Google Scholar 

  • Salvi S., Morgante M., Fengler K., Meeley B., Ananiev E., Svitashev S., Bruggemann E., Niu X., Li B., Tingey S.C., Tomes D., Miao G.H., Phillips R.L., Tuberosa R. Progress in the positional cloning of Vgt1, a QTL controlling flowering time in maize. In: 57th Annual Corn and Sorghum Research Conference, 2003, pp. 1–18

    Google Scholar 

  • Sanchez A.C., Subudhi P.K., Rosenow D.T., Nguyen H.T. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 2002; 48: 713–726

    CAS  PubMed  Google Scholar 

  • Sanguineti M.C., Tuberosa R., Stefanelli S., Noli E., Blake T.K., Hayes P.M. Utilization of a recombinant inbred population to localize QTLs for abscisic acid content in leaves of drought-stressed barley (Hordeum vulgare L.). Russ J Plant Physiol 1994; 41: 572–576

    Google Scholar 

  • Sanguineti M.C., Conti S., Landi P., Tuberosa R. Abscisic acid concentration in maize leaves: genetic control and response to divergent selection in two populations. Maydica 1996; 41: 193–203

    Google Scholar 

  • Sanguineti M.C, Tuberosa R., Landi P., Salvi S., Maccaferri M., Casarini E., Conti S. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Jour Exp Bot 1999; 50: 1289–1297

    CAS  Google Scholar 

  • Sari Gorla M., Krajewski P., Di Fonzo N., Villa M., Frova C. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet 1999; 99: 289–295

    Google Scholar 

  • Schachtman D., Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 1999; 4: 281–287

    Article  PubMed  Google Scholar 

  • Schadt E., Monks S., Drake T., Lusis A., Che N., Colinayo V., Ruff T., Milligan S., Lamb J., Cavet G., Linsley P., Mao M., Stoughton R., Friend S. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003; 422: 297–302

    Article  CAS  PubMed  Google Scholar 

  • Schwartz S.H., Tan B.C., Gage D.A., Zeevaart J.A.D., McCarty D.R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 1997; 276: 1872–1874

    Article  CAS  PubMed  Google Scholar 

  • Schwartz S.H., Qin X.Q., Zeevaart J.A.D. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 2003; 131: 1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Serageldin I. Biotechnology and food security in the 21st century. Science 1999; 285: 387–389

    Article  CAS  PubMed  Google Scholar 

  • Serraj R., Sinclair T.R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell Environ 2002; 25: 333–341

    Article  Google Scholar 

  • Sharp R., Wu Y., Voetberg G., Saab I., LeNoble M. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Jour Exp Bot 1994; 45: 1743–1751

    CAS  Google Scholar 

  • Shen L., Courtois B., McNally K.L., Robin S., Li Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 2001; 103: 75–83

    Article  CAS  Google Scholar 

  • Siangliw M., Toojinda T., Tragoonrung S., Vanavichit A. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 2003; 91: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Slafer G.A. Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 2003; 142: 117–128

    Google Scholar 

  • Slavich P.G., Read B.J., Cullis B.R. Yield response of barley germplasm to field variation in salinity quantified using the EM-38. Aust Jour Exp Agri 1990; 30: 551–556

    Google Scholar 

  • Snape J.W., Semikhodskii A., Fish L., Sarma R.N., Quarrie S.A., Galiba G., Sutka J. Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agron Hung 1997; 45: 268–270

    Google Scholar 

  • Snape J.W., Sarma R., Quarrie S.A., Fish L., Galiba G., Sutka J. Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 2001; 120: 309–315

    Article  CAS  Google Scholar 

  • Sorrells M.E., La Rota M., Bermudez-Kandianis C.E., Greene R.A., Kantety R., Munkvold J.D., Miftahudin, Mahmoud A., Ma X., Gustafson P.J., et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Research 2003; 13: 1818–1827

    CAS  PubMed  Google Scholar 

  • Sripongpangkul K., Posa G.B.T., Senadhira D.W., Brar D., Huang N., Khush G.S., Li Z.K. Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet 2000; 101: 1074–1081

    Article  CAS  Google Scholar 

  • Stuber C.W., Edwards M.D., Wendel J.F. Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 1987; 27: 639–648

    Google Scholar 

  • Stuber C.W., Polacco M., Senior M.L. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 1999; 39: 1571–1583

    Google Scholar 

  • Subudhi P.K., Rosenow D.T., Nguyen H.T. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 2000; 101: 733–741

    Article  CAS  Google Scholar 

  • Sutka J. Genetic control of frost tolerance in wheat (Triticum aestivum L.). Euphytica 1994; 77: 277–282

    Article  Google Scholar 

  • Sutka J., Snape J.W. Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 1989; 42: 41–44

    Article  Google Scholar 

  • Sutka J., Galiba G., Vagujfalvi A., Gill B.S., Snape J.W. Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 1999; 99: 199–202

    Article  CAS  Google Scholar 

  • Talamè V., Sanguineti M.C., Chiapparino E., Bahri H., Ben Salem M., Ellis R., Forster B.P., Rhouma S., Zoumarou W., Tuberosa R. Identification of agronomically valuable QTL alleles in wild barley (Hordeum spontaneum). Ann Appl Biol 2004; submitted

    Google Scholar 

  • Tan B.C., Schwartz S.H., Zeevaart J.A.D., McCarty D.R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 1997; 94: 12235–12240

    CAS  PubMed  Google Scholar 

  • Tanksley S.D. Mapping polygenes. Ann Rev Genet 1993; 27: 205–233

    CAS  PubMed  Google Scholar 

  • Tanksley S., Nelson J. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 1996; 92: 191–203

    Google Scholar 

  • Tanksley S.D., Ganal M.W., Martin G.B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 1995; 11: 63–68

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 2003; 8: 9–14

    Article  CAS  PubMed  Google Scholar 

  • Teulat B., Monneveux P., Wery J., Borries C., Souyris I., Charrier A., This D. Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 1997; 137: 99–107

    Article  Google Scholar 

  • Teulat B., This D., Khairallah M., Borries C., Ragot C., Sourdille P., Leroy P., Monneveux P., Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 1998; 96: 688–698

    Article  CAS  Google Scholar 

  • Teulat B., Borries C., This D. New QTLs identified for plant water status, water-soluble two water regimes. Theor Appl Genet 2001a; 103: 161–170

    CAS  Google Scholar 

  • Teulat B., Merah O., Souyris I., This D. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 2001b; 103: 774–787

    CAS  Google Scholar 

  • Teulat B., Merah O., Sirault X., Borries C., Waugh R., This D. QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 2002; 106: 118–126

    CAS  PubMed  Google Scholar 

  • Teulat B., Zoumarou-Wallis N., Rotter B., Ben-Salem M., Bahri H., This D. QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 2003; 108: 181–188

    Article  CAS  PubMed  Google Scholar 

  • Thiellement H., Bahrman N., Damerval C., Plomion C., Rossignol M., Santoni V., de Vienne D., Zivy M. Proteomics for genetic and physiological studies in plants. Electrophoresis 1999; 20: 2013–2026

    Article  CAS  PubMed  Google Scholar 

  • Thomas H., Howarth C.J. Five ways to stay green. Jour Exp Bot 2000; 51: 329–337

    CAS  Google Scholar 

  • Till B.J., Reynolds S.H., Greene E.A., Codomo C.A., Enns L.C., Johnson J.E., Burtner C., Odden A.R., Young K., Taylor N.E., Henikoff J.G., Comai L., Henikoff S. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 2003; 13: 524–530

    Article  CAS  PubMed  Google Scholar 

  • Toojinda T., Siangliw M., Tragoonrung S., Vanavichit A. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 2003; 91: 243–253

    Article  CAS  PubMed  Google Scholar 

  • Touzet P., Winkler R.G., Helentjaris T. Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theor Appl Genet 1995; 91: 200–205

    Article  CAS  Google Scholar 

  • Tripathy J.N., Zhang J., Robin S., Nguyen T.T., Nguyen H.T. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 2000; 100: 1197–1202

    Article  CAS  Google Scholar 

  • Tuberosa R., Sanguineti M.C., Landi P. Abscisic acid concentration in the leaf and xylem sap, leaf water potential, and stomatal conductance in drought-stressed maize. Crop Sci 1994; 34: 1557–1563

    CAS  Google Scholar 

  • Tuberosa R., Galiba G., Sanguineti M.C., Noli E., Sukta J. Identification of QTL influencing freezing tolerance in barley. Acta Agron Hung 1997; 45: 413–417

    Google Scholar 

  • Tuberosa R., Parentoni S., Kim T.S., Sanguineti M.C., Phillips R.L. Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genet Coop Newslett 1998a; 72: 72–73

    Google Scholar 

  • Tuberosa R., Sanguineti M.C., Landi P., Salvi S., Casarini E., Conti S. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of droughtstressed maize (Zea mays L.). Theor Appl Genet 1998b; 97: 744–755

    Article  CAS  Google Scholar 

  • Tuberosa R., Gill B.S., Quarrie S. Cereal genomics: ushering in a brave new world. Plant Mol Biol 2002a; 48: 445–449

    CAS  PubMed  Google Scholar 

  • Tuberosa R., Salvi S., Sanguineti M.C., Landi P., Maccaferri M., Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 2002b; 89: 941–963

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R., Sanguineti M.C., Landi P., Giuliani M.M., Salvi S., Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 2002c; 48: 697–712

    CAS  PubMed  Google Scholar 

  • Tuberosa R., Salvi S., Sanguineti M.C., Maccaferri M., Giuliani S., Landi P. Searching for QTLs controlling root traits in maize: a critical appraisal. Plant and Soil 2003; 255: 35–54

    Article  CAS  Google Scholar 

  • Tuinstra M.R., Grote E.M., Goldsbrough P.B., Ejeta G. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 1997; 3: 439–448

    Article  CAS  Google Scholar 

  • Tuinstra M.R., Ejeta G., Goldbrough P. Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 1998; 38: 835–842

    Google Scholar 

  • Turner N.C. Further progress in crop water relations. Adv Agron 1997; 528: 293–338

    Google Scholar 

  • Turpeinen T., Tenhola T., Manninen O., Nevo E., Nissila E. Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 2001; 10: 1577–1591

    Article  CAS  PubMed  Google Scholar 

  • Uesono Y., Toh E.A. Transient inhibition of translation initiation by osmotic stress. Jour Biol Chem 2002; 277: 13848–13855

    CAS  Google Scholar 

  • Vagujfalvi A., Galiba G., Cattivelli L., Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Gen Genet 2003; 269: 60–67

    CAS  Google Scholar 

  • Van Buuren M., Salvi S., Morgante M., Serhani B., Tuberosa R. Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize. Plant Mol Biol 2002; 48: 741–750

    PubMed  Google Scholar 

  • Veisz O., Sutka J. Ditelosomic analysis of frost resistance in wheat (cv Chinese Spring). Cereal Res Commun 1993; 21: 263–267

    Google Scholar 

  • Venuprasad R., Shashidhar H.E., Hittalmani S., Hemamalini G.S. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 2002; 128: 293–300

    Article  CAS  Google Scholar 

  • Wan J.L., Zhai H.Q., Wan J.M., Ikehashi H. Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica 2003; 131: 201–206

    Article  CAS  Google Scholar 

  • Weidong C., J. Jizeng, J. Jiyun. Identification and interaction analysis of QTL for phosphorus use efficiency in wheat seedlings. In: 14th Intern Plant Nutrition Colloquium, Plant Nutrition: Food Security and Sustainability of Agro ecosystems through Basic and Applied Research, Hannover, Germany, 2001, pp. 76–77

    Google Scholar 

  • Westgate M.E., Boyer J.S. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 1985; 164: 540–549

    Article  Google Scholar 

  • Winkler R., Helentjaris T. The maize dwarf3 gene encodes a cytochrome P450 mediated early step in gibberellin biosynthesis. Plant Cell Environ 1995; 7: 1307–1317

    CAS  Google Scholar 

  • Wissuwa M., Yano M., Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 1998; 5–6: 777–783

    Google Scholar 

  • Wissuwa M., Wegner J., Ae N., Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 2002; 105: 890–897

    CAS  PubMed  Google Scholar 

  • Witcombe J.R., Hash C.T. Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids and synthetic parent populations. Euphytica 2000; 112: 175–186

    Article  Google Scholar 

  • Xu K.N., Mackill D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 1996; 2: 219–224

    CAS  Google Scholar 

  • Xu K.N., Xu X., Ronald P.C., Mackill D.J. A high-resolution linkage map of the vicinity of rice submergence tolerance locus Sub1. Mol Gen Genet 2000; 263: 681–689

    CAS  PubMed  Google Scholar 

  • Xu W.W., Subudhi P.K., Crasta O.R., Rosenow D.T., Mullet J.E., Nguyen H.T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 2000; 43: 461–469

    Article  CAS  PubMed  Google Scholar 

  • Yadav R., Courtois B., Huang N., McLaren G. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 1997; 94: 619–632

    CAS  Google Scholar 

  • Yadav R.S., Hash C.T., Bidinger F.R., Cavan G.P., Howarth C.J. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 2002; 104: 67–83

    Article  CAS  PubMed  Google Scholar 

  • Yamaya T., Obara M., Nakajima H, Sasaki S, Hayakawa T; Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice Jour Exp Bot 2002; 53: 917–925

    CAS  Google Scholar 

  • Yang J., Sears R.G., Gill B.S., Paulsen G.M. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica. 2002; 126: 275–282

    CAS  Google Scholar 

  • Yano M., Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 1997; 35: 145–153

    Article  CAS  PubMed  Google Scholar 

  • Yates J.R. Mass spectrometry and the age of the proteome. Jour Mass Spect 1998; 33: 1–19

    CAS  Google Scholar 

  • Yin X.Y., Stam P., Kropff M.J., Schapendonk A.H.C.M. Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron Jour 2003; 95: 90–98

    CAS  Google Scholar 

  • Young N.D. A cautiously optimistic vision for marker-assisted breeding. Mol Breed 1999; 5: 505–510

    Google Scholar 

  • Yu L.X., Setter T.L. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 2003; 131: 568–582

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart J.A.D., Creelman R.A. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 1988; 39: 439–473

    Article  CAS  Google Scholar 

  • Zeng Z.B. Precision mapping of quantitative trait loci. Genetics 1994; 136: 1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang Z.B., Xu P. Reviews of wheat genome. Hereditas-Beijing 2002; 24: 389–394

    CAS  Google Scholar 

  • Zhang J., Davies W.J. Does ABA in the xylem control the rate of leaf growth in soil dried maize and sunflower plants? Jour Exp Bot 1990; 41: 1125–1132

    CAS  Google Scholar 

  • Zhang W.P., Shen X.Y., Wu P., Hu B., Liao C.Y. QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativa L.). Theor Appl Genet 2001a; 103: 118–123

    CAS  Google Scholar 

  • Zhang J., Zheng H.G., Aarti A., Pantuwan G., Nguyen T.T., Tripathy J.N., Sarial A.K., Robin S., Babu R.C., Nguyen B.D., et al. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 2001b; 103: 19–29

    CAS  Google Scholar 

  • Zheng H.G., Babu R.C., Pathan M.S., Ali L., Huang N., Courtois B., Nguyen H.T. Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 2000; 43: 53–61

    Article  CAS  PubMed  Google Scholar 

  • Zhu B., Choi D.W., Fenton R., Close T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 2000; 264: 145–153

    CAS  PubMed  Google Scholar 

  • Zinselmeier C., Westgate M.E., Schussler J.R., Jones R.J. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 1995; 107: 385–391

    CAS  PubMed  Google Scholar 

  • Zinselmeier C., Jeong B., Boyer J. Starch and the control of kernel number in maize at low water potentials. Plant Physiol; 1999; 121: 25–36

    Article  CAS  PubMed  Google Scholar 

  • Zinselmeier C., Sun Y., Helentjaris T., Beatty M., Yang S., Smith H., Habben J. The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Fields Crop Res 2002; 75: 111–121

    Google Scholar 

  • Zivy M., de Vienne D. Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol 2000; 44: 575–580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tuberosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tuberosa, R., Salvi, S. (2004). QTLs and Genes for Tolerance to Abiotic Stress in Cereals. In: Gupta, P.K., Varshney, R.K. (eds) Cereal Genomics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2359-6_9

Download citation

Publish with us

Policies and ethics