Skip to main content

Quality Control of Germ Cell Proteins

  • Chapter
Proteomics of Spermatogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

31.8. References

  • Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 1999; 15: 322–33.

    Article  Google Scholar 

  • Baarends WM, Roest HP, Grootegoed JA. The ubiquitin system in gametogenesis. Mol Cell Endocrinol 1999; 151: 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Baarends WM, van der Laan R, Grootegoed JA. Specific aspects of the ubiquitin system in spermatogenesis. J Endocrinol Invest 2000; 23: 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Belote JM, Miller M, Smyth KA. Evolutionary conservation of a testis specific proteasome subunit gene in Drosophila. Gene 1998; 215: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Berruti G, Martegani E. MSJ-1, a mouse testis-specific DnaJ protein, is highly expressed in haploid male germ cells and interacts with the testis-specific heat shock protein Hsp70-2. Biol Reprod 2001; 65: 488–95.

    Article  CAS  PubMed  Google Scholar 

  • Berruti G, Perego L, Borgonovo B, Martegani E. MSJ-1, new member of the DNAJ family of proteins, is a male germ cell-specific gene product. Exp Cell Res 1998; 15: 430–41.

    Article  Google Scholar 

  • Berruti G, Perego L, Martegani E. Molecular cloning and developmental pattern of expression of MSJ-1, a new male germ cell-specific DNAJ homologue. Adv Exp Biol 1998; 444: 145–50.

    Article  CAS  Google Scholar 

  • Biggiogera M, Tanguay RM, Marin R, Wu Y, Martin TE, Fakan S. Localization of heat shock proteins in mouse male germ cells: an immunoelectron microscopical study. Exp. Cell Res 1996; 25: 77–85.

    Article  Google Scholar 

  • Brown GM, Furlong RA, Sargent CA, Erickson RP, Longepied G, Mitchell M, Jones MH, Hargreave TB, Cooke HJ, Affara NA. Characterization of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Hum Mol Genet 1998; 7: 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Brown P, H. Goulding E, D. Strong B, and Eddy EM. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. cells and interacts with the testis-specific heat shock protein Hsp70-2. Biol Reprod 2001; 65: 488–95.

    Article  Google Scholar 

  • Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML. Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 1998; 273: 13165–69.

    Article  CAS  PubMed  Google Scholar 

  • Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science 1998; 282: 699–05.

    Article  CAS  PubMed  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Pooman-Allen P, Goulding EH, Eddy EM. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 1996: 99: 3264–8.

    Article  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 1997; 124: 4595–603.

    CAS  PubMed  Google Scholar 

  • Eddy EM. Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod 1999; 4: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, van der Vies SM. Molecular Chaperons. Ann Rev Biochem 1991; 60: 321–47.

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Maines MD. Distribution of constitutive (HO-2) and heat-inducible (HO-1) heme oxygenase isozymes in rat testis: HO-2 displays stage-specific expression in germ cells. Endocrinology 1995: 136: 2294–302.

    CAS  PubMed  Google Scholar 

  • Fanaaaga ML, Parraga M, Aloria K, del Mazo J, Avila J, Zabala JC. Regulated expression of pl4 (cofactor A) during spermatogenesis. Cell Motil Cytoskeleton 1999; 43: 243–54.

    Article  Google Scholar 

  • Fink AL. Chaperone-mediated protein folding. Physiol Rev 1999;79:425–49.

    CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK. Genomic instability and enhanced radiosensitivity in Hsp70.1-and Hsp70.3-deficient mice. Mol Cell Biol 2004; 24: 899–911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iida H, Doiguchi M, Yamashita H, Sugimachi S, Ichinose J, Mori T, Shibala Y. Spermatid-specific expression of lbal, an calcium binding adapter molecule-1, in rat testis. Biol Reprod 2001: 64: 1138–46.

    Article  CAS  PubMed  Google Scholar 

  • Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M. The putative chaperone calmegin is required for sperm fertility. Nature 1997; 387: 607–11.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Yasuda K, Hatayama T. Phosphorylation of the 105-kDa heat shock proteins, HSP 105 and HSP105 by casein kinase II. Biochem Biophys Res Comm 2000; 270: 927–31.

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Tashima Y. Different expression time of the 105-kDa protein and 90-kDa heat-shock protein in rat testis. FEBS Lett 1991; 2: 110–2.

    Article  Google Scholar 

  • Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, et al. A novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enchances BRCA1 mediated cell growth suppression. Oncogene 1998; 16: 1097–12.

    Article  CAS  PubMed  Google Scholar 

  • Jones MH, Furlong RA, Burkin H, Chalmers IJ, Brown GM, Khwaja, et al, The Drosophila developmental gene fat facets has a human homologue in XpII.4 which escapes X-inactivation and has related sequences on Yq 11.2. Hum Mol Genet 1996; 5: 1695–01.

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto Y, Hashimoto T, Shirai Y, Nishino N, Kuno T, Tanaka. cDNA cloning and tissue distribution of a rat ubiquitin carboxyl-terminal hydrolase Pgp9.5. J Biochem 1992; 112: 28–32.

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Kimura T, Nishiyama H, Noda Y, and Fujita J. Developmentally regulated expression of APG-1, a member of heat shock protein 110 family in murine male germ cells. Biochem Biophy Res Comm 1997; 233: 113–116.

    Article  CAS  Google Scholar 

  • Kaneko Y, Nishiyama H, Nonoguchi K, Higashitsuji H, Kishishita M and Fujita J. A hsp110-related gene, apg-1. that is abundantly expressed in the testis responds to a low temperature heat shock rather than the traditional elevated temperatures. J Biol Chem 1997;272:2640–45.

    Article  CAS  PubMed  Google Scholar 

  • Kappe G, Verschuure P, Phillipsen RL, Staldunen AA, Van de Boogaart P, Boelens WC, De Jong WW. Characterization of two novel human small heat shock proteins: protein kinase related HspB8 and testis-specific HspB9. Biochim Biophys Acta 2001; 30: 1520: 1–6.

    Google Scholar 

  • Kirschner M. Intracellular protelysis. TIBS 1999; 24: M42–M46.

    CAS  Google Scholar 

  • Koken MHM, Hoogerbrugge JW, Jqaspers-Dekker I, de Wit J, Willemsen R, Roest HP, Grootegoed JA, Hoeijmakers JHJ. Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification Dev Biol. 1996; 173: 119–132.

    Article  CAS  PubMed  Google Scholar 

  • Kon Y, Endoh D, Iwanaga T. Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in Sertoli Cells of Mouse Testis. Mol. Reprod Dev 1999;54:333–41.

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with RadS 1 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 1996; 93: 2958–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krawczyk Z, Mali P, Parvinen M. Expression of a testis-specific hsp70 gene-related RNA in defined stages of rat seminiferous epithelium. J Cell Biol 1988: 107: 1317–23.

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk Z, Schmid W, Harkonen P, Wolnirzek P. The ERE-like sequence from the promoter region of the testis specific hsp70 related gene is not estrogen responsive. Cell Biol Int Rep 1992: 16: 937–48.

    Article  CAS  PubMed  Google Scholar 

  • Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshavsky A. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl. Acad Sci USA 1998; 95: 7898–03.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Legare C, Thabet M, Sullivan R. Expression of heat shock protein 70 in normal and cryptorchid human excurrent duct. Mol Hum Reprod 2004; 10: 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Lehman AL, Nakatsu Y, Ching A, Bronson RT, Oakey RJ, Keiper-Hrynko N, Finger JN et al,. A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc Natl Acad Sci USA 1998; 95: 9436–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P, Leftancois S, Combaret L, Wing SS. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Cell Biol 2000; 20: 6568–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumori M, Itoh H, Toyoshima I, Komatsuda A, Sawada K, Fukuda J, Tanaka T, et al. Characterization of the 105-kDa molecular chaperone. Identification, biochemical properties, and localization. Eur J Biochem 2002; 269: 5632–41.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Fujimoto H. Cloning of a hsp70-related gene expressed in mouse spermatids. Biochem Biophys Res Commun 1990; 166; 43–7.

    Article  CAS  PubMed  Google Scholar 

  • Mazeyrat S, Saut N, Sargent CA, Grimmond S, Longepied G, Ehrmann IE et al. The mouse Y chromosome interval necessary for spermatogonial proliferation is gene dense with syntenic homology to the human AZFa region. Hum Mol Genet 1998; 7: 1713–24.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt A, Parvinen M, Bacher M, Aumuller G, Hakovirta H, Yagi A, Seitz J. Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod 1995; 52: 798–07.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt A, Wilhelm B, Seitz J. Expression of mitochondrial marker proteins during spermatogenesis. Hum Reprod Update 1999, 5: 108–119.

    Article  CAS  PubMed  Google Scholar 

  • Mezquita B, Mezquita C, Mezquita J. Marked differences between avian and mammalian testicular cells in the heat shock induction and polyadenylation of Hsp70 and ubiquitin transcripts. FEBS Let 1998; 436: 382–86.

    Article  CAS  Google Scholar 

  • Mezquita J, Pau M, Mezquita C. Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene 1997; 195: 313–19.

    Article  CAS  PubMed  Google Scholar 

  • Michalak M, Corebett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin one protein, one gene, many functions. Biochem J 1999; 344: 281–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizzen L. Immune responses to stress proteins. Applications to infectious diseae and cancer. Bioessays 1998; 10: 171–89.

    Google Scholar 

  • Mochinda K, Tres LL, Kierszenbaum AL. Structural features of the 26S proteasome complex isolated from rat testis and sperm tail. Mol Reprod Dev 2000; 57: 176–84.

    Article  Google Scholar 

  • Nakamura M, Moriya M, Baba T, Michikawa Y, Yamanobe T, Arai K, Okinaga S, Kbayashi T. An endoplasmic reticulum protein, calreticulin, is transported into the acrosome of rat sperm. Exp Cell Res. 1993: 205: 101–10.

    Article  CAS  PubMed  Google Scholar 

  • Neuer A, Spandorfer SD, Giraldo P, Dieterle S, Rosenwaks Z, Witkin SS. The role of heat shock proteins in reproduction. Human Reprod Update 2000; 6: 149–159.

    Article  CAS  Google Scholar 

  • Ohsako S, Hayashi Y, Bunick D. Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium binding protein of the endoplasmic retriculum. J Biol Chem 1994: 13: 14140–8.

    Google Scholar 

  • Ohsako S, Janulis L, Hayashi Y, Bunick D. Characterization of domains in mice of calnexin-t, putative molecular chaperone required in sperm fertility, with use of glutathione S-transferase-fusion proteins. Biol Reprod 1998: 59: 1214–23.

    Article  CAS  PubMed  Google Scholar 

  • Oughtred R, Bedard N, Adegoke OA, Morales CR, Trasler J, Rajapurohitam V, Wing SS. Characterization of rat100, a 300-kilodalton ubiquitin-protein ligase induced in germ cells of the rat testis and similar to the Drosophila hyperplastic discs gene. Endocrinology 2002; 143: 3740–7.

    Article  CAS  PubMed  Google Scholar 

  • Patton EE, Willems AR, Tyres M. Combinatorial control in ubiquitin dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 1998; 14: 236–43.

    Article  CAS  PubMed  Google Scholar 

  • Perry WL, Hustad CM, Swing DA, TN OS, Jenkins NA, Copeland NG. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in A18H mice. Nat Genet 1998; 18: 143–46.

    Article  CAS  PubMed  Google Scholar 

  • Pusch W, Jahner D, Ivell R. Molecular cloning and testicular expression of the gene transcripts encoding the murine mutliubiquitin-chain-binding protein (Mcbl). Gene 1998; 207: 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Quesada V, Diaz-Perales A, Gutierrez-Fernandez A, Garabaya C, Cal S, Lopez-Otin C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Eur J Biochem 2004; 271: 339–48.

    Article  Google Scholar 

  • Raab LS, Polakoski KL, Hancock LW, Hamilton DW. Characterization of the heat shock protein P70 in rat spermatogenic cells. Mol Reprod Dev 1995: 40: 186–95.

    Article  CAS  PubMed  Google Scholar 

  • Rajapurohitam V, Morales CR, El-Alfy M, Lefrancois S, Bedard N, Wing SS. Activation of a UBC-4 dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev Biol 1999;12:217–28.

    Article  Google Scholar 

  • Rivkin E, Cullinan EB, Tres LL, Kierszenbaum AL. A protein associated with the manchette during rat spermiogenesis is encoded by a gene of the TBP-1 like subfamily with highly conserved ATPase and protease domains. Mol Reprod Dev 1997; 48: 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Roest HP, Klaveren van J, Wit de J, Gurp van CG, Koken MHM, Vermey M et al,. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes a defect in spermatogenesis associated with chromatin modification. Cell 1996; 86: 799–810.

    Article  CAS  PubMed  Google Scholar 

  • Sananes N, Baulieu EE, and Le Goascogne C. Stage-specific expression of the immunophilin FKBP59 messenger ribonucleic acid and protein during differentiation of male germ cells in rabbits and rats. Biol Reprod 1998: 58: 353–60.

    Article  CAS  PubMed  Google Scholar 

  • Santti H, Mikkonen L, Hirvonen-Santti S, Toppari J, Janne OA, Palvimo JJ. Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem Biophys Res Commun 2003; 308: 139–47.

    Article  CAS  PubMed  Google Scholar 

  • Scieglinska D, Vydra N, Krawczyk Z, Widlak W. Location of promoter elements necessary and sufficient to direct testis-specific expression of the Hst70/Hsp70.2 gene. Biochem J 2004; Pt.

    Google Scholar 

  • Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ. UBL1, a human ubiquitin like protein associating with human RAD51/RAD52 proteins. Genomics 1996;36, 271–79.

    Article  CAS  PubMed  Google Scholar 

  • Son WY, Han CT, Hwang SH, Lee JH, Kim S, Kim YC. Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil Steril 2000; 73: 1138–44.

    Article  CAS  PubMed  Google Scholar 

  • Son WY, Hwang SH, Han CT, Lee JH, Kim S, Kim YC. Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod 1999; 5: 1122–6.

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow PS, Schuster T, Finley D. A conserved sequence in histone H2A which is a ubiquitination site in higher eukaryotes is not required for growth in Saccharomyces cerevisiae. Mol Cell Biol 1990;10:4905–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takaishi M, Huh NH. A tetratricopeptide repeat containing protein gene, tpis, whose expression is induced with differentiation of spermatogenic cells. Biochem Biophys Res Commun 1999; 264: 81–5.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ikawa M, Tsuchida J, Nozaki M, Suzuki M, Fujiwara T, Okabe M, Nishimune Y. Cloning and characterization of the human calmegin gene encoding putative testis-specific chaperone. Gene 1997; 204: 159–63.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K. Proteasomes: Structures and Biology. J Biochem 1998; 123: 195–04.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yeh ET, Kamitani T. NUB 1-mediated targeting of the ubiquitin precursor UbCl for its C-terminal hydrolysis. Eur J Biochem 2004; 271: 972–82.

    Article  CAS  PubMed  Google Scholar 

  • Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB. Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 1997; 8: 1405–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timms KM, Ansari-Lari MA, Morris W, Brown SN, Gibbs RA. The genomic organization of Isopeptidase T-3 (ISOT-3), a new member of the ubiquitin specific protease family (UBP). Gene 1998; 217: 101–6.

    Article  CAS  PubMed  Google Scholar 

  • Tissiere A, Mitchell HK, Tracy U. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosomal puffs. J Mol Biol 1974; 84: 389–98.

    Article  Google Scholar 

  • Townsley FM, Ruderman JV. Proteolytic ratchets that control progression through mitosis. Trends Cell Biol. 1998; 8: 238–44.

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Iseki S. Specific expression of the mRNA for 25 kDA heat shock protein in the spermatocytes of mouse seminiferous tubules. Anat Embyol 1999; 199: 419–25.

    Article  CAS  Google Scholar 

  • Watanabe D, Okabe M, Hamajima N, Morita T, Nishina Y, Nishimune Y. Characterization of the testis-specific gene ‘calmegin’ promoter sequence and its activity defined by transgenic mouse experiements. FEBS Lett 1995: 24: 509–12.

    Article  Google Scholar 

  • Watanabe D, Yamada K, Nishina Y, Tajima Y, Koshimizu U, Nagata A, Nishimune Y. Molecular cloning of a novel Ca2+ binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 1994; 11: 7744–9.

    Google Scholar 

  • Watson DC, Levy WB, Dixon GH. Free ubiquitin is a non-histone protein of trout testis chromatin. Nature 1978; 276: 196–98.

    Article  CAS  PubMed  Google Scholar 

  • Westwood JT, Clos J, Wu C. Stressed induced oligomerization and chromosomal relocalization of heat shock factor. Nature 1991; 353: 822–27.

    Article  CAS  PubMed  Google Scholar 

  • Widlak W, Markkula M, Krawczyk Z, Kananen K, Huhtaniemi I. A252 bp upstream region of the rat spermatocyte specific hst70 gene is sufficient to promote expression of the hst70-CAT hybrid gene in testis and brain of transgenic mice. Biochim Biophys Acta 1995: 1264: 191–200.

    Article  PubMed  Google Scholar 

  • Wilkinson KD. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997; 11: 1245–56.

    CAS  PubMed  Google Scholar 

  • Wing SS, Bedard N, Morales C, Hingamp P, Trasler J. A novel rat homolog of the Saccharomyces crevisiae ubiquitin conjugating enzymes UBC4 en UBC5 with distinct biochemical features is induced during spermatogenesis. Mol Cell Biol 1996; 16: 4064–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wing SS, Jain P. Molecular cloning expression and characterization of a ubiquitin conjugation enzyme (E2(17)kB) highly expressed in rat testis. Biochem J 1995: 305: 125–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wisniewski J, Malezewski M, Krawczyk Z, Gedamu L. An upstream region of the rat spermatogenesis-specific heat-shock-like Hst70 gene confers testis specific expression in transgenic mice. Eur Biochem 1993; 15: 137–43.

    Article  Google Scholar 

  • Yamagata K, Nakanishi T, Ikawa M, Yamaguchi R, Moss SB, Okabe M. Sperm from the calmegin-deficient mouse have normal abilities for binding and fusion to the egg plasma membrane. Dev Biol. 2002; 250: 348–57.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Kim NS, Sekine S, Seino H, Osaka F, Yamao F, Kato S. Cloning and expression of cDNA encoding a human ubiquitin-conjugating enzyme similar to the Drosophila bendless gene product. J Biochem 1996; 120; 494–97.

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Santti H, Janne OA, Palvimo JJ, Toppari J. Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr Patterns 2003; 3: 301–8.

    Article  CAS  PubMed  Google Scholar 

  • Yanaka N, Kobayashi K, Wakimoto K, yamada E, Imahie H, Imai Y, Mori C. Insertional mutation of the murine kisimo locus casued a defect is spermatogenesis. J Biol Chem 2000; 275: 14791–4.

    Article  CAS  PubMed  Google Scholar 

  • Yasugi T, Howley PM. identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res 1996; 24: 2005–2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshinaga K, Tanii I, Toshimori K. Molecular chaperone calmegin localization to the endoplasmic reticulum of meiotic and post-meiotic germ cells in the mouse testis. Arch Histol Cytol 1999; 62: 283–93.

    Article  CAS  PubMed  Google Scholar 

  • Yu SS, Takenaka O. Molecular cloning, structure, and testis-specific expression of MFSJ1, a member of the DNAJ protein family, in the Japanese monkey (Macaca fuscata). Biochem Biophys Res Commun. 2003; 301: 443–9.

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Miller M, Belote JM. Duplicated proteasome subunit genes in Drosophila melanogaster encoding testis-specific isoforms. Genetics 1996; 144: 147–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zakeri ZF, Welch WJ, Wolgemuth DJ. Characterization and inducibility of hsp 70 proteins in the male germ line. J Cell Biol 1990; 111: 1785–92.

    Article  CAS  PubMed  Google Scholar 

  • Zakeri ZF, Wolgemuth DJ, Hunt CR. Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 1988; 8: 2925–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zakeri ZF, Wolgemuth DJ. Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian male germ line. Mol Cell Biol 1987: 7: 1791–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu D, Dix DJ, Eddy EM. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 1997; 124: 3007–14.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gupta, G.S. (2005). Quality Control of Germ Cell Proteins. In: Proteomics of Spermatogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-387-27655-6_31

Download citation

Publish with us

Policies and ethics