Skip to main content

Functional Genomics of Inositol Metabolism

  • Chapter
Biology of Inositols and Phosphoinositides

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambroziak, J., and Henry, S.A., 1994, Ino2 and ino4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the ino1 promoter. J. Biol. Chem. 269: 15344–15349.

    PubMed  CAS  Google Scholar 

  • Arner, R.J., Prabhu, K.S., Thompson, J.T., Hildenbrandt, G.R., Liken, A.D., and Reddy, C.C., 2001, myo-Inositol oxygenase: Molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol. Biochem. J. 360: 313–320.

    PubMed  CAS  Google Scholar 

  • Banhegyi, G., Braun, L., Csala, M., Puskas, F., and Mandl, J., 1997, Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med. 23: 793–803.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., Downes, C.P., and Hanley, M.R., 1989, Neural and developmental actions of lithium: A unifying hypothesis. Cell 59: 411–419.

    PubMed  CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E., and Jensen, R.G., 1995, Adaptations to environmental stresses. Plant Cell 7: 1099–1111.

    PubMed  CAS  Google Scholar 

  • Busa, W., and Gimlich, R., 1989, Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev. Biol. 132: 315–324.

    PubMed  CAS  Google Scholar 

  • Chang, S.F., Ng, D., Baird, L., and Georgopoulos, C., 1991, Analysis of an Escherichia coli DNAb temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. J. Biol. Chem. 266: 3654–3660.

    PubMed  CAS  Google Scholar 

  • Charalampous, F.C., and Lyras, C., 1957, Biochemical studies on inositol. IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J. Biol. Chem. 228: 1–13.

    PubMed  CAS  Google Scholar 

  • Chen, I.W., and Charalampous, C.F., 1966, Biochemical studies on D-inositol 1-phosphate as an intermediate in the biosynthesis of inositol from glucose-6-phosphate, and characteristics of two reactions in this biosynthesis. J. Biol. Chem. 241: 2194–2199.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 1998, Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Appl. Environ. Microbiol. 64: 2609–2615.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 1999, Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 65: 4559–4567.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 2000, Overexpression, purification, and analysis of complementation behavior of E. coli Suhb protein: Comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39: 4145–4153.

    PubMed  CAS  Google Scholar 

  • Conklin, P.L., Saracco, S.A., Norris, S.R., and Last, R.L., 2000, Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847–856.

    PubMed  CAS  Google Scholar 

  • Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the ino1 locus. J. Biol. Chem. 264: 1274–1283.

    PubMed  CAS  Google Scholar 

  • Dean-Johnson, M., and Wang, X., 1996, Differentially expressed forms of 1L-myo-inositol-1-phosphate synthase in Phaseolus vulgaris. J. Biol. Chem. 271: 17215–17218.

    Google Scholar 

  • Dichtl, B., Stevens, A., and Tollervey, D., 1997, Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J. 16: 7184–7195.

    PubMed  CAS  Google Scholar 

  • Doering, T., 2000, How does Cryptococcus get its coat? Trends Microbiol. 8: 545–551.

    Google Scholar 

  • Dunn, T.M., Lynch, D.V., Michaelson, L.V., and Napier, J.A., 2004, A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann. Bot. (Lond.) 93: 483–497.

    CAS  Google Scholar 

  • Eisenberg, F.J., 1967, D-myo inositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242: 1375–1382.

    PubMed  CAS  Google Scholar 

  • Eisenberg, F., Bolden, A.H., and Loewus, F.A., 1964, Inositol formation by cyclization of glucose chain in rat testis. Biochem. Biophys. Res. Commun. 14: 419–424.

    PubMed  Google Scholar 

  • English, P.D., Deitz, M., and Albersheim, P., 1966, Myoinositol kinase: Partial purification and identification of product. Science 151: 198–199.

    PubMed  CAS  Google Scholar 

  • Flores, S., and Smart, C.C., 2000, Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211: 823–832.

    PubMed  CAS  Google Scholar 

  • Gainey, P.A., and Phelps, C.F., 1975, Interactions of uridine diphosphate glucose dehydrogenase with the inhibitor uridine diphosphate xylose. Biochem. J. 145: 129–134.

    PubMed  CAS  Google Scholar 

  • Gillaspy, G., and Gruissem, W., 2001, Li+ induces hypertrophic growth and downregulation of IMP activity in tomato. J. Plant Growth Regul. 20: 78–86.

    CAS  Google Scholar 

  • Gillaspy, G.E., Keddie, J.S., Oda, K., and Gruissem, W., 1995, Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185.

    PubMed  CAS  Google Scholar 

  • Gil-Mascarell, R., Lopez-Coronado, J.M., Belles, J.M., Serrano, R., Rodriguez, P.L., Murguia, J.R., Quintero, F.J., Garciadeblas, B., and Rodriguez-Navarro, A., 1999, The Arabidopsis Hal2-like gene family includes a novel sodium-sensitive phosphatase. Plant J. 17: 373–383.

    PubMed  CAS  Google Scholar 

  • Guan, G., Dai, P., and Shechter, I., 2003, cDNA cloning and gene expression analysis of human myo-inositol 1-phosphate synthase. Arch. Biochem. Biophys. 417: 251–259.

    PubMed  CAS  Google Scholar 

  • Hallcher, L.M., and Sherman, W.R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol 1-phosphatase from bovine brain. J. Biol. Chem. 255: 10896–10901.

    PubMed  CAS  Google Scholar 

  • Hasegawa, R., and Eisenberg, F., Jr., 1981, Selective hormonal control of myo-inositol biosynthesis in reproductive organs and liver of the male rat. Proc. Natl. Acad. Sci. U.S.A. 78: 4863–4866.

    PubMed  CAS  Google Scholar 

  • Hayama, R., Izawa, T., and Shimamoto, K., 2002, Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43: 494–504.

    PubMed  CAS  Google Scholar 

  • Hegeman, C.E., Good, L.L., and Grabau, E.A., 2001, Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol. 125: 1941–1948.

    PubMed  CAS  Google Scholar 

  • Hegeman, C.E., and Grabau, E.A., 2001, A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 126: 1598–1608.

    PubMed  CAS  Google Scholar 

  • Hirsch, J.P., and Henry, S.A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (ino1) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell Biol. 6: 3320–3328.

    PubMed  CAS  Google Scholar 

  • Hitz, W.D., Carlson, T.J., Kerr, P.S., and Sebastian, S.A., 2002, Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 128: 650–660.

    PubMed  CAS  Google Scholar 

  • Inada, T., and Nakamura, Y., 1995, Lethal double-stranded RNA processing activity of ribonuclease III in the absence of Suhb protein of Escherichia coli. Biochimie 77: 294–302.

    PubMed  CAS  Google Scholar 

  • Inada, T., and Nakamura, Y., 1996, Autogenous control of the Suhb gene expression of Escherichia coli. Biochimie 78: 209–212.

    PubMed  CAS  Google Scholar 

  • Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R., and Bohnert, H., 1996, Coordinate transcription induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.

    PubMed  CAS  Google Scholar 

  • Janczarek, M., Krol, J., and Skorupska, A., 1999, The pssb gene product of Rhizobium leguminosarum bv. Trifolii is homologous to a family of inositol monophosphatases. FEMS Microbiol. Lett. 173: 319–325.

    PubMed  CAS  Google Scholar 

  • Janczarek, M., and Skorupska, A., 2004, Regulation of pssa and pssb gene expression in Rhizobium leguminosarum bv. Trifolii in response to environmental factors. Antonie Van Leeuwenhoek 85: 217–227.

    PubMed  CAS  Google Scholar 

  • Jian, A., and Nessler, C., 2000, Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breeding 6: 73–78.

    Google Scholar 

  • Jin, X., Foley, K.M., and Geiger, J.H., 2004, The structure of the 1L-myo-inositol-1-phosphate synthase-NAD2+-deoxy-D-glucitol 6-(e)-vinylhomophosphonate complex demands a revision of the enzyme mechanism. J. Biol. Chem. 279: 13889–13895.

    PubMed  CAS  Google Scholar 

  • Johnson, M.D., and Sussex, I.M., 1994, Il-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiol. 107: 613–619.

    Google Scholar 

  • Kao, K.R., Masiu, R.P., and Elinson, R., 1986, Respecification of pattern in Xenopus laevis embryos — a novel effect of lithium. Nature 322: 371–373.

    CAS  Google Scholar 

  • Keller, R., Brearley, C., Trethewey, R., and Muller-Rober, B., 1998, Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J. 16: 403–410.

    CAS  Google Scholar 

  • Klein, P.S., and Melton, D.A., 1996, A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U.S.A. 93: 8455–8459.

    PubMed  CAS  Google Scholar 

  • Lachman, H.M., and Papolos, D.F., 1989, Abnormal signal transduction: A hypothetical model for bipolar affective disorder. Life Sci. 45: 1413–1426.

    PubMed  CAS  Google Scholar 

  • Larner, J., 2002, D-chiro-inositol — its functional role in insulin action and its deficit in insulin resistance. Int. J. Exp. Diabetes Res. 3: 47–60.

    PubMed  Google Scholar 

  • Loertscher, R., and Lavery, P., 2002, The role of glycosyl phosphatidyl inositol (gpi)-anchored cell surface proteins in T-cell activation. Transpl. Immunol. 9: 93–96.

    PubMed  CAS  Google Scholar 

  • Loewus, F., 1963, Tracer studies of ascorbic acid formation in plants. Phytochemistry 2: 109–128.

    CAS  Google Scholar 

  • Loewus, F., 1965, Inositol metabolism and cell wall formation in plants. Fed. Proc. 24: 855–862.

    PubMed  CAS  Google Scholar 

  • Loewus, F., 1969, Metabolism of inositol in higher plants. Ann. N. Y. Acad. Sci. 165: 577–598.

    PubMed  CAS  Google Scholar 

  • Loewus, M.W., Bedgar, D.L., and Loewus, F.A., 1984, 1L-myo-inositol 1-phosphate synthase from pollen of Lilium longiflorum. An ordered sequential mechanism. J. Biol. Chem. 259: 7644–7647.

    PubMed  CAS  Google Scholar 

  • Loewus, F., Kelly, S., and Neufeld, E., 1962, Metabolism of myo-inositol in plants: Conversion to pectin, hemicellulose, D-xylose, and sugar acids. Proc. Natl. Acad. Sci. U.S.A. 48: 421–425.

    PubMed  CAS  Google Scholar 

  • Loewus, M.W., and Loewus, F.A., 1980, The C-5 hydrogen isotope-effect in myo-inositol 1-phosphate synthase as evidence for the myo-inositol oxidation-pathway. Carbohydr. Res. 82: 333–342.

    PubMed  CAS  Google Scholar 

  • Loewus, F.A., and Loewus, M.W., 1983, myo-Inositol: Its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 34: 137–161.

    CAS  Google Scholar 

  • Loewus, F.A., and Murthy, P.P.N., 2000, myo-Inositol metabolism in plants. Plant Sci. 150: 1–19.

    CAS  Google Scholar 

  • Lopez, F., Leube, M., Gil-Mascarell, R., Navarro-Avino, J.P., and Serrano, R., 1999, The yeast inositol monophosphatase is a lithium-and sodium-sensitive enzyme encoded by a nonessential gene pair. Mol. Microbiol. 31: 1255–1264.

    PubMed  CAS  Google Scholar 

  • Lorence, A., Chevone, B.I., Mendes, P., and Nessler, C.L., 2004, myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200–1205.

    PubMed  CAS  Google Scholar 

  • Maeda, T., and Eisenberg, F., Jr., 1980, Purification, structure, and catalytic properties of l-myo-inositol-1-phosphate synthase from rat testis. J. Biol. Chem. 255: 8458–8464.

    PubMed  CAS  Google Scholar 

  • Majee, M., Maitra, S., Ghosh Dastidar, K., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P., and Majumder, A.L., 2004, A novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.)Tateoka, a halophytic wild rice. Molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salttolerance phenotype. J. Biol. Chem. 279: 28539–28552.

    PubMed  CAS  Google Scholar 

  • Majerus, P.W., Kisseleva, M.V., and Norris, F.A., 1999, The role of phosphatases in inositol signaling reactions. J. Biol. Chem. 274: 10669–10672.

    PubMed  CAS  Google Scholar 

  • Majumder, A.L., Chatterjee, A., Ghosh Dastidar, K., and Majee, M., 2003, Diversification and evolution of l-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.

    PubMed  CAS  Google Scholar 

  • Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.

    PubMed  CAS  Google Scholar 

  • Majumder, A.L., Mandal N.C., and Biswas, B.B., 1972, Phosphoinositol kinase from germinating mung bean seeds. Phytochemistry 11: 503–508.

    CAS  Google Scholar 

  • Maslanski, J.A., Leshko, L., and Busa, W.B., 1992, Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 256: 243–245.

    PubMed  CAS  Google Scholar 

  • Matsuhisa, A., Suzuki, N., Noda, T., and Shiba, K., 1995, Inositol monophosphatase activity from the Escherichia coli Suhb gene product. J. Bacteriol. 177: 200–205.

    PubMed  CAS  Google Scholar 

  • McAllister, G., Whiting, P., Hammond, E.A., Knowles, M.R., Atack, J.R., Bailey, F.J., Maigetter, R., and Ragan, C. I., 1992, cDNA cloning of human and rat brain myo-inositol monophosphatase: Expression and characterization of the human recombinant enzyme. Biochem. J. 284: 749–754.

    PubMed  CAS  Google Scholar 

  • Mehta, D.V., Kabir, A., and Bhat, P.J., 1999, Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: Possible implications in galactosemia. Biochim. Biophys. Acta 1454: 217–226.

    PubMed  CAS  Google Scholar 

  • Meijer, H.J., and Munnik, T., 2003, Phospholipid-based signaling in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 54: 265–306.

    CAS  Google Scholar 

  • Moore, G.J., Bebchuk, J.M., Parrish, J.K., Faulk, M.W., Arfken, C.L., Strahl-Bevacqua, J., and Manji, H.K., 1999, Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156: 1902–1908.

    PubMed  CAS  Google Scholar 

  • Murguia, J.R., Belles, J.M., and Serrano, R., 1996, The yeast Hal2 nucleotidase is an in vivo target of salt toxicity. J. Biol. Chem. 271: 29029–29033.

    PubMed  CAS  Google Scholar 

  • Murray, M., and Greenberg, M.L., 1997, Regulation of inositol monophosphatase in Saccharomyces cerevisiae. Mol. Microbiol. 25: 541–546.

    PubMed  CAS  Google Scholar 

  • Murray, M., and Greenberg, M.L., 2000, Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol. Microbiol. 36: 651–661.

    PubMed  CAS  Google Scholar 

  • Nelson, D.E., Rammesmayer, G., and Bohnert, H.J., 1998, Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10: 753–764.

    PubMed  CAS  Google Scholar 

  • Neuwald, A.F., Krishnan, B.R., Brikun, I., Kulakauskas, S., Suziedelis, K., Tomcsanyi, T., Leyh, T.S., and Berg, D.E., 1992, CysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J. Bacteriol. 174: 415–425.

    PubMed  CAS  Google Scholar 

  • Neuwald, A.F., York, J.D., and Majerus, P.W., 1991, Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 294: 16–18.

    PubMed  CAS  Google Scholar 

  • Nigou, J., and Besra, G.S., 2002, Characterization and regulation of inositol monophosphatase activity in Mycobacterium smegmatis. Biochem. J. 361: 385–390.

    PubMed  CAS  Google Scholar 

  • Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., and Yagi, K., 1994, Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 269: 13685–13688.

    PubMed  CAS  Google Scholar 

  • Odorizzi, G., Babst, M., and Emr, S.D., 2000, Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25: 229–235.

    PubMed  CAS  Google Scholar 

  • Ordman, A.B., and Kirkwood, S., 1977, UDP glucose dehydrogenase. Kinetics and their mechanistic implications. Biochim. Biophys. Acta 481: 25–32.

    PubMed  CAS  Google Scholar 

  • Ouyang, Q., Ruiz-Noriega, M., and Henry, S.A., 1999, The reg1 gene product is required for repression of ino1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 152: 89–100.

    PubMed  CAS  Google Scholar 

  • Parthasarathy, L., Vadnal, R.E., Parthasarathy, R., Shyamala, and Devi, C.S., 1994, Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci. 54: 1127–1142.

    PubMed  CAS  Google Scholar 

  • Paul, M., and Cockburn, W., 1989, Pinitol, a compatible solute in Mesembryanthemum crystallinum L. J. Exp. Bot. 40: 1093–1098.

    CAS  Google Scholar 

  • Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., and Gratacap, M., 2001, Phosphoinositides: Key players in cell signalling, in time and space. Cell. Signal. 13: 377–387.

    PubMed  CAS  Google Scholar 

  • Quintero, F.J., Garciadeblas, B., and Rodriguez-Navarro, A., 1996, The Sal1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′(-bisphosphate nucleotidase and inositol polyphosphatase 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8: 529–537.

    PubMed  CAS  Google Scholar 

  • Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R., and Bohnert, H.J., 1995, Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys. 322: 183–188.

    PubMed  CAS  Google Scholar 

  • Reddy, C.C., Swan, J.S., and Hamilton, G.A., 1981, myo-Inositol oxygenase from hog kidney. I. Purification and characterization of the oxygenase and of an enzyme complex containing the oxygenase and D-glucuronate reductase. J. Biol. Chem. 256: 8510–8518.

    PubMed  CAS  Google Scholar 

  • Rivera-Gonzalez, R., Petersen, D.N., Tkalcevic, G., Thompson, D.D., and Brown, T.A., 1998, Estrogen-induced genes in the uterus of ovariectomized rats and their regulation by droloxifene and tamoxifen. J. Steroid Biochem. Mol. Biol. 64: 13–24.

    PubMed  CAS  Google Scholar 

  • Roberts, R.M., Shah, R., and Loewus, F., 1967. Conversion of myo-inositol-2-14C to labeled 4-Omethyl-glucuronic acid in the cell wall of maize root tips. Arch. Biochem. Biophys. 119: 590–593.

    PubMed  CAS  Google Scholar 

  • Seitz, B., Klos, C., Wurm, M., and Tenhaken, R., 2000, Matrix polysaccharide precursors in arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. Plant J. 21: 537–546.

    PubMed  CAS  Google Scholar 

  • Shaldubina, A., Ju, S., Vaden, D.L., Ding, D., Belmaker, R.H., and Greenberg, M.L., 2002, epi-Inositol regulates expression of the yeast ino1 gene encoding inositol-1-P synthase. Mol. Psychiatry 7: 174–180.

    PubMed  CAS  Google Scholar 

  • Shamir, A., Shaltiel, G., Greenberg, M.L., Belmaker, R.H., and Agam, G., 2003, The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Brain Res. Mol. Brain Res. 115: 104–110.

    PubMed  CAS  Google Scholar 

  • Shamir, A., Sjoholt, G., Ebstein, R.P., Agam, G., and Steen, V.M., 2001, Characterization of two genes, impa1 and impa2 encoding mouse myo-inositol monophosphatases. Gene 271: 285–291.

    PubMed  CAS  Google Scholar 

  • Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.

    PubMed  CAS  Google Scholar 

  • Sims, K.J., Spassieva, S.D., Voit, E.O., and Obeid, L.M., 2004, Yeast sphingolipid metabolism: Clues and connections. Biochem. Cell Biol. 82: 45–61.

    PubMed  CAS  Google Scholar 

  • Smart, C., and Fleming, A., 1993, A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during ABA-induced morphogenic response in Spirodela polrrhiza. Plant J. 4: 279–293.

    PubMed  CAS  Google Scholar 

  • Smirnoff, N., Conklin, P.L., and Loewus, F.A., 2001, Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 437–467.

    PubMed  CAS  Google Scholar 

  • Spiegelberg, B.D., Xiong, J.P., Smith, J.J., Gu, R.F., and York, J.D., 1999, Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3′-nucleotidase inhibited by inositol 1,4-bisphosphate. J. Biol. Chem. 274: 13619–13628.

    PubMed  CAS  Google Scholar 

  • Stevenson, J.M., Perera, I.Y., Heilmann, I.I., Persson, S., and Boss, W.F., 2000, Inositol signaling and plant growth. Trends Plant Sci. 5: 357.

    PubMed  Google Scholar 

  • Styer, J.C., Keddie, J., Spence, J., and Gillaspy, G.E., 2004, Genomic organization and regulation of the LeIMP1 and LeIMP2 genes encoding myo-inositol monophosphatase in tomato. Gene 326: 35–41.

    PubMed  CAS  Google Scholar 

  • Tolias, K.F., and Cantley, L.C., 1999, Pathways for phosphoinositide synthesis. Chem. Phys. Lipids 98: 69–77.

    PubMed  CAS  Google Scholar 

  • Vaden, D.L., Ding, D., Peterson, B., and Greenberg, M.L., 2001, Lithium and valproate decrease inositol mass and increase expression of the yeast ino1 and ino2 genes for inositol biosynthesis. J. Biol. Chem. 276: 15466–15471.

    PubMed  CAS  Google Scholar 

  • Van Dijken, P., Bergsma, J.C., Hiemstra, H.S., De Vries, B., Van Der Kaay, J., and Van Haastert, P.J., 1996, Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium. Biochem. J. 314: 491–495.

    PubMed  Google Scholar 

  • Wheeler, G.L., Jones, M.A., and Smirnoff, N., 1998, The biosynthetic pathway of Vitamin C in higher plants. Nature 393: 365–369.

    PubMed  CAS  Google Scholar 

  • White, M.J., Hirsch, J.P., and Henry, S.A., 1991, The opi1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J. Biol. Chem. 266: 863–872.

    PubMed  CAS  Google Scholar 

  • Whiting, P.H., Palmano, K.P., and Hawthorne, J.N., 1979, Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem. J. 179: 549–553.

    PubMed  CAS  Google Scholar 

  • Wong, Y.H., Mauck, L.A., and Sherman, W.R., 1982, L-myo-inositol-1-phosphate synthase from bovine testis. Methods Enzymol. 90 (Pt E): 309–314.

    PubMed  CAS  Google Scholar 

  • Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C., and Zhu, J.K., 2001, Fiery1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15: 1971–1984.

    PubMed  CAS  Google Scholar 

  • Yoon, I.S., Li, P.P., Siu, K.P., Kennedy, J.L., Cooke, R.G., Parikh, S.V., and Warsh, J.J., 2001, Altered IMPA2 gene expression and calcium homeostasis in bipolar disorder. Mol. Psychiatry 6: 678–683.

    PubMed  CAS  Google Scholar 

  • York, J.D., and Majerus, P.W., 1990, Isolation and heterologous expression of a cDNA encoding bovine inositol polyphosphate 1-phosphatase. Proc. Natl. Acad. Sci. 87: 9548–9552.

    PubMed  CAS  Google Scholar 

  • York, J.D., Ponder, J.W., and Majerus, P.W., 1995, Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. U.S.A. 92: 5149–5153.

    PubMed  CAS  Google Scholar 

  • York, J.D., Veile, R.A., Donis-Keller, H., and Majerus, P.W., 1993, Cloning, heterologous expression, and chromosomal localization of human inositol polyphosphate 1-phosphatase. Proc. Natl. Acad. Sci. U.S.A. 90: 5833–5837.

    PubMed  CAS  Google Scholar 

  • Yoshida, K.T., Fujiwara, T., and Naito, S., 2002, The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol. Plant. 114: 581–587.

    PubMed  CAS  Google Scholar 

  • Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., and Naito, S., 1999, Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119: 65–72.

    PubMed  CAS  Google Scholar 

  • Zhu, X., and Eichberg, J., 1990, A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U.S.A. 87: 9818–9822.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Torabinejad, J., Gillaspy, G.E. (2006). Functional Genomics of Inositol Metabolism. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_3

Download citation

Publish with us

Policies and ethics