Skip to main content

Quantum Trajectories in Phase Space

  • Chapter
  • 2184 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 28))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Trahan and R.E. Wyatt, Evolution of classical and quantum phase space distributions: A new trajectory approach for phase-space dynamics, J. Chem. Phys. 119, 7017 (2003).

    Article  Google Scholar 

  2. A. Donoso and C.C. Martens, Quantum tunneling using entangled classical trajectories, Phys. Rev. Lett. 87, 223202 (2001).

    Article  Google Scholar 

  3. A. Donoso and C.C. Martens, Classical trajectory-based approaches to solving the quantum Liouville equation, Int. J. Quantum Chem. 90, 1348 (2002).

    Article  Google Scholar 

  4. A. Donoso and C.C. Martens, Solution of phase space diffusion equations using interacting trajectory ensembles, J. Chem. Phys. 116, 10598 (2002).

    Article  Google Scholar 

  5. D.A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973).

    Google Scholar 

  6. C.W. Gardiner, Handbook of Stochastic Methods (Springer, New York, 1985).

    Google Scholar 

  7. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica VII, 284 (1940).

    Article  MathSciNet  Google Scholar 

  8. G.D. Billing and K. V. Mikkelsen, Molecular Dynamics and Chemical Kinetics (Wiley Interscience, New York, 1996), Ch. 15.

    Google Scholar 

  9. E. Pollak, Theory of activated rate processes: A new derivation of Kramers’ expression, J. Chem. Phys. 85, 865 (1986).

    Article  Google Scholar 

  10. E. Pollak, A. M. Berezhkovskii, and Z. Schuss, Activated rate processes: A relation between Hamiltonian and stochastic theories, J. Chem. Phys. 100, 334 (1994).

    Article  Google Scholar 

  11. P. Hanggi, P. Talkner, and M. Borkovec, Reaction rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990).

    Article  MathSciNet  Google Scholar 

  12. M. Dresden, H. A. Kramers, Between Tradition and Revolution (Springer, New York, 1987).

    Google Scholar 

  13. D. Ter Haar, Master of Modern Physics: The Scientific Contributions of H.A. Kramers (Princeton Press, Princeton NJ, 1998).

    Google Scholar 

  14. M. Dresden, Kramers’s contributions to statistical mechanics, Physics Today, Sept. 1988, p. 26.

    Google Scholar 

  15. E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).

    Article  MATH  Google Scholar 

  16. H.-W. Lee, Theory and application of the quantum phase-space distribution functions, Phys. Rept. 259, 147 (1995).

    Article  Google Scholar 

  17. H.-W. Lee and M. O. Scully, A new approach to molecular collisions: Statistical quasiclassical method, J. Chem. Phys. 73, 2238 (1980).

    Article  MathSciNet  Google Scholar 

  18. H.-W. Lee and M. O. Scully, The Wigner phase-space description of collision processes, Found. of Phys. 13, 61 (1983).

    Article  MathSciNet  Google Scholar 

  19. E.J. Heller, Wigner phase space method: Analysis for semiclassical applications, J. Chem. Phys. 65, 1289 (1976).

    Article  MathSciNet  Google Scholar 

  20. E.J. Heller and R.C. Brown, Errors in the Wigner approach to quantum dynamics, J. Chem. Phys. 75, 1048 (1981).

    Article  Google Scholar 

  21. U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 1993).

    MATH  Google Scholar 

  22. J.R. Chaudhuri, B. Bag, and D.S. Ray, A semiclassical approach to the Kramers problem, J. Chem. Phys. 111, 10852 (1999).

    Article  Google Scholar 

  23. P. Pechukas, Reduced dynamics need not be completely positive, Phys. Rev. Lett. 73, 1060 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Percival, Quantum State Diffusion (Cambridge Press, Cambridge UK, 1998).

    MATH  Google Scholar 

  26. D. Kohen, C.C. Marsten, and D.J. Tannor, Phase space approach to quantum dissipation, J. Chem. Phys. 107, 5236 (1997).

    Article  Google Scholar 

  27. L. Diosi, Caldeira-Leggett master equation and medium temperatures, Physica A 199, 517 (1993).

    Article  Google Scholar 

  28. L. Diosi, On high-temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22, 1 (1993).

    Google Scholar 

  29. I. Burghardt and K. B. Moller, Quantum dynamics for dissipative systems: A hydrodynamic perspective, J. Chem. Phys. 117, 7409 (2003).

    Article  Google Scholar 

  30. A.O. Caldeira and A.J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121, 587 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  32. J.B. Maddox and E.R. Bittner, Quantum relaxation dynamics using Bohmian trajectories, J. Chem. Phys. 115, 6309 (2001).

    Article  Google Scholar 

  33. J.B. Maddox and E.R. Bittner, Quantum dissipation in unbounded systems, Phys. Rev. E 65, 026143 (2002).

    Article  Google Scholar 

  34. J. Daligault, Non-Hamiltonian dynamics and trajectory methods in quantum phase-spaces, Phys. Rev. A 68, 010501 (2003).

    Article  MathSciNet  Google Scholar 

  35. N.C. Dias and J.N. Prata, Bohmian trajectories and quantum phase space distributions, Phys. Lett. A 302, 261 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  36. R.T. Skodje, H.W. Rohrs, and J. Van Buskirk, Flux analysis, the correspondence principle, and the structure of quantum phase space, Phys. Rev. A 40, 2894 (1989).

    Article  MathSciNet  Google Scholar 

  37. A. Spina and R.T. Skodje, The phase-space hydrodynamic model for the quantum standard map, Comp. Phys. Comm. 63, 279 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  38. D.M. Appleby, Bohmian trajectories post-decoherence, arXiv:quant-ph/9908029 (8 Aug. 1999).

    Google Scholar 

  39. F. McLafferty, On classical paths and the Wigner path integral, J. Chem. Phys. 78, 3253 (1983).

    Article  MathSciNet  Google Scholar 

  40. K.H. Hughes and R.E. Wyatt, Trajectory approach to dissipative phase space dynamics: Application to barrier scattering, J. Chem. Phys. 120, 4089 (2004).

    Article  Google Scholar 

  41. M. Novaes, Wigner and Huisimi functions in the double-well potential, J. Optics B 5, S342 (2003).

    Google Scholar 

  42. R.L. Hudson, When is the Wigner quasi-probability density non-negative? Repts. Math. Phys. 6, 249 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Soto and P. Claverie, When is the Wigner quasi-probability density of multidimensional systems non-negative? J. Math. Phys. 24, 97 (1983).

    Article  MathSciNet  Google Scholar 

  44. L. Shifren and D.K. Ferry, Wigner function quantum Monte Carlo, Physica B, 314, 72 (2002).

    Article  Google Scholar 

  45. C.-Y. Wong, Explicit solution of the time evolution of the Wigner function, arXiv:quantum-ph/0210112 (7 March 2003).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Quantum Trajectories in Phase Space. In: Quantum Dynamics with Trajectories. Interdisciplinary Applied Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/0-387-28145-2_11

Download citation

Publish with us

Policies and ethics