Skip to main content

Noble Metal Nanoparticle Biosensors

  • Chapter
Radiative Decay Engineering

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 8))

Abstract

Receptor-ligand binding assays are central to medical diagnostics, proteomics, drug discovery, environmental monitoring and food processing. A typical binding assay uses a “capture molecule” (often loosely termed as the “receptor”) which is typically an antibody, DNA, peptide, or protein, that binds to a target analyte (ligand) of interest in a sample with high affinity and specificity. Binding of the analyte to the “receptor” is coupled to a transduction step to enable detection of the binding event and quantification of the analyte concentration in the sample. Based on their mode of detection, most binding assays can be divided into two categories. The first category includes assays that require a label or tracer-a radioisotope, chromophore or fluorophore-to transduce the binding event into a quantifiable signal. The second category of analyte binding assays is label-fi-ee assays that do not require the addition of extrinsic reagents or labels. Instead, a change in a physical parameter upon analyte binding such as the mass, thickness, or refractive index, is directly transduced into a measurable signal. These two categories are broad, and some overlap exists between them. For example, recent protein engineering approaches have yielded direct fluorescence biosensors, in which binding is coupled to a change in the fluorescence of the receptor through allostery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. R. M. De Lorimier, J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew and H. W. Hellinga. Construction of a fluorescent biosensor family. Protein Science 11(11), 2655–2675 (2002).

    Article  Google Scholar 

  2. R. S. Yalow and S. A. Berson. Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648–1649 (1959).

    Article  CAS  Google Scholar 

  3. J. P. Gosling. Enzyme Immunoassay. In Immunoassay (Diamandis, E.P. and Christopoulos, T.K., eds.), pp. 287–308, Academic Press, San Diego (1996).

    Google Scholar 

  4. G. MacBeath and S. L. Schreiber. Printing proteins as microarrays for high-throughput function determination. Science 289(5485), 1760–1763. (2000).

    CAS  Google Scholar 

  5. M. C. Pirrung. How to make a DNA chip. Angewandte Chemie-Intemational Edition 41(8), 1277-+ (2002).

    Google Scholar 

  6. M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer and T. O. Joos. Protein microarray technology. Trends in Biotechnology 20(4), 160–166 (2002).

    Article  CAS  Google Scholar 

  7. H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein and M. Snyder. Global analysis of protein activities using proteome chips. Science 293(5537), 2101–2105 (2001).

    Article  CAS  Google Scholar 

  8. A. Janshoff, H. J. Galla and C. Steinem. Piezoelectric mass-sensing devices as biosensors-An alternative to optical biosensors? Angewandte Chemie-Intemational Edition 39(22), 4004–4032 (2000).

    Article  CAS  Google Scholar 

  9. F. Hook, B. Kasemo, T. Nylander, C. Fant, K. Sott and H. Elwing. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical Chemistry 73(24), 5796–5804 (2001).

    Article  CAS  Google Scholar 

  10. F. Hook, M. Rodahl, B. Kasemo and P. Brzezinski. Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding. Proceedings of the National Academy of Sciences of the United States of America 95(21), 12271–12276 (1998).

    Article  CAS  Google Scholar 

  11. W. Knoll. Interfaces and thin films as seen by bound electromagnetic waves. Annual Review of Physical Chemistry 49, 569–638 (1998).

    Article  CAS  Google Scholar 

  12. J. Homola, S. S. Yee and G. Gauglitz. Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical 54(1–2), 3–15 (1999).

    Article  Google Scholar 

  13. N. Nath and A. Chilkoti. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Analytical Chemistry 74(3), 504–509 (2002).

    Article  CAS  Google Scholar 

  14. J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon and R. P. Van Duyne. A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. Journal of Physical Chemistry B 107(8), 1772–1780 (2003).

    Article  CAS  Google Scholar 

  15. A. J. Haes and R. P. Van Duyne. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35), 10596–10604 (2002).

    Article  CAS  Google Scholar 

  16. J. Yguerabide and E. E. Yguerabide. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-I. Theory. Analytical Biochemistry 262(2), 137–156 (1998).

    Article  CAS  Google Scholar 

  17. J. Yguerabide and E. E. Yguerabide. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-II. Experimental characterization. Analytical Biochemistry 262(2), 157–176 (1998).

    Article  CAS  Google Scholar 

  18. U. Kreibig and M. Vollmer. (1995) Optical properties of metal clusters, Springer-Verlag, Berlin; New York

    Google Scholar 

  19. S. Link and M. A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry 19(3), 409–453 (2000).

    Article  CAS  Google Scholar 

  20. E. J. Zeman and G. C. Schatz. An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Ag, Au, Cu, Li, Na, Al, Ga, in, Zn, and Cd. Journal of Physical Chemistry 91(3), 634–643(1987).

    Article  CAS  Google Scholar 

  21. W. H. Yang, G. C. Schatz and R. P. Vanduyne. Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes. Journal of Chemical Physics 103(3), 869–875 (1995).

    Article  CAS  Google Scholar 

  22. D. L. Feldheim and C. A. Foss. (2002) Metal nanoparticles: synthesis, characterization, and applications, Marcel Dekker, New York

    Google Scholar 

  23. F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst and P. Martinek. Before striking gold in gold-ruby glass. Nature 407(6805), 691–692 (2000).

    Article  CAS  Google Scholar 

  24. J. Roth. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochemistry and Cell Biology 106(1), 1–8 (1996).

    CAS  Google Scholar 

  25. M. Faraday. Experimental Relations of gold (and other metals) to light. Philosophical Transactions of Royal Society of London 147, 145 (1857).

    Article  Google Scholar 

  26. R. Zsigmondy and J. Alexander. (1909) Colloids and the ultramicroscope; a manual of colloid chemistry and ultramicroscopy, Wiley Chapman & Hall, New York, London

    Google Scholar 

  27. W. P. Faulk and G. M. Taylor. An immunocolloid method for the electron microscope. lmmunochemistry 8(11), 1081–1083 (1971).

    Article  CAS  Google Scholar 

  28. G. Frens. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature 241, 20 (1973).

    CAS  Google Scholar 

  29. M. A. Hayat. (1989) Colloidal gold: principles, methods, and applications, Academic Press, San Diego

    Google Scholar 

  30. J. H. W. Leuvering, B. C. Goverde, P. Thal and A. Schuurs. A Homogeneous Sol Particle Immunoassay for Human Chorionic-Gonadotropin Using Monoclonal-Antibodies. Journal of Immunological Methods 60(1–2), 9–23 (1983).

    Article  CAS  Google Scholar 

  31. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter and M. J. Natan. Self-Assembled Metal Colloid Monolayers-an Approach to Sers Substrates. Science 267(5204), 1629–1632 (1995).

    Article  CAS  Google Scholar 

  32. S. M. Nie and S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997).

    Article  CAS  Google Scholar 

  33. Y. W. C. Cao, R. C. Jin and C. A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586), 1536–1540 (2002).

    Article  CAS  Google Scholar 

  34. M. Moskovits, L. L. Tay, J. Yang and T. Haslett. SERS and the single molecule. Optical Properties of Nanostructured Random Media 82, 215–226 (2002).

    Article  CAS  Google Scholar 

  35. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078–1081 (1997).

    Article  CAS  Google Scholar 

  36. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society 120(9), 1959–1964 (1998).

    Article  CAS  Google Scholar 

  37. T. A. Taton, C. A. Mirkin and R. L. Letsinger. Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757–1760 (2000).

    Article  CAS  Google Scholar 

  38. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas and J. L. West. A whole blood immunoassay using gold nanoshells. Anal Chem 75(10), 2377–2381 (2003).

    Article  CAS  Google Scholar 

  39. S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas. Nanoengineering of optical resonances. Chemical Physics Letters 288(2–4), 243–247 (1998).

    Article  CAS  Google Scholar 

  40. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. A. G. Requicha. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials 2(4), 229–232 (2003).

    Article  CAS  Google Scholar 

  41. P. Englebienne. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7), 1599–1603 (1998).

    Article  CAS  Google Scholar 

  42. P. Englebienne, A. Van Hoonacker and J. Valsamis. Rapid homogeneous immunoassay for human ferritin in the cobas mira using colloidal gold as the reporter reagent. Clinical Chemistry 46(12), 2000–2003 (2000).

    CAS  Google Scholar 

  43. T. Okamoto, I. Yamaguchi and T. Kobayashi. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Optics Letters 25(6), 372–374 (2000).

    Article  CAS  Google Scholar 

  44. Y. G. Sun and Y. N. Xia. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry 74(20), 5297–5305 (2002).

    Article  CAS  Google Scholar 

  45. J. Turkevich. Colloidal Gold. Part 1. Gold Bulletin 18(3), 86–91 (1985).

    CAS  Google Scholar 

  46. D. V. Goia and E. Matijevic. Preparation of monodispersed metal particles. New Journal of Chemistry 22(11), 1203–1215 (1998).

    Article  CAS  Google Scholar 

  47. D. V. Goia and E. Matijevic. Tailoring the particle size of monodispersed colloidal gold. Colloids and Surfaces a-Physicochemical and Engineering Aspects 146(1–3), 139–152 (1999).

    Article  CAS  Google Scholar 

  48. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications (7), 801–802 (1994).

    Article  Google Scholar 

  49. P. Y. Silvert, R. HerreraUrbina, N. Duvauchelle, V. Vijayakrishnan and K. T. Elhsissen. Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization. Journal of Materials Chemistry 6(4), 573–577 (1996).

    Article  CAS  Google Scholar 

  50. Y. Cao, R. Jin and C. A. Mirkin. DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123(32), 7961–7962 (2001).

    Article  CAS  Google Scholar 

  51. D. A. Handley. Methods for synthesis of colloidal gold. In Colloidal gold: principles, methods, and applications (Vol. 1) (Hayat, M.A., ed.), pp. 13–32, Academic Press, San Diego (1989).

    Google Scholar 

  52. C. J. Murphy and N. R. Jana. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 14(1), 80–82 (2002).

    Article  CAS  Google Scholar 

  53. S. R. Nicewamer-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating and M. J. Natan. Submicrometer metallic barcodes. Science 294(5540), 137–141 (2001).

    Article  Google Scholar 

  54. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548), 1901–1903 (2001).

    Article  CAS  Google Scholar 

  55. Y. Sun and Y. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002).

    Article  CAS  Google Scholar 

  56. Y. G. Sun and Y. N. Xia. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128(6), 686–691 (2003).

    Article  CAS  Google Scholar 

  57. T. R. Jensen, M. D. Malinsky, C. L. Haynes and R. P. Van Duyne. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. Journal of Physical Chemistry B 104(45), 10549–10556 (2000).

    Article  CAS  Google Scholar 

  58. Z. Li, S. W. Chung, J. M. Nam, D. S. Ginger and C. A. Mirkin. Living templates for the merarchical assembly of gold nanoparticles. Angewandte Chemie-International Edition 42(20), 2306–2309 (2003).

    Article  Google Scholar 

  59. M. Reches and E. Gazit. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619), 625–627 (2003).

    Article  CAS  Google Scholar 

  60. M. G. Warner and J. E. Hutchison. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Materials 2(4), 272–277 (2003).

    Article  CAS  Google Scholar 

  61. J. S. Choi, G. Sauer, P. Goring, K. Nielsch, R. B. Wehrspohn and U. Gosele. Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology. Journal of Materials Chemistry 13(5), 1100–1103 (2003).

    Article  CAS  Google Scholar 

  62. P. VanDerVoort and E. F. Vansant. Silylation of the silica surface a review. Journal of Liquid Chromatography & Related Technologies 19(17–18), 2723–2752 (1996).

    Article  Google Scholar 

  63. J. J. Cras, C. A. Rowe-Taitt, D. A. Nivens and F. S. Ligler. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors & Bioelectronics 14(8–9), 683–688 (1999).

    Article  CAS  Google Scholar 

  64. C. M. Halliwell and A. E. G. Cass. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Analytical Chemistry 73(11), 2476–2483 (2001).

    Article  CAS  Google Scholar 

  65. K. Park, H. Park and R. M. Albrecht. Factors affecting the staining with colloidal gold. In Colloidal gold: principles, methods, and applications (Vol. 1) (Hayat, M.A., ed.), pp. 489–518, Academic Press, San Diego (1989).

    Google Scholar 

  66. K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie and M. J. Natan. Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture. Journal of the American Chemical Society 118(5), 1148–1153 (1996).

    Article  CAS  Google Scholar 

  67. E. S. Kooij, E. A. M. Brouwer, H. Wormeester and B. Poelsema. Ionic strength mediated self-organization of gold nanocrystals: An AFM study. Langmuir 18(20), 7677–7682 (2002).

    Article  CAS  Google Scholar 

  68. M. Semmler, E. K. Mann, J. Ricka and M. Borkovec. Diffusional deposition of charged latex particles on water-solid interfaces at low ionic strength. Langmuir 14(18), 5127–5132 (1998).

    Article  CAS  Google Scholar 

  69. M. Semmler, J. Ricka and M. Borkovec. Diffusional deposition of colloidal particles: electrostatic interaction and size polydispersity effects. Colloids and Surfaces a-Physicochemical and Engineering Aspects 165(1–3), 79–93 (2000).

    Article  CAS  Google Scholar 

  70. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S. Yee. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19), 5636–5648 (1998).

    Article  CAS  Google Scholar 

  71. S. Underwood and P. Mulvaney. Effect of the Solution Refractive-Index on the Color of Gold Colloids. Langmuir 10(10), 3427–3430 (1994).

    Article  CAS  Google Scholar 

  72. A. C. Templeton, J. J. Pietron, R. W. Murray and P. Mulvaney. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. Journal of Physical Chemistry B 104(3), 564–570 (2000).

    Article  CAS  Google Scholar 

  73. M. D. Malinsky, K. L. Kelly, G. C. Schatz and R. P. Van Duyne. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society 123(7), 1471–1482 (2001).

    Article  CAS  Google Scholar 

  74. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz and R. P. Van Duyne. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. Journal of Physical Chemistry B 103(45), 9846–9853 (1999).

    Article  CAS  Google Scholar 

  75. M. Malmsten. Ellipsometry Studies of Protein Layers Adsorbed at Hydrophobic Surfaces. Journal of Colloid and Interface Science 166(2), 333–342 (1994).

    Article  CAS  Google Scholar 

  76. J. Schmitt, P. Machtle, D. Eck, H. Mohwald and C. A. Helm. Preparation and optical properties of colloidal gold monolayers. Langmuir 15(9), 3256–3266 (1999).

    Article  CAS  Google Scholar 

  77. G. Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  78. K. Buscher, K. Graf, H. Ahrens and C. A. Helm. Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir 18(9), 3585–3591 (2002).

    Article  Google Scholar 

  79. L. S. Jung, K. E. Nelson, P. S. Stayton and C. T. Campbell. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir 16(24), 9421–9432 (2000).

    Article  CAS  Google Scholar 

  80. L. Haussling, H. Ringsdorf, F. J. Schmitt and W. Knoll. Biotin-Functionalized Self-Assembled Monolayers on Gold — Surface-Plasmon Optical Studies of Specific Recognition Reactions. Langmuir 7(9), 1837–1840 (1991).

    Article  Google Scholar 

  81. E. Stenberg, B. Persson, H. Roos and C. Urbaniczky. Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins. Journal of Colloid and Interface Science 143(2), 513–526 (1991).

    Article  CAS  Google Scholar 

  82. M. Horisberger, J. Rosset and H. Bauer. Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experiential 31(10), 1147–1149 (1975).

    Article  CAS  Google Scholar 

  83. W. D. Geoghegan and G. A. Ackerman. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem 25(11), 1187–1200 (1977).

    CAS  Google Scholar 

  84. C. D. Bain and G. M. Whitesides. Modeling Organic-Surfaces with Self-Assembled Monolayers. Angewandte Chemie-International Edition in English 28(4), 506–512 (1989).

    Article  Google Scholar 

  85. M. Mrksich and G. M. Whitesides. Patterning Self-Assembled Monolayers Using Microcontact Printing-a New Technology for Biosensors. Trends in Biotechnology 13(6), 228–235 (1995).

    Article  CAS  Google Scholar 

  86. E. Ostuni, L. Yan and G. M. Whitesides. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids and Surfaces B-Biointerfaces 15(1), 3–30 (1999).

    Article  CAS  Google Scholar 

  87. L. Movileanu, S. Howorka, O. Braha and H. Bayley. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnology 18(10), 1091–1095 (2000).

    Article  CAS  Google Scholar 

  88. Y. Cui, Q. Wei, H. Park and C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001).

    Article  CAS  Google Scholar 

  89. Z. P. Yang, W. Frey, T. Oliver and A. Chilkoti. Light-activated affinity micropatterning of proteins on self-assembled monolayers on gold. Langmuir 16(4), 1751–1758 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Nath, N., Chilkoti, A. (2005). Noble Metal Nanoparticle Biosensors. In: Geddes, C.D., Lakowicz, J.R. (eds) Radiative Decay Engineering. Topics in Fluorescence Spectroscopy, vol 8. Springer, Boston, MA. https://doi.org/10.1007/0-387-27617-3_12

Download citation

Publish with us

Policies and ethics