Skip to main content

Luminescent Inorganic Polymer Sensors for Vapour Phase and Aqueous Detection of TNT

  • Conference paper
Electronic Noses & Sensors for the Detection of Explosives

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 159))

Abstract

Photoluminescent conjugated organic polymers have been applied to the detection of nitroaromatic explosives, such as TNT. The low energy unoccupied π* orbitals in nitroaromatics can accept an electron from the excited state of luminescent polymers. This electron transfer quenching of luminescence provides detection limits as low as the parts per trillion (ppt) range. Photoluminescent organometallic polymetalloles and metallole copolymers have been synthesized and may also be used for the detection of nitroaromatic explosives such as picric acid, trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and nitrobenzene. These soluble polymers are extended oligomers with a degree of polymerization of about 10 to 20 metallole units, and show high sensitivity for detecting nitroaromatics in solution or the vapour phase. The efficiency of photoluminescence quenching follows the order TNT > DNT > nitrobenzene, which is correlated with their reduction potentials. Quenching of photoluminescence is primarily attributable to electron transfer from the lowest excited state of metallole polymers to the π* LUMO of the nitroaromatic analyte. Quenching of photoluminescence is a static process, since the excited state lifetime is invariant with varying quencher concentration. Each metallole polymer has a unique ratio of quenching efficiency to the corresponding analyte and each analyte has a variety of different responses to different metallole polymers, which could be used to specify the analyte by pattern recognition methods. These inorganic polymers are robust and insensitive to common interferents, such as organic solvents and inorganic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Rouhi, Chem. Eng. News 75 (1997) 14.

    Google Scholar 

  2. U.S. Customs Service, Report 0000-0148, Washington, DC, 2000, pp. 123.

    Google Scholar 

  3. S.-A. Barshick, J. Foren. Sci. 43 (1998) 284.

    CAS  Google Scholar 

  4. K.D. Smith, B.R. McCord, W.A. McCrehan, K. Mount and W.F. Rowe, J. Foren. Sci. 44 (1999) 789.

    CAS  Google Scholar 

  5. A.W. Czarnik, Nature 394 (1998) 417.

    Article  CAS  Google Scholar 

  6. K. Hakansson, R.V. Coorey, R.A. Zubarev, V.L. Talrose and P. Hakansson, J. Mass Spectrom. 35 (2000) 337.

    Article  CAS  PubMed  Google Scholar 

  7. J.M. Sylvia, J.A. Janni, J.D. Klein and K.M. Spencer, Anal. Chem. 72 (2000) 5834.

    Article  CAS  PubMed  Google Scholar 

  8. V.P. Anferov, G.V. Mozjoukhine and R. Fisher, Rev. Sci. Instr. 71 (2000) 1656.

    Article  CAS  ADS  Google Scholar 

  9. R.D. Luggar, M.J. Farquharson, J.A. Horrocks and R.J. Lacey, J. X-ray Spectrom. 27 (1998) 87.

    Article  CAS  Google Scholar 

  10. M. Krausa and K. Schorb, J. Electroanal. Chem. 461 (1999) 10.

    Article  CAS  Google Scholar 

  11. L.C. Shriver-Lake, B.L. Donner and F.S. Ligler, Environ. Sci. Technol. 31 (1997) 837.

    Article  CAS  Google Scholar 

  12. J. Lu, Z. Zhang, Anal. Chim. Acta 318 (1996) 175.

    Article  CAS  Google Scholar 

  13. M. Dock, M. Fisher and C. Cumming, in Fifth International Symposium of Mine Warfare Association, Monterey, California, 2002, pp. 1.

    Google Scholar 

  14. Approaches for the remediation of federal facility sites contaminated with explosive or radioactive wastes, U. S. Environmental Protection Agency, Washington, D.C., 1993.

    Google Scholar 

  15. J. Köhler, R. Meyer and A. Homburg, Explosives, 5th ed., Wiley-VCH, Weinheim, 2001.

    Google Scholar 

  16. J. Yinon, Forensic and Environmental Detection of Explosives, John Wiley & Sons, Chichester, 1999.

    Google Scholar 

  17. K.J. Albert, M.L. Myrick, S.B. Brown, D.L. James, F.P. Milanovich and D.R. Walt, Environ. Sci. Technol. 35 (2001) 3193.

    Article  CAS  PubMed  Google Scholar 

  18. D.T. McQuade, A.E. Pullen and T.M. Swager, Chem. Rev. 100 (2000) 2537.

    Article  CAS  PubMed  Google Scholar 

  19. K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stitzel, T.P. Vaid and D.R. Walt, Chem. Rev. 100 (2000) 2595.

    Article  CAS  PubMed  Google Scholar 

  20. R.A. McGill, T.E. Mlsna and R. Mowery, in IEEE International Frequency Control Symposium, 1998, pp. 630.

    Google Scholar 

  21. J.-S. Yang and T.M. Swager, J. Am. Chem. Soc. 120 (1998) 5321.

    Article  CAS  Google Scholar 

  22. J.-S. Yang and T.M. Swager, J. Am. Chem. Soc. 120 (1998) 11864.

    Article  CAS  Google Scholar 

  23. Y. Liu, R. Mills, J. Boncella and K. Schanze, Langmuir 17 (2001) 7452.

    Article  CAS  Google Scholar 

  24. K. Albert, M. Myrick, S. Brown, D. James, F. Milanovich and D.R. Walt, Environ. Sci. Technol. 35 (2001) 3193.

    Article  CAS  PubMed  Google Scholar 

  25. K. Albert and D.R. Walt, Anal. Chem. 72 (2000) 1947.

    Article  CAS  PubMed  Google Scholar 

  26. J. Yinon, Anal. Chem. 75 (2003) 98A.

    Article  Google Scholar 

  27. S. Content, W.C. Trogler and M.J. Sailor, Chem. Eur. J. 6 (2000) 2205.

    Article  CAS  Google Scholar 

  28. R. West, H. Sohn, U. Bankwitz, J. Calabrese, Y. Apelog and T. Mueller, J. Am. Chem. Soc. 117 (1995) 11608.

    Article  CAS  Google Scholar 

  29. K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa and S. Yamaguchi, J. Am. Chem. Soc. 118 (1996) 11974.

    Article  CAS  Google Scholar 

  30. K. Tamao and S. Yamaguchi, Pure Appl. Chem. 68 (1996) 139.

    Article  CAS  Google Scholar 

  31. S. Yamaguchi and K. Tamao, Bull. Chem. Soc. Jpn. 69 (1996) 2327.

    Article  CAS  Google Scholar 

  32. S. Furukawa, K. Takeuchi and M. Shimana, J. Phys. Condens. Matter 6 (1994) 11007.

    Article  CAS  ADS  Google Scholar 

  33. W. Chunwachirasiri, I. Kanaglekar, M. Winokur, J. Koe and R. West, Macromolecules 34 (2001) 6719.

    Article  CAS  Google Scholar 

  34. B. Farmer, J. Rabolt and R. Miller, Macromolecules 20 (1987) 1167.

    Article  CAS  Google Scholar 

  35. S. J. Toal, S. Urbas, H. Sohn and W.C. Trogler, Organometallics 2004, to be submitted.

    Google Scholar 

  36. Y. Yamaguchi, Synthetic Met. 82 (1996) 149.

    Article  CAS  Google Scholar 

  37. H. Sohn, R.R. Huddleston, D.R. Powell and R. West, J. Am. Chem. Soc. 121 (1999) 2935.

    Article  CAS  Google Scholar 

  38. T. Sanji, T. Sakai, C. Kabuto and H. Sakurai, J. Am. Chem. Soc. 120 (1998) 4552.

    Article  CAS  Google Scholar 

  39. S. Yamaguchi, T. Endo, M. Uchida, T. Izumizawa, K. Furukawa and K. Tamao, Chem. Eur. J. 6 (2000) 1683.

    Article  CAS  Google Scholar 

  40. S. Yamaguchi and K. Tamao, in The Chemistry of Organic Silicon Compounds, Vol. 3 (Eds.: Z. Rappoport, Y. Apeloig), John Wiley & Sons, LTD, Chichester, 2001, pp. 641.

    Chapter  Google Scholar 

  41. H. Sohn, M.J. Sailor, D. Magde and W.C. Trogler, J. Am. Chem. Soc. 125 (2003) 3821.

    Article  CAS  PubMed  Google Scholar 

  42. L. Rosenberg and D. Kobus, J. Organomet. Chem. 685 (2003) 107.

    Article  CAS  Google Scholar 

  43. Y. Xu, T. Fujino, H. Naito, T. Dohmaru, K. Oka, H. Sohn and R. West, Jpn. J. Appl. Phys. 38 (1999) 6915.

    Article  CAS  Google Scholar 

  44. K. Kanno, M. Ichinohe, C. Kabuto and M. Kira, Chem. Lett. 99 (1998).

    Google Scholar 

  45. J.W.H. Dennis, D.H. Rosenblatt, W.G. Blucher and C.L. Coon, J. Chem. Eng. Data 120 (1975) 202.

    Article  Google Scholar 

  46. N.J. Turro, Modern Molecular Photochemistry, University Science Books, Sausalito, California, 1991.

    Google Scholar 

  47. K.A. Connors, Binding Constants: The Measurement of Molecular Complex Stability, Wiley-Interscience, New York, 1987.

    Google Scholar 

  48. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1986.

    Google Scholar 

  49. H. Sohn, R.M. Calhoun, M.J. Sailor and W.C. Trogler, Angew. Chemie, Intl. Ed. 2001, 40, 2104.

    Article  CAS  Google Scholar 

  50. J. Luo, Z. Xie, J. Lam, C. Lin, C. Haiying, C. Qui, H. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Tang, Chem. Commun. 174 (2001).

    Google Scholar 

  51. S.J. Toal and W.C. Trogler, ACS Symp. Ser., Nanotechnology in the Environment 2004, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Trogler, W.C. (2004). Luminescent Inorganic Polymer Sensors for Vapour Phase and Aqueous Detection of TNT. In: Gardner, J.W., Yinon, J. (eds) Electronic Noses & Sensors for the Detection of Explosives. NATO Science Series II: Mathematics, Physics and Chemistry, vol 159. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2319-7_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2319-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2317-0

  • Online ISBN: 978-1-4020-2319-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics