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Abstract. With the increasing number of hostile network attacks, anomaly de- 
tection for network security has become an urgent task. As there have not been 
highly effective solutions for automatic intrusion detection, especially for detect- 
ing newly emerging attacks, network traffic visualization has become a promising 
technique for assisting network administrators to monitor network traffic and de- 
tect abnormal behaviors. 
In this paper we present VisFlowCluster-IP, a powerful tool for visualizing net- 
work traffic flows using network logs. It models the network as a graph by mod- 
eling hosts as graph nodes. It utilizes the force model to arrange graph nodes on a 
two-dimensional space, so that groups of related nodes can be visually clustered 
in a manner apparent to human eyes. We also propose an automated method for 
finding clusters of closely connected hosts in the visualization space. We present 
three real cases that validate the effectiveness of KsFlowCluster-IP in identifying 
abnormal behaviors. 

1 Introduction 

There has been tremendous growth of network applications and services in the last two 
decades. At the same time, the number of hostile attacks is increasing, and these attacks 
are hidden by the vast majority of legitimate traffic. There have been many studies 
on intrusion detection systems (IDS) which fall into the following two categories. The 
first category is misuse detection systems [6,7,14,18], which use predefined signatures 
to detect intrusions. However, they are not effective for detecting new intrusions and 
viruses, and the ever growing signature database becomes problematic. The second cat- 
egory is anomaly detection systems [15,17], which attempt to model normal behaviors 
and give alerts for any behavior that deviates from the model. However, the "normal 
behaviors" of different persons and tasks may not be similar, so it is difficult to accu- 
rately profile normal network traffic. Attempts to detect anomalies based on profiles of 
network traffic often suffer from unacceptable false positive rates. 

As fully automated intrusion detection systems have not been able to provide a 
highly effective solution to protect network systems, humans are still in-the-loop of 
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inspecting large numbers of alerts to identify real threats. In comparison with automated 
systems, the human mind is capable of rapid visual processing, especially for detecting 
abnormal or extraordinary visual patterns. Tools that visually depict network traffic 
patterns leverage this capability for anomaly detection. They can provide a user with 
the capability to drill down into the data to extract information about potential attacks. 
Almost all security events leave traces in network traffic. It is a highly challenging task 
to find these traces in high-volume traffic. Visualization tools can represent high-volume 
traffic as static graphs or dynamic animations, in order to help network administrators 
sift through gigabytes of daily network traffic to identify anomalous patterns. 

In this paper we propose l4sFlowCluster-IP, a tool that visualizes network connec- 
tivity using visual clustering techniques to assist network administrators with monitor- 
ing abnormal behaviors. There have been many studies on visualizing network traffic 
and connectivity [2,4,23,25]. In these approaches, hosts in a network are represented 
as nodes and traffic as edges or flows in a graph. However, they fix hosts in certain loca- 
tions according to their IP addresses, without considering relationships and interactions 
between different hosts. 

In [9] and [13], approaches have been proposed to arrange graph nodes with a force 
model in order to better capture the relationships and patterns among the nodes. This 
technique has been widely used in graph drawing and visualization [19,24]. EsFlow- 
Cluster-IP uses this model for arranging hosts in network visualization. It models each 
host in a network as a particle in a two-dimensional space, and defines the attraction (or 
repulsion) force between two hosts according to their relationship. Then it lets particles 
interact with each other until a reasonably stable arrangement is achieved. In the force 
model method, related hosts can be visually clustered and certain traffic patterns will 
thus become apparent to human eyes. l4sFlowCluster-IP can also detect clusters of par- 
ticles that are located close to each other in the space of visualization, which correspond 
to groups of hosts that are closely related to each other. 

Another shortcoming of most existing approaches for visualizing network traffic [2, 
4,23,25] is that most of them only use the traffic volume between two hosts to measure 
the relationship between them. Although this model can identify hosts that commu- 
nicate with each other, it is not good at finding hosts that exhibit similar behaviors, 
because two hosts with similar behaviors may not have traffic between them. For ex- 
ample, two hosts in a group often both have high traffic volume to some servers in that 
group, but usually do not have much traffic between them. Another example is that two 
basketball fans often have high traffic to web sites of NBA, NCAA, and ESPN, but 
they seldom communicate with each other. l4sFlowCluster-IP provides functionality to 
address this problem. It defines the relationship between two hosts based the external 
hosts they access, as well as traffic between them. 

With the above techniques, l4sFlowCluster-IP can visualize the network hosts and 
connections in a 2-D space, so that hosts that exhibit similar behaviors will be arranged 
close to each other and form visual clusters. This capability is not available in exist- 
ing visualization systems for anomaly detection. We apply fisFlowCluster-IP to the 
traffic logs from our network. Some abnormal visual patterns are identified from the 
visualizations, with which we easily find the corresponding abnormal patterns in net- 
work traffic. These experiments show that l4sFlowCluster-IP is able to convert certain 
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abnormal traffic patterns into abnormal visual patterns that are apparent to human eyes. 
Our experiments also show that EsFlowCluster-IP can automatically identify these ab- 
normal visual patterns as visual clusters and report such clusters to users. However, 
VisFlowCluster-IP also reports some clusters that correspond to normal behaviors and 
are false alerts. The user still needs to make judgments for each cluster based on both 
the visualization and the network traffic data. 

The remainder of this paper is organized as follows. Section 2 summarizes related 
work. We present background information in Section 3. Section 4 describes the visu- 
alization approach of EsFlowCluster-IP and the approach for identifying clusters of 
closely related hosts. Section 5 presents experimental results that validate the capability 
of EsFlowCluster-IP for security monitoring. We end with a summary and conclusions 
in Section 6. 

2 Related Work 

Currently, there are two main approaches to intrusion detection: misuse detection and 
anomaly detection. Misuse detection [6,7,14,18] finds intrusions by directly matching 
known attack patterns. The major drawback of this rule-based approach is that it is only 
effective at finding known attacks with predefined signatures. In anomaly detection [15, 
171, the normal behavior of a system is stored as a profile. Any statistically significant 
deviations from this profile are reported as possible attacks. However, these alarms may 
also be legitimate but atypical system activity, which often leads to unacceptable false 
positive alarm rates. 

Because of the limited density of information conveyed through text, visualization 
techniques to present computer network data sets to humans have been a growing area 
of research. It is well-known that seeing enables humans to glean knowledge and deeper 
insight from data. Early work on visualizing networks has been motivated by network 
management and analysis of bandwidth characteristics [3,5,10]. A wide spectra of 
knowledge about visualization of cyberspace is provided in [8], such as topology of 
connectivity and geography of data flows. 

In [20], the authors present a visualization of network routing information that can 
be used to detect inter-domain routing attacks. In [21,22], they explore further in this 
field and propose different ways for visualizing routing data in order to detect intrusions. 
An approach for comprehensively visualizing computer network security is presented 
in [ l l ] ,  where the authors visualize the overall behavioral characteristics of users for 
intrusion detection. They represent the substantial characteristics of user behavior with 
a visual attribute mapping capable of identifying intrusions that othenvise would be 
obscured. However, the host representation employed in [ l l ]  is not scalable in terms 
of the number of hosts and traffic volume. In [I], parallel axes are used to visualize 
network logs about traffic involving a single machine (web server). In [16], the authors 
present NVisionIP, which shows network traffic in a host-centric view, providing both 
an overview and detailed views with its on-demand zoom and filtering capabilities. 

Linkages among different hosts and events in a computer network contain important 
information for traffic analysis and intrusion detection. Approaches for link analysis are 
proposed in [2,4,25]. [2] focuses on visualizing linkages in a network, and [4] focuses 
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on detecting attacks based on fingerprints. In [25], the authors present VisFlowConnect- 
IP, a tool for visualizing connectivity between internal and external hosts using anima- 
tion. It uses animation to visualize network traffic in real-time and focuses on short- 
term link analysis. In contrast, VisFlowCluster-IP is a complementary, static off-line 
visualization tool, which uses visual clustering techniques to highlight clusters of hosts 
closely related to each other. It focuses on long-term link relationships among the hosts. 

These tools provide effective ways to visualize hosts and traffic in a network. How- 
ever, they all use approaches where all nodes are fixed on certain locations or lines, 
and the locations of nodes are independent from their relationships with other nodes. 
This prevents the visualization tool from arranging hosts in a nice layout that captures 
the relationships among them. This problem is discussed in [23], which first performs 
hierarchical clustering on hosts and then visualizes the clusters. However, the visual- 
ization approach in [23] simply shows the hierarchical structures of clusters, instead of 
arranging them for better understanding. 

3 Preliminaries 

3.1 NetFlow Source Data 

The source data used by VisFlowCluster-IP is NetFlow data. We consider two formats 
of NetFlow data, one from Cisco routers and the other from a freely available software 
named Argus (<http://www.qosient.comiargusi>). A distinct flow is defined as either 
a unidirectional TCP connection (where a sequence of packets take the same path) or 
individual UDP packets with the same IP and port in a short period of time. 

The input to VisFlowCluster-IP is a stream of NetFlow records either from a log 
file or a streaming socket. A NetFlow agent is used to retrieve the NetFlow records and 
feed them into VisFlowCluster-IP. Each record contains the following information: (1) 
IP addresses and ports of the source and destination, (2) number of bytes and packets, 
(3) start and end times, and (4) protocol type. 

3.2 Problem Settings 

The goal of KsFlowCluster-IP is to visualize hosts and network traffic in a way that 
groups of related hosts can be easily identified by humans. Each host in the network 
is modeled as a node in a graph, and an edge is added between two nodes if there is 
certain relationship between them. In VisFlowCluster-IP, two nodes are related if they 
communicate with each other, or they both access the same server(s) outside the net- 
work. We translate relationships between nodes into attraction/repulsion forces, which 
are used to arrange nodes in our visualization. 

4 Visualizing Network Flows 

4.1 Constructing Graph 

Given a network log containing a list of NetFlow records, VisFlowCluster-IP constructs 
a graph with the following procedure. 
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EsFlowCZuster-IP first creates a graph node for each host in the network to be 
visualized (e.g., each host in NCSA in our visualization), which is called a particle 
node. It also creates a graph node for each host outside the target network, which is 
called a hub node. A hub node is only for visualization and does not participate in the 
arrangements of graph nodes. 

Suppose a graph contains particle nodes p l ,  . . . ,p,, and hub nodes h l ,  . . . , h,. 
The volume of traffic between two nodes x and y (in either direction) is represented by 
T ( x ,  y). Two nodes are considered to be highly related if there is high traffic volume 
between them, or they both have high traffic volume to many hub nodes. Thus we define 
the edge weight between two particle nodes p 1 and p2 as a combined function of the 
traffic volume between them and the traffic volume between them and their common 
neighbor nodes. 

The user may adjust the weights of internal traffic and external traffic by choosing an 
appropriate value for a. 

4.2 Arranging Nodes 

V?sFlowCluster-ZP uses the force model [9,13] to arrange particle nodes in a graph, 
in order to reorganize the graph so that groups of nodes related to each other can be 
clustered on the screen and made apparent to humans. In such a model, two particles 
attract each other if they have an edge between them, and repulse each other if not. All 
particle nodes keep interacting with each other in many iterations, until a reasonably 
stable arrangement is achieved. The following procedure is used for arranging nodes. 

Initially, EsFlowCluster-IP assigns a default location for each particle node. Be- 
cause some parts of an IP address may indicate information about the host, the location 
of each host is determined by its IP. Suppose the IP of a host h is a.b.c.d. Suppose H ,  
and Hh are two hash functions whose input domains are all integers and value ranges 
are the width and height of the visualization panel respectively. In V?sFZowCluster-IP, 
the x coordinate of h is H,(256 x ((256 x a )  + b) + c),  and the y coordinate is Hh(d).  
Since hosts belonging to the same group or cluster often belong to the same class C, 
they will be located on one or a few vertical lines. Some hosts that are certain types of 
servers often have the same values on last byte of IP (e.g., gateway or DNS server), and 
thus they will be located on certain horizontal lines. 

After the initial assignments, VisFlowCluster-IP lets the particle nodes interact with 
each other in order to achieve an arrangement in which groups of related hosts are visu- 
ally clustered. As in previous approaches of force models [9,13,24], fisFlowCluster-IP 
adjusts the location of each particle according to the attraction and repulsion forces it 
receives in each iteration, and it performs many iterations until achieving a reasonably 
stable arrangement. 

Suppose the location of a particle node pi  is pi. The force between two particle 
nodes pl and p2 is defined as follows. 
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- Repulsion: There is a repulsion force between any two particle nodes, which is a 
decreasing function of the distance between them. The magnitude of the repulsion 
force is - 

in which C,,, is a constant. The direction of the repulsion force received by p 1 

from p2 is same as the vector p l  - pz .  
- Attraction: If there is an edge between p l  and p2, there is an attraction force be- 

tween them. The magnitude of the attraction force is proportional to the weight of 
the edge between pl and p2. 

in which Cattr is a constant. The direction of the attraction force received by p 1 

from p2 is the same as the vector pa - p l .  

In each iteration, each particle node pi receives a force Fi that is the sum of all 
the repulsion and attraction forces it receives. The movement of pi in this iteration 
is bFi, where S is the step length. The stability of an arrangement is defined as the 
average movement of each particle node in an iteration. In most cases, a fairly stable 
arrangement can be achieved in ten to fifty iterations, and each iteration usually takes 
several seconds on a graph of a few thousand nodes. 

4.3 Visualization 

fisFlowCluster-IP assigns a color' to each host, which is based on its IP address. The 
color is determined in a way that hosts with similar IP addresses have similar colors. As 
the horizontal location of a host is determined by the first three bytes of its IP, and the 
vertical location by the last byte, we also assign a unique color for each host. The hue of 
the color is determined by the first three bytes of its IP, and the brightness is determined 
by the last byte. In this way all hosts from same class C will have similar colors (same 
hue) but with different brightnesses. 

We use an example to show how we determine colors of hosts. The network in 
NCSA is a class B, which contains 65536 distinct IP addresses. Suppose the IP of a 
host is a.b.c.d. Its hue is set to 360 . ~ 1 2 5 6 ,  which ranges from 0 to 360. Its brightness 
is set to dl512 + 0.5, which ranges from 0.5 to 1. Its saturation is set to 1, so that each 
host has a vivid color (white, gray, and black will not appear here). 

In the visualization, each particle node is represented by a circle filled with its color. 
Each hub node is also represented by a circle, but with the color of light gray. We define 
the weight of a node n, w(n) ,  as the logarithm of the total traffic volume involving 
that node. The diameter of a circle is proportional to the weight of the corresponding 
node. There is a line between two nodes if there is traffic between the two corresponding 
hosts. The location of each hub node hi  is a weighted average of locations of all particle 
nodes connected to it, based on the edge weights between h i  and the particle nodes. 

' We note that some visualizations may be hard to understand if this paper is printed in black- 
and-white. They are clear in electronic versions of this paper. 



290 Xiaoxin Yin, William Yurcik, and Adam Slagell 

Fig. 1. Initial Arrangement of VisFlowCluster-IP. 

The initial assignment of an example NetFlow log file is shown in Fig. 1. This 
file is an Argus log file that only contains traffic between internal hosts and external 
hosts. J4sFlowCluster-ZP repeatedly rearranges the particle nodes in Fig. 1. A stable 
arrangement is achieved after 32 iterations, which takes 11.52 seconds in total. The 
final arrangement is shown in Fig. 2, in which two clusters of hosts are automatically 
detected. The approach for detecting clusters will be introduced in Section 4.4, and the 
sematic meanings of the visualization results will be discussed in Section 5. 

4.4 Finding Clusters 

During the iterative arrangements of nodes, the sets of particle nodes that are closely 
related to each other will be grouped together because of the attractions among them, 
and the particle nodes that are not related to each other will seldom be located close 
to each other because of the repulsions. Therefore, the dense regions on the plane of 
visualization correspond to groups of closely related nodes. 

~sFlowCluster-ZPuses DBSCAN [12], a popular density-based clustering approach 
to find clusters of related nodes. DBSCAN considers every point as a node in a graph. 
An edge exists between two nodes if their corresponding points are very close to each 
other. A cluster is a connected component in such a graph. Because we are only inter- 
ested in dense regions on the plane of visualization, we slightly modify the algorithm 
to ignore sparse regions. We first divide the space into many small grids. The density 
of a grid is defined as the total weights of particle nodes in this grid. We only consider 
grids whose densities are above a certain threshold, which is /3 times the average den- 
sity of all grids (P > 1). Then we use each dense grid as a point and use DBSCAN to 
identify clusters of dense grids. Because we are only interested in clusters of significant 
sizes, we ignore a cluster if the total weight of its particle nodes is less than y times the 
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Fig. 2. Stable Arrangement of VisFlowCluster-IP. 

total weight of all particle nodes (0 < y < 1). Fig. 2 shows two clusters identified by 
EsFlowCluster-IP, which are highlighted by black arrows. 

5 Experiments 

Experiments are performed to show the effectiveness of KsFlowCluster-IP in assisting 
network administrators to detect abnormal behaviors in a network. We ran KsFlow- 
Cluster-IP on an Intel PC with 2.4GHz Pentium 4 CPU, IGB memory, and running 
Windows XP Professional. In order to show its capability of visual clustering based on 
communications between internal and external hosts, we set (Y = 0 in EsFlowCluster- 
IP to ignore internal traffic. After trying different values for parameters, we use ,/3 = 5 
and y = 0.02 when detecting clusters. Thus a region will be detected as a cluster if its 
density is at least five times the average density and the total weight of its particle nodes 
is at least 2% of the total weight of all particle nodes. 

5.1 Blaster Worms 

The Blaster worm spreads quickly between hosts. Once a host is infected, it will send 
out packets to all hosts known to it. Fig. 3 shows the pattern of Blaster worms, from 
a real Cisco NetFlow log file. The abnormal behavior is already apparent without re- 
arranging nodes. The infected hosts can be easily detected using J3sFlowCluster-IP 
(which are highlighted by an arrow in Fig. 3). 

5.2 Communications with RIPE NCC 

In one Cisco NetFlow log file we find that a large number of hosts in NCSA have 
high-volume communication with a small number of external hosts. This is shown in 
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I * :  

Fig. 3. Pattern of Blaster Worms. 

Fig. 4, in which the biggest cluster shows these hosts in NCSA. We find that these 
hosts are from several clusters of computers, and they connect intensively to the follow- 
ing external hosts as shown in Fig. 4: 131.188.3.221, l53.lO7.47.8l,l92.l36.l43.l~O, 
192.136.143.15 1. We used the 'whois' command to check the domains of the above 
three hosts and we found that they are all from RIPE NCC, a Regional Registry (RIR) 
providing global Internet resources and related services. We feel that it is not surprising 
that many hosts connect to RIPE NCC, and this traffic pattern is benign. Therefore, we 
use filters to filter out traffic involving the domain of RIPE NCC in future visualizations. 

5.3 Web Sewers 

From another Cisco NetFlow log file, we found a group of hosts with high traffic volume 
that are clustered together, as highlighted in Fig. 5. We found that they are all web 
servers in NCSA. It is not strange that the web servers are grouped together. However, 
we find that almost every server in that visual cluster is accessed by about ten hosts from 
the class C network of 64.68.82.*. This is strange because usually traffic to web servers 
should come from hosts whose IP addresses are quite random. Again with the "whois" 
command we find that 64.68.82.* is owned by Google.com. It is clear that Google is 
crawling our web servers. 

6 Conclusions 

In this paper we present ~sFlowCluster-IP, a powerful tool for visualizing network 
traffic flows. It models the network as a graph by modeling hosts as nodes. It utilizes the 
force model [9,13] to arrange graph nodes on a two-dimensional space, so that groups 
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Fig. 4. Communications with RPE NC. 

of related nodes can be visually clustered in a manner apparent to human eyes. We 
also propose a method based on DBSCAN [12] to automatically detect dense regions 
on the plane of visualization. We present three real cases that validate the effectiveness 
of EsFlowCluster-IP in identifying abnormal behaviors. 

We believe EsFlowCluster-IP will be useful for intrusion detection based on pre- 
liminary experiments in a laboratory environment. In the short-term we will continue 
testing EsFlowCluster-IP in laboratory environments to identify the types of behaviors 
it can detect and leverage machine learning techniques for models of normal behavior 
as well as deviate behaviors. In the future we seek to employ this tool in real networks 
where accuracy can be statistically measured. EsFlowCluster-IP will be distributed at: 
<http://security.ncsa.uiuc.edddistibutionNisFlowCluster-IPDownLoad.ht> 
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