Photocatalytic Reaction Engineering

Hugo de Lasa Benito Serrano Miguel Salaices

Library of Congress Cataloging-in-Publication Data

De Lasa, Hugo I.

Photocatalytic reaction engineering / Hugo deLasa [sic], Benito Serrano, and Miguel Salaices. p. cm. Includes bibliographical references and index.

ISBN 978-1-4419-3627-1 ISBN 978-0-387-27591-8 (eBook) DOI 10.1007/978-0-387-27591-8

1. Photocatalysis. 2. Reaction mechanisms (Chemistry) 3. Chemical engineering. I. Serrano, Benito. II. Salaices, Miguel, III. Title

QD716.P45.D4 2005 541'.395-dc22

2004065093

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4419-3627-1

© 2005 Springer Science+Business Media New York Originally published by Springer Science+Business Media,Inc. in 2005 Softcover reprint of the hardcover 1st edition 2005

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springeronline.com

Photocatalytic Reaction Engineering

About the Authors

Hugo de Lasa is a Professor at the Faculty of Engineering of the University of Western Ontario in Canada. He is the Director of the Chemical Reactor Engineering Centre (CREC), the author of many peer reviewed publications, several books, and patents, and co-founding editor of the International Journal of Chemical Reactor Engineering. As a teacher, Dr. de Lasa has been actively involved in the training of numerous graduate students. His activities have contributed to furthering the understanding of the science and the technology of chemical reactors. Dr. de Lasa is the recipient of several awards and distinctions which include the Research Excellence Award from the University of Western Ontario (1998), the Fellowship of the Chemical Institute of Canada (2000), the Medal of Research and Development from the Professional Engineers of Ontario (2000), the Award in Industrial Practice (2001) and the R.S. Jane Lecture Award (2004) both from the Canadian Society for Chemical Engineering.

Benito Serrano-Rosales is a Professor at the Department of Chemical Engineering, of the Universidad Autónoma de Zacatecas in Mexico. Dr. Serrano is a tenured member of the Mexican Sistema Nacional de Investigadores (S.N.I.) holding a significant record of referred publications and conference proceedings. His research focuses on environmental remediation, with emphasis on water decontamination using photocatalysis. Dr.Serrano is actively involved in university research and in the supervision of graduate students. He is a member of the AMIDIQ (Academia Mexicana de Investigación y Docencia en Ingeniería Química) and has collaborated in this capacity in the organization of several Mexican and international conferences. Dr. Serrano has established valuable working relationships with several universities in Canada, USA, Mexico and Latin America.

Miguel Salaices-Arredondo is a PhD graduate from the University of Western Ontario in Canada. Since 1990, Dr. Salaices has worked as a research engineer in the Nuclear Energy Department of the Instituto de Investigaciones Eléctricas in Mexico. His research interests include the development of reactors for water treatment with a focus on the optimization and the modeling of radiation distribution in photocatalyst suspended media. Dr. Salaices is also involved in the development of computational systems for the improvement of reactor safety in nuclear power plants. He has contributed to a considerable number of refereed papers, technical reports, design specifications, and refereed proceedings. Dr. Salaices is a member of the Mexican Nuclear Society and a tenured member of the Mexican Sistema Nacional de Investigadores (S.N.I.).

Preface

The pursuit of knowledge and discovery ebbs and flows. Peaks of innovation and discovery are often followed by periods of calm that invite reflection and reassessment, which in turn motivate renewed efforts towards further advancement. It is our view that the study of photocatalytic reaction engineering is in a phase of reassessment. The very principles of reaction engineering are under review at this time when environmental pressures and social concerns are changing the way we perceive and use technology. The application of photocatalytic reaction technology holds great promise in these changing times.

It is our aspiration to offer with this book a coherent and comprehensive treatment of the subject with thoroughly integrated contributions of the three co-authors.

Chapter I examines the basic principles involved in modeling photocatalytic reaction rates. Clarification in this area is needed as it is often lacking and is required for proceeding with the design, the simulation and the scale-up of the photocatalytic reactor units. Once these concepts are established, Chapter II describes various novel photocatalytic reactors designed by research groups around the world including the Photo-CREC reactors, developed in the context of the authors' research activities at the Chemical Reactor Engineering Centre (CREC), the University of Western Ontario in London, Canada and at the Universidad Autónoma de Zacatecas, Mexico. This chapter provides insight on the opportunities to extend the application of this technology through innovation in chemical reactor engineering.

Chapter III addresses the need of reviewing various types of photocatalysts, power sources and auxiliary equipment available for photocatalytic studies. Description of these matters is of essential importance for establishing radiation source power spectra, their lifetime and their power decay, for describing the available tools for macroscopic radiation balances and for effective kinetic and reaction rate modeling.

Chapter IV elucidates the methodology to develop a macroscopic radiation balance. This methodology allows the effective assessment of absorbed irradiation and irradiation transmission involving apparent extinction coefficients. The focus is put on demonstrating the applicability of these relatively simple functions to make the prediction of photon transfer and photon absorption a tractable mathematical problem. Thus, this chapter provides valuable tools from the perspective of the photocatalytic reactor designer.

Chapter V addresses the important task of accounting for the complex network of photochemical reactions, establishing viable kinetic modeling. This modeling is essentially based on a series-parallel model of the photocatalytic reaction network. Examples are given to demonstrate the extent of applicability of this approach to the photoconversion of phenol.

Furthermore, the extensive applicability of photocatalysis has essentially become a problem of energy efficiency. As a result, the quantification of these energy efficiency factors is a major issue. Thus, Chapter VI considers these factors from two perspectives: quantum efficiencies and Photochemical Thermodynamic Efficiency Factor (PTEF), the latter being a new efficiency factor introduced by the authors.

Chapter VII addresses the need to account for both physical and chemical phenomena, reaction and adsorption. In fact, consideration of these combined phenomena is, in the view of the authors, essential to provide effective kinetic and rate modeling for the photo conversion of organic and inorganic pollutants. Cases with several organic species are presented including methylene blue, phenol, chloro-phenol, di-chloro-phenol, catechol, and pyrogallol.

Air decontamination is another potential innovative application of photocatalysis. Chapter VIII focuses on air decontamination using Photo-CREC reactors. Several examples are provided by examining the photoconversion of acetone, iso-propanol, and acetaldehyde. Special attention is paid to the quantum efficiencies for air decontamination, exceeding 100% in many cases, which demonstrates the distinctive chain mechanism character of the photoconversion of organic pollutants in air.

Finally, Chapter IX, discusses recent research on the concurrent oxidation-reduction of organic and inorganic compounds and on the inactivation of model microorganisms. These two applications of photocatalysis have the potential of significantly improving the prospects for this novel technology.

In summary, our book contains an up-to-date discussion of photocatalytic reaction engineering and the application of these principles. Altogether it is an invitation to reflect on the possibilities of photocatalysis as a new and unique technique with great potential for air and water treatment. We offer our book as a contribution to the development of reaction engineering in photocatalysis as well as to the extensive potential for application of this technology.

We would like to express our appreciation to the University of Western Ontario, Canada, the Universidad Autónoma de Zacatecas, México and the Instituto de Investigaciones Eléctricas, México for their onthusiastic support of this project.

The authors wish to acknowledge the contributions of Dr. H. Ibrahim, Mr. J. Stuart, Mr. Jesus Moreira del Rio and Salvador Escobedo Salas whose research enriched some of the sections of this book. We are thankful to Ms. Naomi Pavan and Mrs. Graciela Lamana de Lasa who helped with the proofreading and technical editing of the manuscript. We would also like to express our appreciation to Mr. Martin de Lasa who designed the book cover and to Ms. Cristina de Lasa who offered valuable advice for the preparation of this cover. Finally, we are indebted to Mr. Kenneth Howell Senior Editor for Chemistry, Springer who provided guidance from a publisher's perspective.

London, Canada, August 2004

Hugo de Lasa University of Western Ontario, Canada Benito Serrano Universidad Autónoma de Zacatecas, México Miguel Salaices Instituto de Investigaciones Eléctricas, México

Contents

CHAPTER 1. Establishing Photocatalytic Kinetic Rate Equations: Basic Principles and Parameters

1.1.	Introduction	1
1.2.	The Photocatalytic Reaction and the Initiation Step	1
1.3.	The Photocatalytic Reaction	2
1.4.	Modeling Photocatalytic Reaction Rates	3
1.5.	Effect of the Lamp Irradiation and Catalyst Loading on the	
	Photocatalytic Rate	6
1.6.	Modeling Photoconversion of Pollutants: The parallel-series	
	reaction model	9
1.7.	Adsorption and Photocatalytic Reaction Rates	11
1.8.	Conclusions	12

CHAPTER 2. Novel Photocatalytic Reactors for Water and Air Treatment

2.1.	Photocatalytic Reactors: Overview and Advances	17		
2.2.	Reactors for Water Treatment			
2.3.	TiO ₂ Slurry Reactors	19		
2.4.	Immobilized TiO ₂ Photocatalytic Reactors	20		
2.5.	Comparing TiO ₂ Slurry Photo Reactors and TiO ₂			
	Immobilized Photoreactors	21		
2.6.	Artificially Illuminated Reactors	22		
	2.6.1. Slurry Reactors	22		
	2.6.2. Immobilized TiO ₂ reactors	24		
2.7.	Solar Photocatalytic Reactor Designs	28		
2.8.	Photocatalytic Reactors for Air Treatment	31		
2.9.	Photocatalytic Reactors: Special Applications	33		
2.10.	Novel CREC Photocatalytic Reactors	34		
	2.10.1. Photo CREC Water-I Reactor	34		
	2.10.2. Photo-CREC Water-II Reactor	36		
	2.10.3. Reactor Hydrodynamics and Mixing	38		
	2.10.4. Photo-CREC Water-III Reactor	- 39		

CONTENTS

	2.10.5. Photo-CREC Air Reactor	40
2.11.	Conclusions	41

CHAPTER 3. Photocatalysts, Radiation Sources and Auxiliary Equipment for Photocatalysis

3.1.	Introduction		
3.2.	Photocatalysts	49	
3.3.	Radiation Sources	51	
3.4.	Auxiliary Equipment		
	3.4.1. UVX digital radiometer	52	
	3.4.2. 4D Controls Ltd Spectroradiometer	53	
	3.4.3. Lamp Calibration and the Lamp Testing Unit (LTU)	54	
	3.4.4. Tubular Collimator for Radiation Transmission		
	Measurements	55	
3.5.	Particle Agglomeration Measurements	57	
3.6.	Photoconversion Experiments		
3.7.	Conclusions		

CHAPTER 4. The Irradiation Field in Photocatalytic Reactors

4.1.	Macroscopic Energy Balances and Extinction Coefficients	63
	4.1.1. Determination of Absorption of Radiation	63
4.2.	Determination of Absorption of Radiation in Photo-CREC	
	Water-II Reactor	64
	4.2.1. Radiation Transmission Modeling	65
4.3.	Radiation Transmission Through Several TiO ₂ Samples	81
4.4.	Extinction Coefficients	84
	4.4.1. Mixing Conditions	86
	4.4.2. Average Particle and Agglomerate Sizes	88
	4.4.3. Radiation Wavelength	93
4.5.	Conclusions	96

CHAPTER 5. Kinetic Modeling of the Photocatalytic Reaction Network: The Parallel-Series Approximation

5.1. Kinetic Modeling of the Photocatalytic Conversion of Phenolic						
	Compounds: General Overview	101				
5.2.	Phenol Photoconversion in Photo CREC Water-II Reactor 1					
5.3.	The Parallel-Series Kinetic Model Approximation 10					
5.4.	Parameter Evaluation 10					
5.5. Analysis and Discussion of Results		107				
	5.5.1. Initial Phenol Concentration	107				
	5.5.2. The Influence of pH	111				

	5.5.3.	Influence of the Catalyst Type	113
5.6.	Conclu	isions	116

CHAPTER 6. The Energy Efficiency Factors in Photocatalytic Processes

6.1.	Introduction	119
6.2.	EE/O-Electrical Energy per Order	119
6.3.	Quantum Yields	120
6.4.	PTEF-Photochemical Thermodynamic Efficiency Factor	122
6.5.	Evaluation of the ΔH_{OH}	126
6.6.	Conclusions	128

CHAPTER 7. Water Decontamination of Organic Species: Modeling Reaction and Adsorption Processes

7.1.	Introduction	133
7.2.	Experimental Conditions for Appropriate Kinetic Modeling	133
7.3.	Modeling the Adsorption and Reaction Processes	134
7.4.	Adsorption and Reaction of Model Pollutants	135
7.5.	Modeling of Adsorption and Reaction Parameters of a	
	Model Pollutant	137
7.6.	Initial Phase of Irradiated TiO ₂ operation	138
7.7.	Evaluation of Adsorption Parameters	139
7.8.	Evaluation of Intrinsic Reaction Parameters	140
7.9.	PTEF and Quantum Yields Calculations	142
7.10.	Conclusions	144

CHAPTER 8. Photocatalytic Degradation of Air Borne Pollutants

8.1.	Introduction	149
8.2.	Photocatalytic Reaction Kinetic Modeling:	
	Model and Assumptions	150
8.3.	Acetone Photodegradation Kinetic Modeling	151
8.4.	Acetaldehyde Photo Degradation Kinetic Modeling	154
8.5.	Iso-propanol Photodegradation Kinetic Modeling	156
8.6.	Conclusions about Kinetic Modeling	160
8.7.	Photocatalytic Conversion of Air Pollutants: Energy	
	Efficiencies Overview	160
8.8.	Apparent Quantum Efficiency in Photo-CREC-Air reactors	161
8.9.	Conclusions about Quantum Efficiencies in Photo-CREC-Air	
	Reactors	164

CHAPTER 9. Advances and Perspectives for Photocatalysis

9.1.	Introduction	169
9.2.	Oxidation-Reduction Enhanced Photocatalysis	169

	9.2.1.	Photocatalytic Thermodynamic Efficiency Factor (PTEF)	
		for oxidation-reduction processes	170
	9.2.2.	Evaluation of the $PTEF_{max}$ for Oxidation-Reduction	
		Processes	171
	9.2.3.	Assessing the PTEF for Oxidation-Reduction	
		Processes	172
	9.2.4.	Modeling Reaction and Adsorption Processes for Phenol	
		and Silver	172
	9.2.5.	Experimental Results	173
	9.2.6.	PTEF Evaluation for Oxidation-Reduction	176
9.3.	Applic	ation of Photocatalysis to the Inactivation of Microorganisms	178
	9.3.1.	Inactivation Apparent Quantum Yield	178
	9.3.2.	Microorganisms Inactivation Results	179
	9.3.3.	Evaluation of the Inactivation Quantum Yields	179
9.4.	Conclu	isions	180
Subject Ind	lex		185