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Abstract 

We construct constant round ZKIPs for any NP language, under the sale 
assumption that oneway functions exist. Under the stronger Certified Discrete 
Log assumption, our construction yields perfect zero knowledge protocols. Our 
protocols rely on two novel ideas: One for constructing commitment schemes, 
the other for constructing subprotocols which are not known to be zero knowl- 
edge, yet can be proven not to reveal useful information. 

1 Introduction 

The concept of zero knowledge interactive proofs (ZKIPs) was introduced by Gold- 
wasser, Mica& and Rackoff ( see [18] for definitions). Goldreich, Micali and Wigder- 
son [17] show that under the assumption that secure bit commitment schemes ex- 
ist, any NP language has a ZKIP system. In a remark they hint how to modify 
their protocols and obtain a 4-move ZKIP (a move is a message from verifier V to 
prover P, or from P to V, and a round is two consecutive moves). Alas, proving the 
correctness of the construction implied by this hint met unexpected technical diffi- 
culties, and was recently characterized by Goldreich (in a private communication) 
as an open problem. 

In this paper we study the model where both P and V are polynomial time with 
auxiliary input (as studied in [S], [12] and others). We present a construction of 
constant round ZKIPs for any NP language, which relies on the polynomiality of P, 
and differs from the suggested construction in [17] (such ZKIPs are termed “compu- 
tationally sound” by Goldreich, and “arguments” by Brassard and CrBpeau). The 
protocol is a proof of knowledge, and not just a proof of assertion. Its success is 
evidence that P “knows” a witness to the given NP statement. (See [12] or [23] for 
definitions and discussion of the importance of proofs of knowledge). Our proto- 
col offers different IeveIs of security, depending on the strength of the cryptographic 
assumption we make: 
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1. By relying only on the assumption that oneway functions exist, our protocol 
takes 5 moves and is computational zero knowledge. This assumption is used 
in two ways: As a special case of the more general Invulnerable Generator 
Assumption (IGA), which in essence means that it is possible to generate 
hard, certified elements of some NP sets, and m order to construct secure 
commitment schemes. The construction of commitment schemes from any 
oneway function follows from recent results in I201 and [21], and requires a 
preliminary move). 

2. By relying on the assumption that one-to-one oneway functions exist, our 
protocol takes only 4 moves, and is still computational zero knowledge. The 
fact that the oneway functions are one-to-one enables the construction of 
commitment schemes without the preliminary move, thus saving one move in 
the protocol. 

3. By relying on the certified discrete log assumption, our protocol takes 4 moves, 
and is perfect zero knowledge. 

The 4 moves protocols are optimal among all the zero knowledge protocols in 
which the zero knowledge property is proved by resettable blackbox simulation. 
This follows from [15], where it is proved that only languages in BPP have 3 move 
interactive proofs which can be proven zero knowledge by such a simulation. 

Other general schemes for constant round ZKIPs (though not 2-rounds) have 
been independently discovered. Brassard, Crbpeau and Yung [6] construct a 6- 
move protocol which is perfect zero knowledge (in the model where the prover is 
polynomial time). Their protocol relies on the Certified Discrete Log Assumption 
(or alternatively, on a generalization of this assumption). Our construction achieves 
Pmove perfect zero knowledge protocols, in the same model and under the same 
assumption, and reduces the number of bits communicated by a factor of O(n). 
Goldreich and Kahn [14] announced a bmove bounded round ZKIP based on claw- 
free pairs of functions. The cryptographic assumptions made in order to prove the 
correctness of their protocols are stronger than the assumption we make. 

The reader should not confuse the issue of constant round ZKIPs with that 
of noninteractive (one move) zero knowledge protocols [4], as noninteractive zero 
knowledge assumes the existence of a random string agreed upon by P and V. Our 
protocols start from scratch. Likewise, the reader should not confuse our perfect 
zero knowledge protocols with Fortnow’s [13] “impossibility” result, as Fortnow 
proves his result in a model where the provers are not limited to polynomial time. 

We want to highlight two aspects of our protocol: 

1. One of the subprotocols we use is not known to be zero knowledge, yet prov- 
ably does not reveal any useful information. This is an application of a new 
concept of witness hiding [11], which can replace the standard concept of zero 
knowledge in many cryptographic applications. 



2. We show a general technique for constructing commitment schemes out of 
ZKIPs. This is a dual to the well known technique of constructing ZKIPs 
out of commitment schemes. (This result was discovered independently by 
Damgard [9]). 

2 Notation and Definitions 
For a discussion on the following definitions, see [18] (interactive proofs and zero 
knowledge) ,[12) and [23] (proofs of knowledge). 

Our model of computation is the probabilistic polynomial time interactive Tur- 
ing machine (both for provers P and for verifiers V ) .  The common input is denoted 
by z, and its length is denoted by 121 = n. Each machine has an auxiliary input 
tape. P’s auxiliary input is denoted by w .  V’s auxiliary input is denoted by y, and 
for truthful V y is empty. v(n)  denotes a function vanishing faster than the inverse 
of any polynomial. Formally: 

1 V k  3N s . t .  Vn > N v ( n )  < - 
nk 

Negligible probability is probability behaving as v ( n ) .  Overwhelming probability 
is probability behaving as 1 - v(n). 

A ( z )  denotes the output of algorithm A on input z. This may be a random 
variable, if A is allowed to  toss coins. Vp(z) denotes V’s output on input z, after 
participating in an interactive proof (P, V ) .  M ( z ,  A)  (where A may be either P or 
V) denotes algorithm M’s output on input z, where M may use algorithm A as a 
subroutine (blackbox). Each call M makes to A counts as one computation step 
for M .  

Definition 2.1: Let L be an NP language accepted by the polynomial time 
nondeterministic Turing machine ML. A Computation path is a sequence of nonde- 
terministic choices that ML makes. The set of ML’S accepting computation paths 
on input z E L is called the witness set of z, and is denoted by ~ ( z ) .  o 

Definition 2.2: An interactive proof of knowledge system for N P  language L 
is a pair of algorithms ( P ,  V )  satisfying: 

1. Completeness: For any z E L ,  for any w E w ( z ) ,  Vp(z ,v ) (z )  accepts with 
overwhelming probability. Formally: 

Vx E L Vw E w(z )  Prob(VP(z,w)(z)accepts) > 1 - v(n) 

The probability is taken over the coin tosses of P and V. 

2. Soundness: For any 2, for any P’, PI can convince V to accept only if he 
actually “knowsn a witness for z E L. Expected polynomial time knowledge 
extractor M is used in order to demonstrate P’s ability to compute a witness. 
Formally: 
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3M ’dP‘ Vx ’dw’ 

(Prob(v~l(,,,l)(2)accepts) - Prob(M(z, P’(z,w‘)) E w(z))) < v(n) 

The probability is taken over the coin tosses of V and M. P‘ is assumed not to 
toss coins, since his favorable coin tosses can be incorporated into the auxiliary 
input w‘. The knowledge extractor M is allowed to use P‘ as a subroutine. 

0 

Remark: For x # L, the probability that V accepts is negligible, since the 
witness set of such inputs is empty. o 

We recall the definition for indistinguishability of ensembles which is needed for 
the subsequent definition of zero knowledge (and later will be used in the definition 
of witness indistinguishability). 

Definition 2.3: Let I be an infinite set of strings, and let El and EZ be two 
probability ensembles. (For any z E I, El(x) and EZ(z) are random variables). 
For any algorithm D denote by Pp(z) (P:(z) respectively) the probability that D 
outputs 1 on input z and an element chosen according to probability distribution 
El(z )  (E~(z)). The ensembles El and E2 are polynomiully indistinguishable if for 
any nonuniform polynomial time distinguisher D, 

0 

Instead of using the term “polynomial indistinguishability” we shall just use 
“indistinguishability”. Two variants on the definition are the following: If D is not 
restricted to polynomial time, the ensembles are termed statistically indistinguish- 
able. If furthermore, the condition required is P f ( z )  = P,”(z), the ensembles are 
termed perfectly indistinguishable. 

Definition 2.4: Proof system (P ,V)  is zero knowledge over L if there exists a 
simulator M which runs in expected polynomial time, such that for any probabilis- 
tic polynomial time V’, for any input z E L,  associated witness w and auxiliary 
input to V’ y, the two ensembles V;(z,wl (z, y) and M ( z ,  V‘(x, y)) are polynomially 
indistinguishable. M is allowed to use V’ as a subroutine. o 

The concept defined above is also termed computational zero knowledge. Statis- 
tical (perfect respectively) zero knowledge is defined with polynomial indistinguisha- 
bility replaced by statistical (perfect) indistinguishability. 

Definition 2.5: A moue of an interactive proof is a messages sent by one of the 
participants. Two moves (a message sent by V followed by a message sent by P )  
are called a round. o 

In OUT protocols we make use of two cryptographic assumptions. Before stating 
the assumptions, we borrow (and modify) terminology from [I], which discusses the 
generation of hard, certified elements of NP sets. 
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Definition 2.6: Let G be a random polynomial time generating algorithm 
producing on input 1" instances (5, w )  E S of length n, where S = { ( z , ~ ) }  is a 
set recognizable in polynomial time. G is an almost everywhere v(n)-inuulnerable 
generator (or just invulnerable generator) if for any polynomial time nonuniform 
adversary algorithm A ,  Prob((z,  A ( z ) )  E S) < v(n). The probability is taken over 
the coin tosses of G ( A  is assumed not to toss coins, as the most advantageous coin 
tosses can be incorporated into his nonuniform description). 0. 

We stress that G must be invulnerable to nonuniform adversaries, unlike the 
case in [l]. Our h t  assumption, which is used for constructing computational zero 
knowledge protocols, relates to the existence of invulnerable generators. 

Invulnerable Generator  Assumption (IGA): There exists an invulnerable 
generat or. 

IGA is a very weak assumption, and follows from the more widely used assump 
tion: The existence of oneway functions secure w.r.t. nonuniform algorithms. 

Definition 2.7: Let G be a random polynomial time generating algorithm 
producing on input 1" instances z of length n, and let f be a length preserving 
function whose domain is the range of G. f is oneway if it can be computed 
in polynomial time, but there is no nonuniform polynomial time algorithm which 
inverts f with nonnegligible probability, where the probability is taken over the 
distribution generated by G. o 

The next assumption is used only for our perfect zero knowledge protocols. The 
same assumption is used in [6] in the construction of their perfect zero knowledge 
protocols. 

Certified Discrete Log Assumption (CDLA): There exists an invulnerable 
generator for the set {( ( p ,  g, c,  z), y)}, where p is a prime, g is a generator for Zi, c 
a certificate for the first two facts (e.g. a recursively certified complete factorization 
of p -  1 [22]), and gY = z (mod p). o 

We assume that the invulnerable generator for CDL chooses y (and z) with 
uniform probability from [ 1, p -  11 (any other invulnerable generator can be modified 
to achieve this using the self randomizing properties of the discrete log problem [2]). 

3 Overview of the protocol 

In suffices to present a constant round zero knowledge proof of knowledge for one 
NP complete language. Any other N P  statement can be proved in zero knowledge 
by first reducing the statement to an instance of the NP complete language. This 
reduction must satisfy three properties: 

1. It must be computable in polynomial time. 

2. It must be witness preserving. This property is necessary for the completeness 
property of the protocol. It enables P, which has a witness to the original 
N P  statement, to construct a witness to the generated instance of the NP 
complete language. 
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3. Witnesses must be ef icient ly invertible. This property is necessary for the 
knowledge soundness property of the protocol. It allows V to conclude that 
P knows a witness to the original NP statement, even though P only demon- 
strates knowledge of a witness to the syntactically different NP complete state- 
ment. 

The particular N P  complete language we choose is DHC (directed Hamiltonian 
cycle). We specify a polynomial reduction procedure from any NP language L 
to DHC, to be used whenever such a reduction is called for. This ensures that 
the reduction process itself conveys no information (and thus the zero knowledge 
property is preserved). We assume L is initially given as a nondeterministic Turing 
machine which accepts L. The reduction proceeds in two stages: Reducing the 
computation of this nondeterministic Turing machine to an instance of SAT (see 
[8]), and reducing SAT to DHC (see [19]). The reader may check for himself that 
this chain of reductions is witness preserving and efficiently invertible. 

Our starting point is the basic step of Blum’s [3] ZKIP for the Directed Hamil- 
tonian cycle (DHC) problem. In the rest of this presentation, we assume that all 
the graphs are directed, and that all the cycles are directed Hamiltonian cycles. 

Protocol 1: Common input: A Hamiltonian graph G with n nodes. P has H, a 
cycle in G, on his knowledge tape. The basic step of Blum’s protocol is composed 
of three moves: 

1. P secretly chooses a random permutation 7~ and permutes the nodes of G. P 
secretly constructs the adjacency matrix of r (G)  and commits himself to each 
entry (’1’ if an edge exists, ’0’ otherwise) independently. 

2. V randomly selects a bit ’0’ or ’1’ as a challenge and sends it to P. 

3. If P receives ’0,’ P reveals ?r and all the committed bits. V can check that 
the edges revealed indeed correspond to the graph x(G).  If P receives ’1’, P 
reveals only n edges, comprising a cycle in G. V can easily check that this is 
the case from the structure of the adjacency matrix. 

Blum’s full protocol is constructed by sequentially iterating this basic step n in- 
dependent times (sequential composition). It is complete (truthful P and V can suc- 
cessfully execute the protocol), sound (assuming the commitment scheme is sound, 
P’s ability to complete the protocol implies his knowledge of a cycle in G), and zero 
knowledge (proven by resettable simulation, assuming the commitment scheme is 
secure). If the basic step is carried out n times in parallel (parallel composition), the 
protocol remains complete and sound, but it is conjectured not to be zero knowledge 
(unless DHC E BPP [15]). 

We did not specify the exact commitment scheme to be used in Protocol 1. 
GMW [17] suggested using probabilistic encryption functions , where P commits to 
a bit by encrypting it. A different approach, which relies on P being polynomial 
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time, was suggested in [5]. P commits to a bit by his internal state of knowledge. For 
b E (0,l) and commitment c ,  if P knows a string wb(c), he can open c as b. P cannot 
know both W O ( C )  and w ~ ( c ) ,  as this implies the knowledge of a certain value which 
cannot be computed in polynomial time. If furthermore, V has secret ”trapdoor” 
information which allows V (unlike P) to compute matching pairs ( w o ( c ) , w ~ ( c ) ) ,  
the scheme is termed trapdoor commitment scheme (or chameleon in [S]). Our 
intention is to use a trapdoor commitment scheme in Protocol 1. In this case, 
the protocol remains zero knowledge even under parallel composition (which needs 
only 3 moves). The simulator M, simulating the protocol, would be allowed to open 
each bit either as 1 or 0 (because V can), and M could imitate P’s role without ever 
resetting P. 

The approach described in the previous paragraph is not new, and it serves 
as the starting point of [6]% protocol as well. This approach has two problematic 
aspects: 

1. The trapdoor commitment schemes described in [5], rely on very specific cryp- 
tographic assumptions (typically number theoretic). We want our protocols 
to rely on assumptions which are as weak as possible. 

2. How do we know that the commitment scheme P uses is really trapdoor? In 
other words: How do we know that V can open committed bits both as 0 and 
as l? V must somehow prove his knowledge of trapdoor information, without 
revealing the trapdoor information itself. The obvious way of doing this is by 
V giving a zero knowledge proof that he knows the trapdoor. As our god is 
to construct 4-move ZKIPs, it seems unattainable: V’s proof must take less 
than 4 moves, and thus, as noted earlier for 3-move protocols, it cannot be 
zero knowledge! 

In [6] the authors do not set it as a goal to solve the first of the two problems, 
and the second problem is ingeniously avoided (at the expense of increasing the 
number of moves to 6). Our new construction solves both problems. 

4 A Novel Trapdoor Commitment Scheme 
Definition 4.1: A trapdoor bit commitment scheme consists of a commit stage and 
a reveal stage. The scheme must satisfy the following properties: 

0 Completeness: Party A can commit to any bit b (either 0 or 1). 

0 Soundness: A has negligible probability of constructing a commitment which 
he can later reveal in two possible ways: both as 0 and as 1. 

0 Security: Party B has negligible probability of predicting the value of a com- 
mitted bit. 



533 

0 Trapdoor: B (through some trapdoor information) can construct commit- 
ments, indistinguishable from A’s commitments, which he can later reveal in 
two possible ways: both as 0 and as 1. 

Our construction of trapdoor commitment schemes is based on the following 
observation: The basic step of zero knowledge proofs of knowledge can be used aa a 
commitment scheme, provided the prover does not have the knowledge he “claims” 
to have. Recall the &move basic step protocol we presented earlier (Protocol 1). 
If P could complete the third move in a satisfactory way no matter what V sends 
in the second move, this would imply P’s knowledge of a cycle in G. Conversely, 
if P does not know a cycle in G, P cannot answer both a ’0’ challenge and a ’1’ 
challenge of V. This leads to the following commitment scheme: 

0 Preliminary phase: V sends P a Hamiltonian graph G, in which the polynomial 
time P presumably cannot find a cycle. 

0 P commits to 0 by choosing a random permutation 7r, permuting the nodes 
of G, and committing to the entries of the resulting adjacency matrix (but 
this time using a commitment scheme which need not be trapdoor!). P may 
reveal the committed bit ’0’ by revealing 7r and the entries of the matrix. 

0 P commits to 1 by choosing the n node clique and committing to its adjacency 
matrix (which is all 1). P may reveal the committed bit ’1’ by opening a 
random cycle in this matrix. 

The above trapdoor commitment scheme has all the desired properties: 

Completeness: P can commit to any bit. 

Soundness: Even a cheating P cannot open the same committed value both 
as ’0’ and as ’1’’ for this would imply his knowledge of a cycle in G, and this 
we assume he does not know. 

Security: V’s ability to predict P’s bit from the commitment phase implies V 
breaking the nontrapdoor commitment scheme. 

0 Trapdoor: If V knows a cycle in G, he can open bits he originally committed 
to as ’0’’ both as ’0’ and as ’1’. 

It remains to fill in a few technical details. 

0 Our trapdoor commitment scheme is based on a nontrapdoor commitment 
scheme. Nontrapdoor commitment schemes can be constructed from any one- 
b o n e  oneway function (e.g. see [16]). At the price of one preliminary move, 
they can be constructed from any oneway function (see I201 and [21]). 
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To make the trapdoor commitment scheme sound, we have to assume that 
P does not know a cycle in G ,  and thus V must choose a difficult instance 
of DHC. This can be done easily under IGA (see definition 2.6). Using the 
invulnerable generator, V chooses a random instance (2, w )  E S ,  where S is 
the corresponding invulnerable set, and reduces the problem 3here exists w 
such that (z, w) E S“ to an instance G of the NP complete problem DHC. 
Since the reductions are efficiently invertible, finding a cycle in G implies 
associating a witness to the original z, and this problem is assumed to be 
hard. 

The commitment scheme we constructed is trapdoor. This is necessary for the 
zero knowledge property of our 2-round protocol. But zero knowledge is a property 
which protects honest provers P against dishonest verifiers V. If V is dishonest, 
how can P trust him to send a graph which indeed contains a cycle? And even 
if the graph does contain a cycle, how do we know that V can find such a cycle? 
The answer is that a preliminary step is missing: V must prove beforehand that he 
knows a cycle in G .  This must be done under the following constraints: 

V’s proof must convince P. 

P must not be able to use this proof to learn a cycle in G. 

A simulator M (which is allowed to use V as a subroutine) should be able to 
extract the cycle from V. 

This can be done easily. The commitment scheme is the basic step of some zero 
knowledge proof of knowledge. Thus V can just execute the complete zero knowledge 
proof of knowledge to show that he himself knows a cycle, without revealing any 
useful information about this cycle to P. 

There is one problem left. V’s proof takes too many moves, as in order to 
guarantee the zero knowledge property, V must employ sequential composition of 
the basic step. However, the zero knowledge property is not really necessary in V’s 
proof. In order to guarantee the soundness property of the trapdoor commitment 
scheme it suffices that P does not learn any cycle in G from V’s proof, and we do 
not care if other “irrelevant” information is revealed to P. This extra flexibility in the 
security demands of V’s protocol can be exploited by employing parallel composition 
instead of sequential composition in the construction of V’s proof of knowledge from 
Protocol 1. In the next section we show that under suitable conditions (which are 
easy to meet) the parallel composition, though not zero knowledge, does not reveal 
any cycle in G. 

5 Introduction to Witness Hiding Protocols 
The concept of witness hiding protocols is a development of the concept of ‘%ran& 
ferable information”, used in proving that the parallel version of the Fiat-Shamir 
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protocol is secure 1121. For a full treatment of witness hiding protocols see [ll]. 
This section only offers an introduction sufficient for the purposes of this paper. 

The concept of Witness Hiding (WH - to be defined shortly) is a possible al- 
ternative to zero knowledge. It is a weaker requirement than zero knowledge, but 
in many cases, it still satisfies the security demands of cryptographic protocols. It 
comes together with a technical tool (witness indistinguishability), which replaces 
the technique of resettable simulation. The advantage WH has over zero knowledge 
is that (under well defined conditions) it is preserved under general composition of 
protocols. As a special case of general composition, it is preserved under parallel 
composition. 

Informally, a protocol (P,V) is WH if participating in the protocol does not 
help the verifier (which can be either the original V or a cheating V’) t o  compute 
appropriate witnesses to the input. This is a natural security requirement of many 
cryptographic protocols. In order to prove the WH property, one must show that if 
V‘ can compute a witness to  the input after participating in the interactive proof, 
then he had this capability in him even before the protocol began. To this end we 
introduce the witness extractor M .  We give the technical definition of this concept, 
and refer the reader to  [ll] for a discussion on this definition and a comparison 
between WH and zero knowledge. 

Definition 5.1: Let (P, V) be a proof of knowledge system for language L. Let 
R = s(n) be a probability distribution on the inputs z E L of size n, and on their 
corresponding witnesses ~ ( z ) ,  (P, V )  is witness hiding (WH) on (L ,T)  if there exists 
a witness extractor M which runs in expected polynomial time, such that for any 
nonuniform polynomial time V‘ 

Prob(V&,,,)(z) E ~ ( 2 ) )  - Prob(M(z ,V’)  E w(z))  < v(n)  

The probability is taken over the distribution of the inputs and witnesses, aa 
well as the random tosses of P and M .  The witness extractor is allowed to  use V’ 
(but not P) as a subroutine. o 

In order to make use of the notion of WH, we need a technical tool for proving 
that protocols are WH. For this end we define witness indistinguishability (WI). 

Definition 5.2: Proof system (P ,  V )  is witness indistinguishable (WI) if for any 
V ‘ ,  for any large enough input 2, for any w1 E W ( Z )  and w2 E w ( z ) ,  and for any 
auxiliary input y for V’, the ensembles, Vicz,wl, (2, y) and V&z,w2)(z, y), generated 
as V’s view of the protocol are indistinguishab1e.o 

WI involves no simulator M ,  and is suggested as an alternative to the resettable 
simulation technique. The next Theorem shows that WI is implied by zero knowl- 
edge. 

Theorem 5.1: Let (P,V) be any zero knowledge protocol. Then the protocol 
is WI. 

Proof (sketch): The proof follows from the transitivity of the indistinguisha- 
bility relation. For input z, assume distinguisher D has probability p of outputting 
1 on V’s view of P’s proof, when P is using wl. By the zero knowledge property, 
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D has the same probability p (up to negligible additive terms) of outputting 1 on 
the simulated view created by M .  But the view M creates is independent of the 
witness P is using. Thus D has probability p of outputting 1 on V's view even if P 
is using w2. 0 

Theorem 5.2: WI is preserved under parallel composition of protocols. 
Proof (sketch): Consider polynomially many parallel executions of a WI proto- 

col (P, V). Assume that there exists a verifier V' for which this parallel composition 
is not WI. That is, there exist infinitely many n, inputs ~ ( n ) ,  auxiliary inputs y(n) to 
V' ,  and witnesses wl(n) and w2(n) ,  such that the two ensembles V'~z,,,l)(z,y) and 
Vi(z,wa)(x, y) are polynomially distinguishable. Then somewhere there must be a 
"polynomial jump": For any n, there exists k(n), such that if P uses witness w1(n) 
for executions of index less than k(n), and P uses witness wz(n) for executions of 
index greater than k(n), the ensembles (which differ only in the witness used in it- 
eration k(n)) are distinguishable. We construct a modified cheating V' for the orig- 
inal protocol (P,V). V' has as auxiliary input y'(n) = (y(n),k(n),wl(n),wz(n)). 
This random polynomial time V' ,  when interacting with truthful P, simulates by 
himself all the other parallel iterations which are taking place with V'. We use 
here the fact that both V' and P are polynomial time, and so V' can simulate 
both these protocols. Now V' can distinguish between truthful P using w1(n) and 
wz(n),  which is a contradiction to our assumption that the original protocol was 
WI. 0 

The above two Theorems establish a methodology for constructing WI protocols. 
Take the basic step of a ZKIP. By Theorem 5.1 it is also WI. Iterate the basic 
step n times in parallel. This is not zero knowledge, but by Theorem 5.2, it is 
WI. What we need now is to establish a connection between WI and WH. We 
cannot prove that any WI protocol is also WH, but we can specify conditions under 
which WI implies WH. These conditions involve the particular method by which 
input instances are generated. A protocol may be trivially WI because every input 
has only one possible witness. In this case WI cannot imply anything. But if any 
input has at least two "independent" witnesses, than the WI property is nontrivial, 
and it may be possible to infer WH from WI. We demonstrate this point by the 
following protocol, which will subsequently be used in our perfect zero knowledge 
2-rounds proofs of knowledge. 

Protocol 2 is based of the discrete log problem. We modify this problem so that 
each instance of the new modified problem has two independent witnesses. 

Protocol 2: The common input is generated by a slight twist to the invul- 
nerable generator of the certified discrete log assumption, which forces the input to 
have two witnesses. The input is ( p , g , c , z 1 ,  q), where p ,  9 ,  and c are as described 
in CDLA, and z1 and z2 are integers in 2; chosen randomly and independently. 
This instance is d e h e d  to have two possible witnesses: w1 satisfying gwl = q mod 
p ,  and wz satisfying gwz = 22 mod p .  (wi is the discrete logarithm of q). P receives 
as witness w E {wl, w2). P proves that he knows the discrete log of either z1 or 22. 
The basic step of the protocol is: 
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1. P chooses secretly, randomly and independently rl, r2, and computes y1 = 
q g r l  mod p ,  y2 = z2g'a mod p .  P sends these two values in a random order 
to v. 

2. V replies by a random challenge: 0 or 1. 

3. If P receives 0, P reveals rl and r2, and V checks that yl and y2 were con- 
structed correctly (satisfy y = zg' mod p ) .  If P receives 1, P reveals the 
discrete log of only one of the y's (which equals w + r (mod p - 1)). 

This basic step is executed log p independent times in parallel. 
Theorem 5.3: The above protocol is a complete and sound witness hiding proof 

that P knows the discrete log of one of two inputs, under the distribution of inputs 
specified in CDLA (see section 2). 

Proof (sketch): The proof of the completeness and soundness properties of the 
protocol is standard. We prove only the WH property. 

The basic step of the protocol is zero knowledge (and even perfect zero knowl- 
edge). The parallel composition of the basic step gives a protocol which is presum- 
ably not zero knowledge, but still (by Theorems 5.1 and 5.2) this protocol is WI. 
Assume that for some V' Protocol 2 is not WH. Then V' learns with nonnegligible 
probability one of the discrete logs (w.l.o.g., assume it is wl). But because of WI, 
V' has the same probability of learning wl whether P is really using w1 or the other 
witness w2. This gives a random polynomial time algorithm for computing the dis- 
crete log, contradicting CDLA: On input ( p ,  g,c,z), M has to compute w satisfying 
z = g" mod p .  M chooses randomly and uniformly w2 and creates tz = gWa mod p .  
M sets 51 = z and uses ( p , g ,  c , z l , t 2 )  as input to  Protocol 2. In this protocol M 
simulates P and uses his control over V' to obtain V's replies. By our assumption, 
V' has nonnegligible probability of extracting wl from this protocol. Thus M has 
nonnegligible probability of computing the discrete log of z ,  violating CDLA. o 

The basic step of protocol 2 can be used as a trapdoor commitment scheme, 
provided P knows neither w1 nor w2. P commits to 0 by constructing yl and y2 as 
in move 1 of protocol 2. P commits to 1 by choosing random r, and constructing 
one of the y's as 9'. 

In order to construct the 3-move WH protocol (protocol 2), we composed two 
random instances of the discrete log problem. This procedure of composing two 
random instances can be followed with any NP language. Protocol 2 uses self 
randomizing [2] properties of the discrete log. For other N P  languages, we may 
not have direct protocols for proving knowledge of one of two witnesses, and in 
this case, P and V may reduce the composed input instance to  an instance of 
the NP-complete set DHC, and use protocol 1. If the instances of the original 
NP language are generated by an invulnerable generator, then the proof that the 
resulting protocol is WH is similar to the proof of Theorem 5.3. In [ll] we prove a 
stronger and more general Theorem, stated here without proof. 

Theorem 5.4: Let G be any generator for a set S = { ( t ,  w ) )  recognizable in 
BPP (which need not be invulnerable). Let x be the distribution obtained by two 
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independent applications of G, taking (z1,z2) as common input, and one of WI or 
w2 at random as a corresponding witness. Let (P, V )  be any WI system for proving 
knowledge of a witness w s.t. ((q, w) € S or ( 5 2 ,  w )  E S). Then (P,V) is WH. o 

6 The Full Protocols 
We first present a 3-round perfect zero knowledge proof of knowledge for DHC, based 
on CDLA. Then we show how this protocol can be modified to two rounds. Finally 
we show how the cryptographic assumption can be weakened, from CDLA to the 
existence of any one-to-one oneway function, at the price of obtaining a protocol 
which is only computationally zero knowledge. The construction of 5-move protocols 
from any oneway function (using Naor’s [21] bit commitment scheme) is an easy 
consequence of our techniques. 

Protocol.  3a: Perfect zero knowledge proof of knowledge for DHC. Crypto- 
graphic assumption: CDLA. Protocol 3a is a sequential composition of Protocol 2 
and Protocol 1, described in sections 5 and 3 respectively. 

Common input: G, a Hamiltonian graph. P’s witness is H ,  a cycle in G. 
Move 1: V uses the modified invulnerable generator based on CDLA to  generate 

an input I = ( p ,  g, c ,  21, z 2 )  for protocol 2. V is to act as prover in protocol 2, and 
so he discards randomly either w l  or w2, and keeps the other (denoted as w) as hi 
auxiliary input. V sends I to  P.  

Null Move: P uses the certificate c to check that p is prime and g a generator. 
If this check fails, P stops. 

Moves 1-3: V and P now perform Protocol 2 with I as input. Note that in 
this subprotocol, the roles are reversed: V is the prover (with w as auxiliary input) 
and P is the verifier. 

Null Move: If Protocol 2 is completed successfully, than P is convinced that 
V knows a witness to I .  Otherwise P stops. 

Moves 4-6: P and V execute the parallel composition of Protocol 1, with 
common input G, and P’s auxiliary input is H .  As a bit commitment scheme, 
P uses the basic step of Protocol 2 with 1 as input. This commitment scheme is 
trapdoor, because V already proved (in the previous subprotocol) that he knows a 
witness for I .  

Null Move: If Protocol 1 is completed successfully, V accepts. 

Protocol 3a consists of 6 moves. In order to reduce the number of moves to 4 
(i.e. the number of rounds to  2), we modify this protocol: 

Protocol 3: 2-Round perfect zero knowledge proof of knowledge for DHC. The 
protocol proceeds exactly as protocol 3a, but executes subprotocols 2 and 1 almost 
in parallel by regrouping the six moves into four super-moves: (1); (2,4); (3,5); 
( 6 ) .  (The reader should work out this regrouping by himself, from the explicit 
description of protocols 1 and 2) .  o 

0 
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Protocol 3 assumes CDLA, which is a strong assumption. The modified discrete 
log problem was used as a trapdoor commitment scheme. In order to use a weaker 
cryptographic assumption, we base the trapdoor commitment scheme on DHC (as 
explained in section 4). The protocol we obtain this way is only computational zero 
knowledge. 

Protocol 4a: Computational zero knowledge proof of knowledge fm DHC. 
Cryptographic assumptions: IGA and the existence of bit commitment schemes. 
Both assumptions follow from the single assumption that one-to-one oneway func- 
tions exist. 

Common input: G, a Hamiltonian graph. P’s witness is H ,  a cycle in G. 
Move 1: V uses the invulnerable generator to create two hard certified instances 

(z1,wl) E S and ( 2 2 , ~ ~ )  E S. V reduces the NP statement Kthere exists w such 
that either (21, w )  E S or (z2, w )  E S” to an instance I of the NP complete problem 
DHC. The witnesses wl and w2 are transformed into two cycles in I ,  of which V 
randomly discards one and keeps the other (denoted as w ) .  V sends ( I , z ~ , z z )  to 
P.  

Null Move: P checks that I is indeed obtained from (q,q) by the publicly 
known polynomial reduction. If this check fails, P stops. 

Moves 1-3: V and P now perform the parallel composition of Protocol 1 on 
input I. Note that in this subprotocol, the roles are reversed: V is the prover (with 
auxiliary input w )  and P is the verifier. In order to execute the prover’s part in 
Protocol 1, V must randomly choose a bit commitment scheme. We denote this 
commitment scheme by Cv. 

Null Move: If Protocol 1 is completed successfully, then P is convinced that 
V knows a witness to  I. Otherwise P stops. 

Moves 4-6: P and V again execute the parallel composition of Protocol 1, this 
time with P as the prover, V as the verifier, G as the common input, and H as 
P’s auxiliary input. As a trapdoor bit commitment scheme, P uses the basic step 
of the same Protocol 1, but with I as input. For this basic step, P needs to use 
another (nontrapdoor) bit commitment scheme (see Protocol 1), and we denote this 
commitment scheme by C p .  

Null Move: If Protocol 1 is completed successfully, V accepts. 

Protocol 4a takes 6 moves. As before, we can reduce the number of moves to 4 
by parallelizing some of the steps: 

Protocol 4: 2-Round computational zero knowledge proof of knowledge for 
DHC. Transform protocol 4a into protocol 4 in exactly the same way as protocol 
3a is transformed to protocol 3. o 

0 

7 Correctness 

Theorem 7.1: Under the certified discrete log assumption, Protocol 3 is a com- 
plete, sound and perfect zero knowledge proof of knowledge of a Hamiltonian cycle 
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in a directed graph. 
Proof (sketch): We sketch the proof for Protocol 3a. The proof for Protocol 

3 is similar. We need to  prove three properties: Completeness, soundness, zero 
knowledge. 

Completeness : Trivial. 
Soundness: We describe a knowledge extractor M ,  which stops in expected 

polynomial time, and the probability it outputs a cycle in G is the same (up to  
negligible additive terms) as the probability that P' convinces a truthful V. 

Given (a possibly cheating) P', M first executes the whole protocol (P' ,V),  by 
faithfully simulating V's part. If V rejects, M stops and outputs nothing. Other- 
wise, M repeatedly resets P' to step 5 of the protocol, chooses new random chal- 
lenges (in step 2 of Protocol l), until P' again meets these challenges successfully. 
When this happens, or if P' failed to answer 2" successive challenges, M stops. NOW 
there are three possible events: 

1. P' failed to answer 2" successive challenges. 

2. The second set of challenges was met by P' by opening some committed bit 
differently than in his original success. 

3. The soundness of the trapdoor commitment scheme was not violated, and from 
the two successful executions, M can derive a cycle in G. (This is because P' 
opened the committed matrix and showed its isomorphism to G, and showed 
a cycle in the same matrix). 

We have to show two things: That M's expected running time is polynomial, 
and that the f i s t  two events have negligible probability. In order to analyze M's 
running time, we specify by p P's conditional probability of completing the protocol, 
given that move 4 was completed. Then M's expected running time is proportional 
to (1 - p )  - 1 + p - < 2 times the running time of V (which is polynomial). This 
also shows that the probability of the first event is negligible (O(2-")). As to the 
probability of the second event: Consider its a-priori probability at the beginning 
of the protocol. If it is negligible, we ignore it. If it is not negligible, this violates 
the CDLA, as described in the proof of Theorem 5.3 (the WH property of Protocol 

Zero-knowledge: We describe a simulator M, which for any (possibly cheating) 
V' ,  creates in expected polynomial time a view of the protocol indistinguishable 
from the view of V' .  The simulator first performs P's part in moves 1-3. If V' does 
not complete this subprotocol successfully, M stops. Otherwise, M repeats move 
2, each time with different randomly chosen challenges, until V' again successfully 
meets M's challenges. From the two successful executions M can find a discrete log 
w .  To guard against an infinite execution in case there is only one set of challenges 
that V answers correctly, M tries in parallel to find wl by himself (using exhaustive 
search). 

2) .  



541 

Once M finds a w ,  he can create instances of the trapdoor commitment scheme 
which he can open both as 0 and as 1. This allows him to carry out P’s part 
in moves 4-6, without knowing a Hamiltonian cycle and without using resettable 
simulation. 

The analysis of M’s running time is similar to the analysis of knowledge sound- 
ness. The view created is perfectly indistinguishable from V’s view of the protocol 
when executed with a real P. o 

Theorem 7.2: Under the invulnerable generator assumption, and under the 
assumption that secure (nontrapdoor) bit commitment schemes exist, Protocol 4 
is a complete, sound and computational zero knowledge proof of knowledge of a 
Hamiltonian cycle in a directed graph. 

Proof (sketch): We sketch the proof for Protocol 4a (the proof for Protocol 4 is 
similar). The main new complication is the use of the two nontrapdoor commitment 
schemes: CV and Cp. We concentrate only on aspects that do not appear in the 
proof of Theorem 7.1. 

Completeness: Proving this property involves only one subtle point: The 
derivation of I ,  which serves as the basis of the trapdoor commitment scheme, 
is done by a polynomial reduction to DHC which preserves witnesses. This ensures 
that V can complete his part of the protocol in moves 1-3, where he has to know a 
cycle in I. 

Soundness: The knowledge extractor M works in a way analogous to the proof 
of Theorem 7.1. The proof that its expected running time is polynomial is similar. 
Complications arise from two sources: 

1. In addition to the three events we had earlier, we now have a fourth possible 
event: P’ met two challenges, by violating the soundness property of his 
nontrapdoor commitment scheme Cp. 

2. P’ may learn a cycle in I in moves 1-3, by violating the security of V’s non- 
trapdoor commitment scheme CV. 

Thus in proving the knowledge soundness property, we must exclude the above 
two events as having negligible probability. This follows from the assumption that 
there exist sound and secure bit commitment schemes. 

Zero knowledge: Again, the nontrapdoor commitment schemes cause compli- 
cations. 

1. The simulator M ,  in trying to extract a witness for I from moves 1-3, may 
not succeed, and instead discover a violation of the soundness of Cv (a bit 
commitment V once opened as 0 and once as 1). 

2. The protocol is not perfect zero knowledge. The view generated by M differs 
from the view generated in real executions of the protocol in the value of the 
unopened commitments to bits by Cp. 
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In proving that the protocol is zero knowledge, we must prove that the first 
event has negligible probability. This follows from the assumption that Cv is a 
sound commitment scheme. We must also prove that no nonuniform polynomial 
time distinguisher can take advantage of the differences between the two ensembles. 
This follows from the assumption that C p  is a secure commitment scheme. o 

8 Concluding Remarks 
Witness hiding is an attractive alternative to zero knowledge not only in interactive 
proofs. Its use offers advantages also in noninteractive proofs. Noninteractive zero 
knowledge proofs, as introduced in [4] and [lo], postulate the existence of a publicly 
known random string (such as tables of random numbers prepared by the RAND 
corporation). [4] and [lo] show how a prover may use this random string to write 
down a noninteractive zero knowledge proof of any N P  statement. However, the 
prover may not use the same common random string in order to prove many (more 
than logn) statements, since the zero knowledge property breaks down. In [Ill we 
show that WH does not suffer from the same drawback, and noninteractive witness 
hiding protocols may use the same common random string repeatedly, without 
jeopardizing the WH property. This property is valuable in using noninteractive WH 
protocols as a basic primitive in the construction of more complicated cryptographic 
primitives (such as signature schemes [7]). More details appear in [ll]. 
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