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1.1 Authentication schemes, (a) Traditional schemes use ID 
cards, passwords and keys to vahdate individuals and ensure 
that system resources are accessed by a legitimately enrolled 
individual, (b) With the advent of biometrics, it is now pos­
sible to establish an identity based on "who you are" rather 
than by "what you possess" or "what you remember". 

1.2 Examples of biometric traits that can be used for authenticat­
ing an individual. Physical traits include fingerprint, iris, face 
and hand geometry while behavioral traits include signature, 
keystroke dynamics and gait. 

1.3 The Bertillonage system, so named after its inventor Alphonse 
Bertillon, relied on the precise measurement of various at­
tributes of the body for identifying recidivists. These mea­
surements included the height of the individual, the length 
of the arm, geometry of the head and the length of the foot. 
The process was tedious to administer and did not guarantee 
uniqueness across individuals. 

1.4 A variety of fingerprint sensors with different specifications 
(e.g., sensing technology, image size, image resolution, im­
age quality, etc.) are now available. These rather compact 
sensors may be embedded in computer peripherals and other 
devices to facilitate user authentication. 

1.5 Enrollment and recognition (verification and identification) 
stages of a biometric system. The quality assessment module 
determines if the sensed data can be effectively used by the 
feature extractor. Note that the process of quality assessment 
in itself may entail the extraction of some features from the 
sensed data. 
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1.6 Multiple feature sets of the same biometric trait seldom result 
in an exact match. Here, three fingerprint impressions of a 
person's finger (left) and the corresponding minutia points 
(right) are shown. Due to variations in finger placement, 
elasticity of the skin and finger pressure, the minutiae dis­
tributions of the three impressions are observed to be quite 
different. A perfect match between two samples of the same 
finger is almost impossible to achieve. 11 

1.7 The genuine and impostor distributions corresponding to the 
Face-G matcher in the NIST BSSRl database. The thresh­
old, 77, determines the FAR and FRR of the system. Note that 
given these two distributions, the FAR and the FRR cannot 
be reduced simultaneously by adjusting the threshold. 13 

1.8 The performance of a biometric system can be summarized 
using DET and ROC curves. In this example, the perfor­
mance curves are computed using the match scores of the 
Face-G matcher from the NIST BSSRl database. The graph 
in (a) shows a DET curve that plots FRR against FAR in the 
normal deviate scale. In (b) a ROC curve plots FRR against 
FAR in the linear scale, while in (c) a ROC curve plots GAR 
against FAR in a semi-logarithmic scale. 14 

1.9 Biometric systems are being deployed in various applica­
tions, (a) The Schiphol Privium program at the Amsterdam 
airport uses iris scans to validate the identity of a traveler 
(www.airport-technology.com). (b) The Ben Gurion 
airport in Tel Aviv uses Express Card entry kiosks fitted 
with hand geometry systems for security and immigration 
(www. a i r p o r t n e t . org), (c) A few Kroger stores in Texas 
use fingerprint verification systems that enable customers to 
render payment at the check-out counter. The fingerprint 
information of a customer is linked with her credit or debit 
card (www. detnews. com), (d) Finger geometry information 
is used in Disney World, Orlando to ensure that a single sea­
son pass is not fraudulently used by multiple visitors, (e) A 
cell-phone that validates authorized users using fingerprints 
and allows them access to the phone's special functionali­
ties such as mobile-banking (www.mobileburn.com). (f) 
The US-VISIT program currently employs two-print infor­
mation to validate the travel documents of visitors to the 
United States (www. dhs. gov). 20 
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1.10 Intra-class variation associated with an individual's face im­
age. Due to change in pose, an appearance-based face recog­
nition system is unlikely to match these three images suc­
cessfully, although they belong to the same individual (Hsu, 
2002). 26 

1.11 Non-universality of fingerprints. The four impressions of a 
user's fingerprint shown here cannot be enrolled by most fin­
gerprint systems due to the poor image quality of the ridges. 
Consequently, alternate methods must be adopted in order to 
include this user in the biometric authentication system. 28 

1.12 A biometric system is vulnerable to a variety of attacks (adapted 
from Ratha et al., 2001). For functional integrity, there should 
be protocols in place that deflect, detect and rectify the con­
sequences of these attacks. 29 

2.1 Two general approaches to solving a pattern recognition prob­
lem. Each cell in this diagram indicates the application of 
a particular classifier, C ,̂ to a specific pattern representation 
(i.e., feature set), Fj. The approach in (a) is to determine the 
best set of features and the best classifier, while in (b) the 
goal is to determine the best set of classifiers and an optimal 
fusion algorithm to integrate these classifiers. The feature 
sets Fi, F2 , . . . , Fjsf do not have to be mutually exclusive. 39 

2.2 A multimodal interface to acquire face, fingerprint and hand 
geometry images of a person. A well designed interface can 
enhance user convenience and ensure that multiple sources of 
evidence are reliably acquired. In this example, integrating 
the hand and fingerprint input devices into a single unit may 
be beneficial as it would reduce the burden on the individual 
to exphcitly interact with two spatially separated devices. 43 

2.3 Multimodal biometric systems utilize different body traits to 
establish identity. In principle, a large number of traits can 
be used to improve the identification accuracy. In practice, 
factors such as cost of deployment, finite training sample 
size, throughput time and user training will limit the number 
of traits used in a particular application. 44 

2.4 The various sources of information in a multibiometric sys­
tem: multi-sensor, multi-algorithm, multi-instance, multi-
sample and multimodal. In the first four scenarios, a single 
biometric trait provides multiple sources of evidence. In the 
fifth scenario, different biometric traits are used to obtain evidence. 45 
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2.5 The multi-algorithm fingerprint matcher designed by Ross 
et al., 2003. The system utilizes both minutiae and texture 
information to represent and match two fingerprint images 
(query and template). The minutiae matching module pro­
vides the transformation parameters necessary to align the 
query image with the template before extracting the texture 
information from the former. The texture information is rep­
resented using ridge feature maps. 47 

2.6 The scenario envisioned by Beattie et al., 2005 in which 
biometric sensors are installed at various locations within 
a building that is partitioned into various zones. The au­
thentication decision rendered at a particular location for a 
specific user, is a function of the decisions generated at other 
locations previously visited by the same user. Thus, there 
is an integration of evidence across space and time. More­
over, the fusion rule employed at a particular site can vary 
depending upon the security level of the associated zone. For 
example, in the above illustration, a user entering site B has 
to be verified using two biometric sensors whose decisions 
may be combined using the AND decision rule. 50 

2.7 In the cascade (or serial) mode of operation, evidence is in­
crementally processed in order to establish identity. This 
scheme is also known as sequential pattern recognition. It 
enhances user convenience while reducing the average pro­
cessing time since a decision can be made without having to 
acquire all the biometric traits. 53 

2.8 In the parallel mode of operation, the evidence acquired from 
multiple sources is simultaneously processed in order to es­
tablish identity. Note that the evidence pertaining to the mul­
tiple sources may be acquired in a sequential fashion. 54 

2.9 The cascade mode of processing permits database indexing 
where one modality can be used to retrieve a subset of identi­
ties while the second modality determines the best match. In 
this example, the face system is employed to recover the top 
n matches while the fingerprint system decides the identity 
of the user based on the n retrieved matches. 54 
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ric system. Most multibiometric systems fuse information 
at the match score level or the decision level. More recently 
researchers have begun to fuse information at the sensor and 
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using the technique proposed by Jain and Ross, 2002a. (a) 
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Preface 

The pronounced need for reliably determining or verifying the identity of 
a person has spurred active research in the field of biometric authentication. 
Biometric authentication, or simply biometrics, is the science of establishing 
an identity based on the physical or behavioral attributes of an individual, in­
cluding fingerprint, face, voice, gait, iris, signature, hand geometry and ear. 
It is becoming increasingly apparent that a single biometric trait (used in a 
unibiometric system) is not sufficient to meet a number of system requirements 
- including matching performance - imposed by several large-scale authen­
tication applications. Multibiometric systems seek to alleviate some of the 
drawbacks encountered by unibiometric systems by consolidating the evidence 
presented by multiple biometric sources. These systems can significantly im­
prove the recognition performance of a biometric system besides improving 
population coverage, deterring spoof attacks, and reducing the failure-to-enroll 
rate. Although the storage requirements, processing time and the computational 
demands of a multibiometric system can be significantly higher (than a unibio­
metric system), the above mentioned advantages present a compelling case for 
deploying multibiometric systems in large-scale authentication systems (e.g., 
border crossing) and systems requiring very high accuracies (e.g., access to a 
secure mihtary base). 

The field of multibiometrics has made rapid advances over the past few years. 
These developments have been fueled in part by recent government mandates 
stipulating the use of biometrics for delivering crucial societal functions. The 
US-VISIT program (United States Visitor and Immigration Status Indicator 
Technology) is a border security system that validates the travel documents of 
foreign visitors to the United States. Currently, fingerprint images of left- and 
right-index fingers of a person are being used to associate a visa with an individ­
ual entering the United States; in the future, all ten fingers may be used thereby 
necessitating the development of efficient data capture as well as fusion algo­
rithms. The International Civil Aviation Organization (ICAO) has unanimously 
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recommended that its member States use Machine Readable Travel Documents 
(MRTDs) that incorporate at least the face biometric (some combination of face, 
fingerprint and iris can also be used) for purposes of establishing the identity of 
a passport holder. Thus, research in multibiometrics has the potential to impact 
several large-scale civilian and commercial applications. 

From an academic perspective, research in multibiometrics has several differ­
ent facets: identifying the sources of multiple biometric information; determin­
ing the type of information to be fused; designing optimal fusion methodologies; 
evaluating and comparing different fusion methodologies; and building robust 
multimodal interfaces that facilitate the efficient acquisition of multibiometric 
data. One of the goals of this book is to lend structure to the amorphous body 
of research work that has been conducted in the field of multibiometrics. To 
this end, we have attempted to assemble a framework that can be effectively 
used to understand the issues and progress being made in multibiometrics while 
identifying the challenges and potential research directions in this field. 

The book is organized as follows. Chapter 2 introduces the notion of in­
formation fusion in the context of biometrics and enumerates the advantages 
imparted by multibiometric systems. The various sources of biometric infor­
mation that can be integrated in a multibiometric framework, such as multiple 
sensors, multiple algorithms and multiple samples, are then discussed with 
examples from the literature. This chapter also examines different types of ac­
quisition and processing schemes that are relevant to multibiometric systems. 
Finally, the types of information (also known as the levels of fusion) that can 
be accommodated in a fusion architecture are briefly visited. In Chapter 3, 
the sensor-level, feature-level, rank-level and decision-level fusion schemes are 
explored in detail along with examples highlighting the pros and cons of each 
fusion level. Integration strategies for each of these fusion levels are presented, 
both from the multibiometric as well as the multiple classifier system literature. 
The chapter concludes by categorizing some of the representative publications 
in multibiometrics on the basis of the sources of biometric information used 
and the level of fusion adopted. Chapter 4 is entirely dedicated to score-level 
fusion, since fusion at this level has been elaborately studied in the literature. 
The integration strategies pertinent to this level are presented under three dis­
tinct categories: (i) density-based score fusion, (ii) transformation-based score 
fusion, and (iii) classifier-based score fusion. This chapter discusses examples 
embodying each of these categories; a mathematical framework is adopted in 
order to assist the reader in understanding the differences between the three 
categories. The chapter concludes by indicating how the performance of a 
score fusion system can be further enhanced by utilizing user-specific parame­
ters. In Chapter 5, the possibility of incorporating ancillary information, such 
as the quality of the biometric data and the soft biometrics of individuals, in 
a biometric fusion framework is discussed. Soft biometric traits include char-
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acteristics such as gender, height, weight, eye color, etc. that provide added 
information about an individual, but lack the distinctiveness and permanence 
to sufficiently differentiate between multiple individuals. The chapter presents 
an information fusion framework to include soft biometric traits in the authen­
tication process. The final contribution of this book is an Appendix that lists 
some of the databases that have been used for evaluating the performance of 
various multibiometric algorithms. 

We are grateful to a number of individuals who lent their generous support to 
this project. Julian Fierrez-Aguilar, Universidad Autonoma de Madrid, Patrick 
Flynn, University of Notre Dame, Lawrence Homak, West Virginia Univer­
sity, Richard Lazarick, Computer Sciences Corporation, Norman Poh, IDIAP, 
Salil Prabhakar, Digital Persona, Inc., Choonwoo Ryu, INHA University, Mar­
ios Savvides, Carnegie Mellon University, Yunhong Wang, Beihang University 
and James Wayman, San Jose State University reviewed and provided valu­
able comments on preliminary drafts of this book. We had a number of use­
ful discussions with Josef Bigun, Halmstad University, Sarat Dass, Michigan 
State University, Josef Kittler, University of Surrey, Sharath Pankanti, IBM T. J. 
Watson Research Center and David Zhang, Hong Kong Polytechnic University. 
Arun George, West Virginia University and Yi Chen, Michigan State Univer­
sity designed several of the illustrations in this book. Thanks to Samir Shah 
and Rohan Nadgir, West Virginia University and Umut Uludag, Michigan State 
University for proofreading the manuscript. We would also like to thank the 
Center for Identification Technology Research (CITeR), West Virginia Univer­
sity, the National Science Foundation (NSF) and the Department of Homeland 
Security (DHS) for supporting our research in multibiometrics. 

This book has been written for researchers, engineers, students and biometric 
system integrators who are keen on exploring the fundamentals of multibiomet­
rics. It can be used as a reference guide for a graduate course in biometrics. 
Some of the concepts presented in this book are applicable to the general do­
main of information fusion and, hence, students of this field will also benefit 
from the book. We hope that the concepts and ideas presented in the following 
pages will stimulate the reader's curiosity and help develop an appreciation for 
this rapidly evolving field, called Multibiometrics. 
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