Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 719 Accesses

Abstract

Mitochondrial OXPHOS is at the crosspoint of two quite different genetic systems, the nuclear genome, and the mitochondrial genome (mitochondrial DNA, mtDNA). The latter encodes a few essential components of the mitochondrial respiratory chain, and has unique molecular and genetic properties that account for some of the peculiar features of mitochondrial disorders. Although mitochondrial disorders have been known for more than thirty years, a major breakthrough in their understanding has come much later, with the discovery of an impressive, ever increasing number of mutations of mitochondrial DNA. Partial deletions or duplications of mtDNA, or maternally inherited point mutations, have been associated with well-defined clinical syndromes. Given the complexity of mitochondrial genetics and biochemistry, the clinical manifestations of mitochondrial disorders are extremely heterogeneous. They range from lesions of single tissues or structures, such as the optic nerve in Leber s hereditary optic neuropathy, or the cochlea in maternally-inherited nonsyndromic deafness, to more widespread lesions including myopathies, encephalomyopathies, cardiopathies, or complex multisystem syndromes. The recent advances in genetic studies provide both diagnostic tools and new pathogenetic insights in this rapidly expanding area of human pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lang BF, Gray MW, Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 1999; 33:351–97.

    PubMed  CAS  Google Scholar 

  2. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 1961; 191:144–148

    PubMed  CAS  Google Scholar 

  3. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973; 134:707–716.

    PubMed  CAS  Google Scholar 

  4. Wallace DC. Mitochondrial disease in man and mouse. Science 1999; 283:1482–1488.

    PubMed  CAS  Google Scholar 

  5. Droge W. Free radical in the physiological control of cell function. Physiol Rev 2002; 82:47–95.

    PubMed  CAS  Google Scholar 

  6. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–1312.

    PubMed  CAS  Google Scholar 

  7. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer Organelles and their weapons. J Cell Physiol 2002; 192:131–137.

    PubMed  CAS  Google Scholar 

  8. Neupert W, Brunner M. The protein import motor of mitochondria. Nat Rev Mol Cell Biol 2002; 3:555–65.

    PubMed  CAS  Google Scholar 

  9. Anderson S, Bankier AT, Barrel BG et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290:457–465

    PubMed  CAS  Google Scholar 

  10. Giles RE, Blanc H, Cann HM et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980; 77:6715–6719.

    PubMed  CAS  Google Scholar 

  11. Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proc Natl Acad Sci USA 1996; 93:13859–13863.

    PubMed  CAS  Google Scholar 

  12. Sutovsky P, Moreno RD, Ramalho-Santos J et al. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 2000; 63:582–590.

    PubMed  CAS  Google Scholar 

  13. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med 2002; 347:576–580.

    PubMed  Google Scholar 

  14. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature 1987; 325:31–36

    PubMed  CAS  Google Scholar 

  15. Merriwether DA, Clark AG, Ballinger SW et al. The structure of human mitochondrial DNA variation. J Mol Evol 1991; 33:543–555

    PubMed  CAS  Google Scholar 

  16. Lecrenier N, Van Der Bruggen P, Foury F. Mitochondrial DNA polymerases from yeast to man: A new family of polymerases. Gene 1997; 185:147–152.

    PubMed  CAS  Google Scholar 

  17. Donahue SL, Corner BE, Bordone L et al. Mitochondrial DNA ligase function in Saccharomyces cerevisiae. Nucleic Acids Res 2001; 29:1582–1589

    PubMed  CAS  Google Scholar 

  18. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging? Free Radical Biol Med 1990; 8:523–539.

    CAS  Google Scholar 

  19. Wallace DC. Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol. Genet 1986; 12:41–49.

    PubMed  CAS  Google Scholar 

  20. Thorburn DR, Dahl HH. Mitochondrial disorders: Genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet 2001; 106:102–14.

    PubMed  CAS  Google Scholar 

  21. Jenuth JP, Peterson AC, Fu K et al. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996; 14:146–151.

    PubMed  CAS  Google Scholar 

  22. Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease. Gene 1999; 238:211–230.

    PubMed  CAS  Google Scholar 

  23. Torroni A, Lott MT, Cabell MF et al. mtDNA and the origin of Caucasians: Identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 1994; 55:760–776.

    PubMed  CAS  Google Scholar 

  24. Satoh M, Kuroiwa T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 1991; 196:137–140.

    PubMed  CAS  Google Scholar 

  25. Jacobs HT, Lehtinen SK, Spelbrink JN. No sex please, we’ re mitochondria: A hypothesis on the somatic unit of inheritance of mammalian mtDNA. BioEssays 2000; 22:564–572.

    PubMed  CAS  Google Scholar 

  26. Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 1991; 7:453–478.

    PubMed  CAS  Google Scholar 

  27. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading-and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000; 100:515–524.

    PubMed  CAS  Google Scholar 

  28. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290:470–474.

    PubMed  CAS  Google Scholar 

  29. Andrews RM, Kubacka I, Chinnery PF et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23:147.

    PubMed  CAS  Google Scholar 

  30. Mitomap: http://infinity.gen.emory.edu/mitomap.html

    Google Scholar 

  31. Chinnery PF, Johnson MA, Wardell TM et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol. 2000; 48:188–193.

    PubMed  CAS  Google Scholar 

  32. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001; 106:18–26.

    PubMed  CAS  Google Scholar 

  33. Antozzi C, Zeviani M. Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc Res 1997; 35:184–199.

    PubMed  CAS  Google Scholar 

  34. Rowland LP, Blake DM, Hirano M et al. Clinical syndromes associated with ragged red fibres. Rev Neurol 1991; 147:467–473.

    PubMed  CAS  Google Scholar 

  35. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;717–719.

    Google Scholar 

  36. Zeviani M, Moraes CT, DiMauro S et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 1988; 38:1339–1346

    PubMed  CAS  Google Scholar 

  37. Moraes CT, DiMauro S, Zeviani M et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 1989; 320:1293–1299

    PubMed  CAS  Google Scholar 

  38. Poulton J, Deadman ME, Gardiner RM. Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet. 1989; 1:236–1240

    PubMed  CAS  Google Scholar 

  39. Chen X, Prosser R, Simonetti S et al. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet. 1995; 57:239–47.

    PubMed  CAS  Google Scholar 

  40. Shanske S, Tang Y, Hirano M et al. Identical mitochondrial DNA deletion in a woman with ocular myopathy and in her son with Pearson syndrome. Am J Hum Genet. 2002; 71:679–683

    PubMed  CAS  Google Scholar 

  41. Schon EA, Rizzuto R, Moraes CT et al. A direct repeat is a hotspot for large-scale deletions of human mitochondrial DNA. Science 1989; 244:346–349.

    PubMed  CAS  Google Scholar 

  42. Shoffner JM, Lott MT, Voliiavec AS et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: A slip replication model and metabolic therapy. Proc Nad Acad Sci USA 1989; 86:7952–7956.

    CAS  Google Scholar 

  43. Zeviani M, Bresolin N, Gellera C et al. Nucleus-driven multiple large-scale deletions of the human mitochondrial genome: A new autosomal dominant disease. Am J Hum Genet 1990; 47:904–914.

    PubMed  CAS  Google Scholar 

  44. Hayashi JI, Ohta S, Kikuchi A et al. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci USA 1991; 88:10614–10618.

    PubMed  CAS  Google Scholar 

  45. Mita S, Schmidt B, Schon EA et al. Detection of deleted mitochondrial genomes in cytochrome c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome. Proc Natl Acad Sci USA 1989; 86:9509–9513.

    PubMed  CAS  Google Scholar 

  46. Rotig A, Cormier C, Blache S et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder of infancy. J Clin Invest 1990; 86:1601–1608.

    PubMed  CAS  Google Scholar 

  47. McShane MA, Hammans SR, Sweeney MG et al. Pearson syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. Am J Hum Genet 1991; 48:39–42

    PubMed  CAS  Google Scholar 

  48. Barkovich A, Good W, Koch T et al. Mitochondrial disorders: Analysis of their clinical and imaging characteristics. Am J Neuroradiol 1993; 14:1119–1137.

    PubMed  CAS  Google Scholar 

  49. Oldfors A, Fyhr IM, Holme E et al. Neuropathology in Kearns-Sayre syndrome. Acta Neuropathol (Berl) 1990; 80:541–546.

    PubMed  CAS  Google Scholar 

  50. McKelvie PA, Morley JB, Byrne E et al. Mitochondrial encephalomyopathies: A correlation between neuropathological findings and defects in mitochondrial DNA. J Neurol Sci 1991; 102:51–60.

    PubMed  CAS  Google Scholar 

  51. Tanji K, Vu TH, Schon EA et al. Kearns-Sayre syndrome: Unusual pattern of expression of sub-units of the respiratory chain in the cerebellar system. Ann Neurol 1999; 45:377–383.

    PubMed  CAS  Google Scholar 

  52. Mariotti C, Tiranti V, Carrara F et al. Defective respiratory capacity and mitochondrial protein synthesis in transformants cybrids harboring the tRNA Leu(UUR) mutation associated with maternally inherited myopathy and cardiopathy. J Clin Invest 1994; 93:1102–1107.

    PubMed  CAS  Google Scholar 

  53. Dunbar DR, Moonie PA, Jacobs HT et al. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci USA 1995; 92:6562–6566.

    PubMed  CAS  Google Scholar 

  54. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 8731–8738.

    Google Scholar 

  55. Hirano M, Ricci E, Koenigsberger R et al. MELAS: An original case and clinical criteria for diagnosis. Neuromusc Disord 1992; 2:125–135.

    PubMed  CAS  Google Scholar 

  56. Mizukami K, Sasaki M, Suzuki T et al. Central nervous system changes in mitochondrial encephalomyopathy: A light and electron microscopic study. Acta Neuropathol (Berl) 1992; 83:449–452.

    PubMed  CAS  Google Scholar 

  57. Tsuchiya K, Miyazaki H, Akabane H et al. MELAS with prominent white matter gliosis and atrophy of the cerebellar granular layer: A clinical, genetic, and pathological study. Acta Neuropathologica (Berl) 1999; 97:520–524.

    PubMed  CAS  Google Scholar 

  58. Goto Y, Nonaka I, Horai S. A mutation in tRNALeu(UUR) gene associated with MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348:651–653.

    PubMed  CAS  Google Scholar 

  59. Fukuhara N, Tokiguchi S, Shirakawa K et al. Myoclonus epilepsy associated with ragged red fibres (mitochondrial abnormalities): Disease entity or a syndrome? J Neurol Sci 1980; 47:117–133.

    PubMed  CAS  Google Scholar 

  60. Wallace DC, Zheng X, Lott M et al. Familial mitochondrial encephalomyopathy (MERRF): Genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 1988; 55:601–610.

    PubMed  CAS  Google Scholar 

  61. Berkovic SF, Carpenter S, Evans A et al. Myoclonus Epilepsy and ragged-red fibres (MERRF). A clinical, pathological, biochemical, magnetic resonance spectrographic and positron emission tomographic study. Brain 1989; 112:1231–1260.

    PubMed  Google Scholar 

  62. Lombes A, Mendell JR, Nakase H et al. Myoclonic epilepsy and ragged-red fibers with cytochrome oxidase deficiency: Neuropathology, biochemistry, and molecular genetics. Ann Neurol 1989; 26:20–33.

    PubMed  CAS  Google Scholar 

  63. Oldfors A, Holme E, Tulinius M et al. Tissue distribution and disease manifestations of the tRNA(Lys) A→G(8344) mitochondrial DNA mutation in a case of myoclonus epilepsy and ragged red fibres. Acta Neuropathol (Berl) 1995; 90:328–333.

    PubMed  CAS  Google Scholar 

  64. Shoffner JM, Lott MT, Lezza AMS et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 1990; 61:931–937.

    PubMed  CAS  Google Scholar 

  65. Silvestri G, Moraes CT, Shanske S et al. A new mtDNA mutation the tRNALys gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Human Genet 1992; 51:1213–1217.

    CAS  Google Scholar 

  66. Zeviani M, Muntoni F, Savarese N et al. A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNALyS gene. Eur J Hum Genet 1993; 1:80–87.

    PubMed  CAS  Google Scholar 

  67. Silvestri G, Ciafaloni E, Santorelli FM et al. Clinical features associated with the A→G transition at nucleotide 8344 of mtDNA (‘MERRF’ mutation). Neurology 1993; 43:1200–1206.

    PubMed  CAS  Google Scholar 

  68. Hammans SR, Sweeney MG, Brockington M et al. The mitochondrial DNA transfer RNA(Lys)A→G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA. Brain 1993; 116:617–632.

    PubMed  Google Scholar 

  69. Austin SA, Vriesendorp FJ, Thandroyen FT et al. Expanding the phenotype of the 8344 transfer RNAlysine mitochondrial DNA mutation. Neurology 1999; 51:1447–50

    Google Scholar 

  70. Berkovic SF, Cochius J, Andermann E et al. Progressive myoclonus epilepsies: Clinical and genetic aspects. Epilepsia 1993; 34(suppl. 3):S19–30.

    PubMed  Google Scholar 

  71. Uziel G, Moroni I, Lamantea A et al. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: A clinical, biochemical and molecular study in six families. J Neurol Neurosurg Psychiatry 1997; 63:16–22.

    PubMed  CAS  Google Scholar 

  72. Holt IJ, Harding AE, Petty RHK et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46:428–433.

    PubMed  CAS  Google Scholar 

  73. De Vries DD, van Engelen BG, Gabreels FJ et al. A second missense mutation in the mitochondrial ATPase 6 gene in Leigh’s syndrome. Ann Neurol 1993; 34:410–412.

    PubMed  Google Scholar 

  74. Tatuch Y, Christodoulou J, Feigenbaum A et al. Heteroplasmic mtDNA mutation (T→G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 1992; 50:852–858.

    PubMed  CAS  Google Scholar 

  75. Thyagarajan D, Shanske S, Vazquez-Memije M et al. A novel mitochondrial ATPase 6 point mutation in familial bilateral striatal necrosis. Ann Neurol 1995; 38:468–472

    PubMed  CAS  Google Scholar 

  76. Dionisi-Vici C, Seneca S, Zeviani M et al. Fulminant Leigh syndrome and sudden unexpected death in a family with the T9176C mutation of the mitochondrial ATPase 6 gene. J Inherit Metab Dis 1998; 21:2–8.

    PubMed  CAS  Google Scholar 

  77. Carelli V, Baracca A, Barogi S et al. Biochemical-clinical correlation in patients with different loads of the mitochondrial DNA T8993G mutation. Arch Neurol 2002; 59:264–270.

    PubMed  Google Scholar 

  78. Tiranti V, Chariot P, Carella F et al. Maternally inherited hearing loss, ataxia and myoclonus associated with a novel point mutation in mitochondrial tRNASer(UCN) gene. Hum Mol Genet 1995; 4:1421–1427.

    PubMed  CAS  Google Scholar 

  79. Verhoeven K, Ensink RJ, Tiranti V et al. Hearing impairment and neurological dysfunction associated with a mutation in the mitochondrial tRNASer(UCN) gene. Eur J Hum Genet 1999; 7:45–51.

    PubMed  CAS  Google Scholar 

  80. Schuelke M, Bakker M, Stoltenburg G et al. Epilepsia partialis continua associated with a homoplasmic mitochondrial tRNA(Ser(UCN) mutation. Ann Neurol 1998; 44:700–4.

    PubMed  CAS  Google Scholar 

  81. Jaksch M, Klopstock T, Kurlemann G et al. Progressive myoclonus epilepsy and mitochondrial myopathy associated with mutations in the tRNA(Ser(UCN)) gene. Ann Neurol 1998; 44:635–40

    PubMed  CAS  Google Scholar 

  82. Hutchin TP, Cortopassi GA. Mitochondrial defects and hearing loss. Cell Mol Life Sci 2000; 57:1927–1937.

    PubMed  CAS  Google Scholar 

  83. Santorelli FM, Tessa A, D’amati G et al. The emerging concept of mitochondrial cardiomyopathies. Am Heart J. 2001; 141(1):E1.

    PubMed  CAS  Google Scholar 

  84. Andreu AL, Hanna MG, Reichmann H et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 1999; 341:1037–44.

    PubMed  CAS  Google Scholar 

  85. Choi M, Lebon S, Benit P et al. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh disease. J Med Genet 2002; 40:188–191.

    CAS  Google Scholar 

  86. Howell N, Mackey DA. Low-penetrance branches in matrilinear pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 1998; 63:1220–1224.

    PubMed  CAS  Google Scholar 

  87. Leber T. Ueber hereditare und congenital-angelegte Sehnervenlciden. Archiv fur Ophthalmologie 1871; 17:249–291.

    Google Scholar 

  88. Wallace DC, Singh G, Lott MT et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242:1427–1430.

    PubMed  CAS  Google Scholar 

  89. Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic findings in Leber’s hereditary optic neuropathy. II. The fundus findings in affected family members. Arch Ophthalmol 1983; 101:1059–1068.

    PubMed  CAS  Google Scholar 

  90. Smith JL, Hoyt WF, Susac JO. Ocular fundus in acute Leber optic neuropathy. Arch Ophthalmol 1973; 90:349–354.

    PubMed  CAS  Google Scholar 

  91. Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: Genetic and acquired optic neuropathies. Neurochem Int 2002; 40:573–584.

    PubMed  CAS  Google Scholar 

  92. Kwittken J, Barest HD. The neuropathology of hereditary optic atrophy (Leber’ s disease); the first complete anatomic study. Am J Path 1958; 34:185–207.

    PubMed  CAS  Google Scholar 

  93. Sadun AA, Kashima Y, Wurdeman AE et al. Morphological findings in the visual system in a case of Leber’ s hereditary optic neuropathy. Clin Neurosci 1994; 2:165–172.

    Google Scholar 

  94. Sadun AA, Peter HW, Ross-Cisneros FN et al. Leber’s hereditary optic neuropathy (LHON) differentially affects smaller axons in the optic nerve. Tr Am Ophthalmol Soc 2000; 98:223–232.

    CAS  Google Scholar 

  95. Howell N, Bindoff LA, McCullough DA et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am J Hum Genet 1991; 49:939–950.

    PubMed  CAS  Google Scholar 

  96. Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am J Hum Genet 1992; 51:1218–1228.

    PubMed  CAS  Google Scholar 

  97. Chinnery PF, Brown DT, Andrews RM et al. The mitochondrial ND6 gene is a hot spot for mutations that cause Leber’s hereditary optic neuropathy. Brain 2001; 124:209–218.

    PubMed  CAS  Google Scholar 

  98. Brown MD, Starikovskaya E, Derbeneva O et al. The role of mtDNA background in disease expression: A new primary LHON mutation associated with Western Eurasian haplogroup J. Hum Genet 2002; 110:130–138.

    PubMed  CAS  Google Scholar 

  99. Kim JY, Hwang J-M, Park SS. Mitochondrial DNA C4171A/ND1 is a novel mutation of Leber’s hereditary optic neuropathy with a good prognosis. Ann Neurol 2002; 51:630–634.

    PubMed  CAS  Google Scholar 

  100. Valentino ML, Avoni P, Barboni P et al. Mitochondrial DNA nucleotide changes C14482G and C14482A in the ND6 gene are pathogenic for Leber’s hereditary optic neuropathy. Ann Neurol 2002; 51:774–778.

    PubMed  CAS  Google Scholar 

  101. Fauser S, Leo-Kottler B, Besch D et al. Confirmation of the 14568 mutation in the mitochondrial ND6 gene as causative in Leber’s hereditary optic neuropathy. Ophthalmic Genet 2002; 23:191–197.

    PubMed  Google Scholar 

  102. Brown MD, Sun F, Wallace DC. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. Am J Hum Genet 1997; 60:381–387.

    PubMed  CAS  Google Scholar 

  103. Torroni A, Petrozzi M, D’Urbano L et al. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 1997; 60:1107–1121.

    PubMed  CAS  Google Scholar 

  104. Hofmann S, Jaksch M, Bezold R et al. Population genetics and disease susceptibility: Characterization of central European haplogroups by mtDNA gene mutations, correlation with D loop variants and association with disease. Hum Mol Genet 1997; 6:1835–1846.

    PubMed  CAS  Google Scholar 

  105. Tsao K, Aitken PA, Johns DR. Smoking as an aetiological factor in a pedigree with Leber’s hereditary optic neuropathy. Br J Ophthalmol 1999; 83:577–581.

    PubMed  CAS  Google Scholar 

  106. Sadun AA, Carelli V, Salomao SR et al. Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 2003; 136:231–238.

    PubMed  Google Scholar 

  107. Bu X, Rotter JI. X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: Evidence from segregation analysis for dependence on X chromosome inactivation. Proc Natl Acad Sci USA 1991; 88:8198–8202.

    PubMed  CAS  Google Scholar 

  108. Chalmers RM, Davis MB, Sweeney MG et al. Evidence against an X-linked visual loss susceptibility locus in Leber hereditary optic neuropathy. Am J Hum Genet 1996; 59:103–108.

    PubMed  CAS  Google Scholar 

  109. Pegoraro E, Carelli V, Zeviani M et al. X-inactivation patterns in female Leber’s hereditary optic neuropathy patients do not support a strong X-linked determinant. Am J Med Genet 1996; 61:356–362.

    PubMed  CAS  Google Scholar 

  110. Bristow EA, Griffith PG, Andrews RM et al. The distribution of mitochondrial activity in relation to optic nerve stricture. Arch Ophthalmol 2002; 120:791–796.

    PubMed  Google Scholar 

  111. Wong A, Cavelier L, Collins-Schramm HE et al. Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet 2002; 11:431–438.

    PubMed  CAS  Google Scholar 

  112. Shoffner JM, Brown MD, Stugard C et al. Leber’s hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Ann Neurol 1995; 38:163–169.

    PubMed  CAS  Google Scholar 

  113. Kirby DM, Kahler SG, Freckmann M-L et al. Leigh disease caused by the mitochondrial DNA G14459A mutation in unrelated families. Ann Neurol 2000; 48:102–104.

    PubMed  CAS  Google Scholar 

  114. Corona P, Antozzi C, Carrara F et al. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann Neurol 2001; 49:106–110.

    PubMed  CAS  Google Scholar 

  115. Prezant TR, Agapian JV, Bohlman CM et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and nonsyndromic deafness. Nat Genet 1993; 4:289–294.

    PubMed  CAS  Google Scholar 

  116. Estivill X, Govea N, Barcelo A et al. Familial progressive sensorineural deafness is aminly due to the mtDNA A1555G mutation and is enhanced by tretment with aminoglycosides. Am J Hum Genet 1998; 62:27–35.

    PubMed  CAS  Google Scholar 

  117. Jaber L, Shohat M, Bu X et al. Sensorineural deafness inherited as a tissue specific mitochondrial disorder. J Med Genet 1992; 29:86–90.

    PubMed  CAS  Google Scholar 

  118. Prezant TR, Shohat M, Jaber L et al. Biochemical characterization of a pedigree with mitochondrially inherited deafness. Am J Med Genet 1992; 44:465–472.

    PubMed  CAS  Google Scholar 

  119. Bykhovkaya Y, Estivill X, Taylor K et al. Candidate locus for a nuclear modifier gene for maternally inherited deafness. Am J Hum Genet 2000; 66:1905–1910.

    Google Scholar 

  120. Colby G, Wu M, Tzagoloff A. MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol Chem. 1998; 273:27945–27952.

    PubMed  CAS  Google Scholar 

  121. Li X, Li R, Lin X et al. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem. 2002; 277:27256–27264.

    PubMed  CAS  Google Scholar 

  122. Inoue K, Takai D, Soejima A et al. Mutant mtDNA at 1555 A to G in 12S rRNA gene and hypersusceptibility of mitochondrial translation to streptomycin can be cotransfected to ρ HeLa cells. Biochem Biophys Res Commun 1996; 223:496–501.

    PubMed  CAS  Google Scholar 

  123. McFarland R, Clark KM, Morris AA et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002; 30:145–146.

    PubMed  CAS  Google Scholar 

  124. Manfredi G, Fu J, Ojaimi J et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002; 30:394–399

    PubMed  CAS  Google Scholar 

  125. Guy J, Qi X, Pallotti F et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol. 2002; 52:534–542.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Zeviani, M., Carelli, V. (2004). Mitochondrial DNA and OXPHOS Disorders. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics