Skip to main content

Optically-Based Affinity Biosensors for Glucose

  • Chapter
  • 1826 Accesses

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 11))

Abstract

The first biosensor was developed by Leland Clark who enhanced his oxygen electrode technology (Clark and Lyons, 1962) by interposing another membrane bound region between the detector and the sample that contained an enzyme (glucose oxidase) to produce the first “biosensor” for glucose. This paradigm has been followed for most of the biosensor developments to date. Leland Clark has been recently recognized for his breakthrough technology by receiving the Russ Prize from the National Academy of Engineering in 2005. A brief review of the early research on biosensors was provided by Schultz (1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, M., Morioka, A., Matsuoka, H., Suzuki, S., Nagamura, Y., Shinohara, R., Ishiguro, I., 1976, An enzyme immunosensor for IgG, J. Solid-Phase Biochemistry, 1, 319–328.

    Google Scholar 

  • Aslan, K., Lakowicz, J. R., Geddes, C. D., 2004a, TI Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids, Analytical Chimica Acta. 517:139–144.

    Article  Google Scholar 

  • Aslan, K., Lakowicz, J. R., Geddes, C. D., 2004b, TI Nanogold-plasmon-resonance-based glucose sensing, Analytical Biochemistry. 330:145–155.

    Article  Google Scholar 

  • Ballerstadt, R., Polak, A, Beuhler, A, Frye, J., 2004b, TI In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring, Biosensors & Bioelectronics. 19:905–914.

    Article  Google Scholar 

  • Ballerstadt, R. and Schultz, J.S., 1997, Assay based on fluorescence quenching of ligands held in close proximity on a multivalent receptor. Anal. Clinica Acta., 345:203–212.

    Article  Google Scholar 

  • Ballerstadt, R. and Schultz, J.S., 2000, A fluorescence affinity hollow fiber sensor for continuous transdermal flucose monitoring, Anal. Chem., 72:4185–4192.

    Article  Google Scholar 

  • Ballerstadt, R. and Schultz, J.S., Homogeneous Affinity Assay for Quantitative Drug and Metabolite Determination. #5,814,449, Sept. 29, 1998

    Google Scholar 

  • Ballerstadt, R. and Schultz, J.S., Method and Kit for Detecting an Analyte. #6,271,044, Aug. 7, 2001

    Google Scholar 

  • Ballerstadt, R., Gowda, A., And Roger Mcnichols, R., 2004a, fluorescence resonance energy transfer-based near-infrared fluorescence sensor for glucose monitoring, Diabetes Technology & Therapeutics, 6, 191–200.

    Article  Google Scholar 

  • Beck, R.E. and Schultz, J.S., 1970, Hindered diffusion in microporous membranes with known pore geometry, Science 170:1302–1305.

    Article  ADS  Google Scholar 

  • Berson, S. A. and R. S. Yalow. 1959. “Quantitative Aspects of Reaction Between Insulin and Insulin-Binding Antibody.” J, Clin. Invest. 38, 1996–2016.

    Article  Google Scholar 

  • Blagoi, G., Rosenzweig, N., Rosenzweig, Z, 2005, TI Design, synthesis, and application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins, Analytical Chemistry, 77:393–399.

    Article  Google Scholar 

  • Brumfield, A.; Ballerstadt, R.; Schultz, J. S.; Schultz, J. S. 1998, Fifth World Congress on Biosensors; Berlin, Germany,; Elsevier: Amsterdam; p 48.

    Google Scholar 

  • Burke, S. D., Zhao, Q., Schuster, M. C. and Kiessling, L. L., 2000, Synergistic formation of soluble lectin clusters by a templated multivalent saccharide ligand, J. Am. Chem. Soc., 122:4518–4519.

    Article  Google Scholar 

  • Chen, J. P. and Hsu, M. S., TI Mathematical analysis of sensors based on affinity interactions between competitive receptor-protein pairs, 1996, Journal of Chemical Technology and Biotechnology. 66:389–397.

    Article  Google Scholar 

  • Chen, Y., Ji, T., and Rosenzweig, Z, 2003, Synthesis of Glyconanospheres Containing Luminescent CdSeZnS Quantum Dots, Nano Letters, 3: 581–584

    Article  ADS  Google Scholar 

  • Chinnayelka, S. and McShane, M. J., 2004a, TI Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells, Journal of Fluorescence. 5:585–595.

    Article  Google Scholar 

  • Chinnayelka, S. and McShane, M. J., 2004b, TI Resonance energy transfer nanobiosensors based on affinity binding between apo-enzyme and its substrate, Biomacromolecules. 5:1657–1661.

    Article  Google Scholar 

  • Clark LC, and Lyons C., 1962. Electrode systems for continuous monitoring in cardiovas cular surgery, Annals N.Y. Acad. Sci. 102, 29–45.

    Article  ADS  Google Scholar 

  • Clark, H. R., Barbari, T. A., and Rao, G, 1999, TI Modeling the response time of an in vivo glucose affinity sensor, SO Biotechnology Progress. 15:259–266.

    Article  Google Scholar 

  • Cote, G. L, Pishko, M. V., Sirkar, K., Russell, R., and Anderson, R. R., 2002, Hydrogel particle compositions and methods for glucose detection. 56 pp. Application: US 99-354914 19990709. Priority: US 98-94980 19980731.

    Google Scholar 

  • Dwyer, M.A., and Hellinga, H.W., 2004, Periplasmic binding proteins: a versatile superfamily for protein engineering, Curr Opin Struct Biol. Aug 14(4), 495–504

    Article  Google Scholar 

  • Fehr, M., Frommer, W.B. and Lalonde, S., 2002, Visualization of maltose uptake in living yeast cells by fluorescent nanosensors, Proc. Natl. Acad. Sci. USA. 99:9846–9851.

    Article  ADS  Google Scholar 

  • Fehr, M., Lalonde, S., Lager, I., Wolff, M.W. and Frommer W. B., 2003, In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors, J. BiologicalChem. 278:19127–19133.

    Google Scholar 

  • Ge, X. D., Tolosa, L., Rao, G., 2004, TI Dual-labeled glucose binding protein for ratiometric measurements of glucose, Analytical Chemistry. 76:1403–1410.

    Article  Google Scholar 

  • Gryczynski Z, Gryczynski I, Lakowicz JR., 2003, Fluorescence-sensing methods, Methods Enzymol. 360:44–75.

    Article  Google Scholar 

  • Hellinger, H. W., Biosensor, International Patent number WO 99/34212. Publication date July 8, 1999

    Google Scholar 

  • Kermis, H. R., Rao, G, Barbari, T. A., 2003, TI Transport properties of pHEMA membranes for optical glucose affinity sensors, Journal of Membrane Science. 212:75–86.

    Article  Google Scholar 

  • Komives, C. and Schultz, J.S, Optical Fiber Sensors for Continuous Monitoring of Biochemicals and Related Method. U.S. Patent # 5,143,066, Sept. 1, 1992. 12 pp.

    Google Scholar 

  • Komives, C. and Schultz, J.S., 1992, Fiber-optic fluorimeter signal enhancement and application to biosensor design. Talanta, 39:429–441.

    Article  Google Scholar 

  • Lakowicz, J. R., Maliwal, B, 1993, Optical sensing of glucose using phase-modulation fluorometry, Analytical Chimica Acta. 271:155–164.

    Article  Google Scholar 

  • Liu, B. and Schultz, J.S., 1986, Equilibrium binding in immunosensors. IEEE Trans. Biomed. Eng. 53, 133–138

    Article  Google Scholar 

  • Lubbers DW, 1995, Optical sensors for clinical monitoring, Acta Anaesthesiol Scand Suppl, 104:37–54.

    Article  Google Scholar 

  • Mammen, M., Choi, S., and Whitesides, G. M., 1998, Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitor, Angew. Chem. Int. Ed. 37:2754–2794.

    Article  Google Scholar 

  • Mansouri, S., 1983, Optical glucose sensor based on affinity binding. Ph.D. Thesis, The University of Michigan

    Google Scholar 

  • Mansouri, S. and Schultz, J. S., 1984, A miniature optical glucose sensor based on affinity binding, BIO/TECHNOLOGY, 2:385–390.

    Article  Google Scholar 

  • McCartney, L. J., Pickup, J. C., Rolinski, O. J., Birch, D. J. S., 2001, TI Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin, Analytical Biochemistry. 292:216–221.

    Article  Google Scholar 

  • Meadows, D. and Schultz, J.S., 1988, Fiber optic biosensors based on fluorescence energy transfer. Talanta 35: 145–150.

    Article  Google Scholar 

  • Meadows, D.L. and Schultz, J.S., 1993, Design, manufacture and characterization of an optical fiber glucose affinity sensor based on homogeneous fluorescence energy transfer assay system. Analytica Chimica Acta, 280:21–30.

    Article  Google Scholar 

  • Meadows, D.L., and Schultz, J.S., 1991, A molecular model for singlet/singlet energy transfer of monovalent ligand/receptor interactions, Biotechnology and Bioengineering. 37: 1066–1075.

    Article  Google Scholar 

  • Medintz, I. L., Anderson, G. P., Lassman, M.E., Goldman, E. R., Bettencourt, L. A. and Maurol, J. M., 1999, A general strategy for biosensor design and construction employing multifunctional surface-tethered components, Anal. Chem. 71:3126–3132.

    Article  Google Scholar 

  • Meledeo, M. A., Ibey, B. L., O’Neal, D. P., Pishko, Michael, V., Cote, G. L., 2002, Investigation of pH and temperature effects on FRET systems for glucose sensing, Proceedings of SPIE-The International Society for Optical Engineering, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, 4624:55–65.

    ADS  Google Scholar 

  • Miyawaki A, Tsien RY, 2000, Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327:472–500.

    Article  Google Scholar 

  • Peterson, J.I., Goldstein, S.R., Fitzgerald, R.V., and Ruckold, D., 1980, Fiberoptic pH probe for physiological use. Anal. Chem., 52, 864–869.

    Article  Google Scholar 

  • Pickup, J. C., 2001, Near-Infrared Fluorescence Lifetime Assay for SerumGlucose Based on Allophycocyanin-Labeled Concanavalin A Analytical Biochemistry. 292:216–221.

    Article  Google Scholar 

  • Rolinski, O. J., Birch, D. J. S., McCartney, L. J., and Pickup, J. C., 2001, Fluorescence nanotomography using resonance energy transfer: demonstration with a protein-sugar complex, Phys. Med. Biol. 46:221–226.

    Article  Google Scholar 

  • Rolinski, O. J., Birch, D. J. S., McCartney, L. J., and Pickup, J. C., 2000, A method of determining donor-acceptor distribution functions in Forster resonance energy transfer, Chemical Physics Letters. 324:95–100.

    Article  ADS  Google Scholar 

  • Rolinski, O. J., Birch, D. J. S., McCartney, L., and Pickup J. C., 2001, Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose, Spectrochimica Acta Part A 57:2245–2254.

    Article  ADS  Google Scholar 

  • Rolinski, O. J., Birch, D. J. S., McCartney, L. J., and Pickup, J. C., 1999, Near-infrared assay for glucose determination. Proceedings of SPIE-The International Society for Optical Engineering, Advances in Fluorescence Sensing Technology IV. 3602:6–14.

    ADS  Google Scholar 

  • Rolinski, O. J., Birch, D. J. S., McCartney, L. J., and Pickup, J. C., 2000, A time-resolved near-infrared fluorescence assay for glucose: opportunities for trans-dermal sensing, J. Photochem. Photobiol., 54:26–34.

    Article  Google Scholar 

  • Rosenzweig, Z., Rosenzweig, N., Blagoi, G., 2004, FRET-based luminescence sensors for carbohydrates and glycoproteins analysis. Proceedings of SPIE-The International Society for Optical Engineering, Smart Medical and Biomedical Sensor Technology II. 5588:1–8.

    ADS  Google Scholar 

  • Russell, R. J., Pishko, M. V., Gefrides, C. C., McShane, M. J., Cote, G. L., 1999, TI a fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel, Analytical Chemistry. 71:3126–3132.

    Article  Google Scholar 

  • Schultz, J.S., 1982, Optical sensor of plasma constituents. U.S. Patent #4,344,438. Aug. 17, 1982. 11 pages.

    Google Scholar 

  • Schultz, J.S., 1986, Design of Fiber-Optic Biosensors Based on Bioreceptors, in: Biosensors: Fundamentals and Applications, A.P.F. Turner, I. Karube, and G.S. Wilson, eds., Oxford University Press, pp 638–654.

    Google Scholar 

  • Schultz, J.S., 1987, Sensitivity and Dynamics of Bioreceptor-Based Biosensors, in: Biochemical Engineering V., Annals N.Y. Acad. Sci., pp. 406.411.

    Google Scholar 

  • Schultz, J. S., 1991, Biosensors, Scientific American. August 64–69.

    Google Scholar 

  • Schultz, J. S., 1996, Biological and Chemical Components for Sensors, in: Handbook of Chemical and Biological Sensors, R.F. Taylor and J.S. Schultz, eds., Institute of Physics, Philadelphia, pp. 171–202.

    Google Scholar 

  • Schultz, J.S. Sensors for continuous monitoring of biochemicals and related method, U.S. Patent #6256522 July 3, 2001

    Google Scholar 

  • Schultz, J.S. and Ballerstadt, R.. Homogeneous Affinity Assay for Quantitative Drug and Metabolite Determination. U.S. Patent #5,814,449, Sept. 29, 1998

    Google Scholar 

  • Schultz, J.S., and Mansouri, S., 1987, Optical Affinity Sensors, in: Methods in: Enzymology, Vol 137 Immobilized Enzymes and Cells, part D., K. Mosbach, ed., Academic Press, pp. 349–365.

    Google Scholar 

  • Schultz, J. S., Mansouri, S., and Goldstein, I. J., 1982, Affinity glucose sensor, Diabetes Care, 5:245–253.

    Article  Google Scholar 

  • Schultz, J.S. and Sims, G., 1979, Affinity sensors for individual metabolites, Biotech. and Bioeng., Symp. 9:65–71.

    Google Scholar 

  • Scognamiglio, V., Staiano, M., Rossi, M., D’Auria, S., 2004, TI Protein-based biosensors for diabetic patients, Journal of Fluorescence. 14:491–498.

    Article  Google Scholar 

  • Tolosa, L., Malak, H., Raob, G., and Lakowicz, J. R., 1997a, TI optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5 (TM), Sensors and actuators B-Chemica. 45:93–99.

    Article  Google Scholar 

  • Tolosa, L., Szmacinski, H., Rao, G., Lakowicz, J. R., 1997b, TI lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Analytical Biochemistry. 250:102–108.

    Article  Google Scholar 

  • Ullman, E.F., Schwarzberg, M., and Rubenstein, K., 1976, Fluorescence excitation transfer immunoassay, a general method for determination of antigens, J. Biol. Chem., 251, 4172.

    Google Scholar 

  • Weber, A., and Schultz, J.S., 1992, Fiber-optic fluorimetry in biosensors: comparison between evanescent wave generation and distal-face generation of fluorescent light. Biosensors and Bioelectronics, 7:193–197.

    Article  Google Scholar 

  • Ye, K. and Schultz, J.S., 2003, Genetic engineering of an allosteric-based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer, Anal. Chem. 75: 3451–3459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schultz, J.S. (2006). Optically-Based Affinity Biosensors for Glucose. In: Geddes, C.D., Lakowicz, J.R. (eds) Glucose Sensing. Topics in Fluorescence Spectroscopy, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-33015-1_11

Download citation

Publish with us

Policies and ethics