Skip to main content

Cell Volume Sensing and Regulation in Skeletal Muscle Cells

Lessons from an Invertebrate

  • Conference paper
Cell Volume and Signaling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. M. Ando and W.L. Nyhan, Heritable Disorders of Aminoacid Metabolism, New York: Wiley (1974).

    Google Scholar 

  2. A.R. Gosmanov, M.I. Lindinger and D.B. Thomason, Riding the Tides:K+ concentration and volume regulation by muscle Na+-K+-2Cl− cotransport activity, NIPS 18, 196–200 (2003).

    PubMed  CAS  Google Scholar 

  3. A.R. Gosmanov, E.G. Schneider and D.B. Thomason, NKCC activity restores muscle water during hyperosmotic challenge independent of insulin, ERK, and p38 MAPK, Am J Physiol Regul Integr Comp Physiol 284, R655–R665 (2003).

    PubMed  CAS  Google Scholar 

  4. B.C. Abbott and R.J. Baskin, Volume changes in frog muscle during contraction, J Physiol (Lond ) 161, 379–391 (1962).

    PubMed  CAS  Google Scholar 

  5. R.J. Baskin and P.J. Paolini, Muscle volume changes, J Gen Physiol, 49, 387–404 (1966).

    Article  PubMed  CAS  Google Scholar 

  6. R.S. Taylor, I.R. Neering, L.A. Quesenberry and V.A. Morris, Volume changes during contraction of isolated frog muscle fibers, In: Excitation-Contraction Coupling in Skeletal, Cardiac and Smooth Muscle, edited by G.B. Frank, New York: Plenum Press, 91–101 (1992).

    Google Scholar 

  7. J. Theobald, S.R. Taylor, J.P.R. Orgel, T.C. Irving, H. Gonzalez-Serratos, C. Pena-Rasgado, M. Gamboa, and H. Rasgado-Flores, Preferential regional contraction in barnacle muscle cells may be due to local structural variations, FASEB J. 18, A749 (2004).

    Google Scholar 

  8. W. Lu, C. Pena-Rasgado, S. Markowitz and H. Rasgado-Flores, Inhibition of regulatory volume decrease by lithium in barnacle muscle cells, FASEB J 10, A388 (1996).

    Google Scholar 

  9. S. Markowitz, C. Peña-Rasgado, J.C. Summers, D. Zlatnik and H. Rasgado-Flores, Relationship between cAMP levels and volume reduction in barnacle muscle cells, Biophys J 70, A348 (1996).

    Google Scholar 

  10. C. Peña-Rasgado, S.K. Pierce and H. Rasgado-Flores, Osmolytes responsible for volume reduction under isosmotic or hyposmotic conditions in barnacle muscle cells, Cell Mol Biology 47, 841–853 (2001).

    Google Scholar 

  11. D.M. Berman, C. Peña-Rasgado, M. Holmgren, P. Hawkins and H. Rasgado-Flores, External Ca effect on water permeability, regulatory volume decrease and extracellular space in barnacle muscle cells, Am J Physiol 265 (Cell Physiol.34) C1128–C1137 (1993).

    PubMed  CAS  Google Scholar 

  12. C. Peña-Rasgado, K.D. McGruder, J.C. Summers and H. Rasgado-Flores, Effect of isosmotic removal of extracellular Ca and of membrane potential on cell volume in muscle cells, Am J Physiol 267 (Cell Physiol 36) C768–C775 (1994).

    PubMed  Google Scholar 

  13. C. Peña-Rasgado, J.C. Summers, K.D. McGruder, J. deSantiago and H. Rasgado-Flores, Effect of isosmotic removal of extracellular Na on cell volume and membrane potential in muscle cells, Am J Physiol 267 (Cell Physiol 36) C759–C767 (1994).

    PubMed  Google Scholar 

  14. H. Rasgado-Flores, E.M. Santiago and M.P. Blaustein, Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells, J Gen Physiol 93, 1219–1241 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. D.C. Ferguson, K.D. McGruder, C. Peña-Rasgado and H. Rasgado-Flores, Isosmotic intracellular Ca-dependent volume loss and KCl efflux in internally perfused barnacle muscle cells, Biophys J, 68, A43 (1995).

    Google Scholar 

  16. K.D. McGruder, C. Peña-Rasgado and H. Rasgado-Flores H, Characterization of glycine efflux and volume reduction in barnacle muscle cells, FASEB J 10, A388 (1996).

    Google Scholar 

  17. J.B. Bitner, C. Peña-Rasgado, J. Ruiz, J. Cardona and H. Rasgado-Flores, Osmotic properties of internally perfused barnacle muscle cells, I. Isosmotic Conditions, Cell Mol Biology 47, 855–864 (2001).

    CAS  Google Scholar 

  18. C. Peña-Rasgado, V.A. Kimler, K.D. McGruder, J. Tie and H. Rasgado-Flores, Opposite roles of cAMP and cGMP on volume decrease in muscle cells, Am J Physiol 267 (Cell Physiol 36) C-1319–C-1328 (1994).

    Google Scholar 

  19. J.C. Summers, L. Trais, R. Lajvardi, D. Hergan, R. Buechler, H. Chang, C. Peña-Rasgado and H. Rasgado-Flores, Role of concentration and size of intracellular macromolecules in cell volume regulation, Am J Physiol (Cell Physiol) 42, C360–C370 (1999).

    Google Scholar 

  20. D.A.T. Dick, Structure and properties of water in the cell, In: Mechanisms of Osmoregulation in Animals, edited by R. Gilles, New York: John Wiley & Sons, 3–45 (1979).

    Google Scholar 

  21. D.A.T. Dick, The permeability coefficient of water in the cell membrane and the diffusion coefficient in the cell interior, J Theor Biol 7, 504–531(1964).

    Article  PubMed  CAS  Google Scholar 

  22. N.K. Jorgensen, S. Christensen, H. Harbak, A.M. Brown, I.H. Lambert, E.K. Hoffman and L.O. Simonsen, On the role of calcium in the regulatory volume decrease (RVD) response in Ehrlich mouse ascites tumor cells, J Membr Biol 157(3), 281–299 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. M. Weskamp, W. Seidl and S. Grissmer, Characterization of the increase in [Ca2+]i during hypotonic shock and the involvement of Ca2+-activated K+ channels in the regulatory volume decrease in human osteoblast-like cells, J Membr Biol 178, 11–20 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. H. Xie and E.E. Bittar, Nicardipine as a Ca channel blocker in single barnacle muscle fibers, Biochim Biophys Acta 1014, 207–209 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. D.M. Berman, C. Peña-Rasgado and H. Rasgado-Flores, Changes in membrane potential associated with cell swelling and regulatory volume decrease in barnacle muscle cells, J Exp Zool 268, 97–103 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. H. Gonzalez-Serratos, G. Inesi and A. Ortega, Effects of D-600 on isolated fibres and isolated sarcoplasmic reticulum of frog skeletal muscle, J Physiol (Lond ) 418,119P, (1989).

    Google Scholar 

  27. L.M. Amende and S.K. Pierce, Free amino acid mediated volume regulation of isolated Noetia ponderosa red blood cells: control by Ca2+ and ATP, J Comp Physiol 138, 291–298 (1980).

    CAS  Google Scholar 

  28. M.E. Clark, The osmotic role of amino acids: discovery and function, In: Transport Processes, Iono-and Osmoregulation, edited by R. Gilles and M. Gilles-Baillien, Berlin: Springer-Verlag, 412–423 (1985).

    Google Scholar 

  29. P.M. Cala, Volume regulation by amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways, J Gen Physiol 76, 683–708 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. H. Guizouarn, B.J. Harvey, F. Borgese, N. Gabillat, F. Garcia-Romeu and R. Motais, Volume-activated Cl-independent and Cl-dependent K pathways in trout red blood cells, J Physiol (Lond ) 462, 609–626 (1993).

    PubMed  CAS  Google Scholar 

  31. P.A. Watson, Function follows form: generation of intracellular signals by cell deformation, FASEB J 5, 2013–2019 (1991).

    PubMed  CAS  Google Scholar 

  32. H.E. Morgan, X.P. Xenophontos, T. Haneda, S. McGlaughlin and P.A. Watson, Stretch-anabolism transduction, J Appl Cardiol 4, 415–422 (1989).

    Google Scholar 

  33. P.A. Watson, Direct stimulation of adenylate cyclase by mechanical forces in S49 mouse lympoma cells during hyposmotic swelling, J Biol Chem 265, 6569–6575 (1990).

    PubMed  CAS  Google Scholar 

  34. S. vom Dahl, C. Hallbrucker, F. Lang and D. Häussinger, Regulation of cell volume in the perfused rat liver by hormones, Biochem J 280, 105–109 (1991).

    Google Scholar 

  35. A. Salama and M. Nikinmaa, Effect of oxygen tension on catecholamine-induced formation of cAMP and on swelling of carp red blood cells, Am J Physiol Cell Physiol 259, C723–C726 (1990).

    CAS  Google Scholar 

  36. S.R. Bolsover, SH Gilbert and I. Spector, Intracellular cyclic AMP produces effects opposite to those of cyclic GMP and calcium on shape and motility of neuroblastoma cells, Cell Motil Cytoskeleton 22, 99–116 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. N.D. Goldberg, M.K. Haddox, S.E. Nicol, D.B. Glass, C.H. Sanford, F.A. Kuehl, Jr. and R. Estensen, Biological regulation through opposing influences of cGMP and cAMP: The Yin-Yang hypothesis, Advan Cyclic Nucleotide Res 5, 307–330 (1975).

    CAS  Google Scholar 

  38. R.P. Mecham, B.D. Levy, S.L. Morris, J.G. Madaras and D.S. Wrenn, Increased cyclic GMP levels lead to a stimulation of elastin production in ligament fibroblasts that is reversed by cyclic AMP, J Biol Chem 260, 3255–3258 (1985).

    PubMed  CAS  Google Scholar 

  39. L.L. Rubin, D.E. Hall, S. Porter, K. Barbu, C. Cannon, H.C. Horner, M. Janatpour, C.W. Liaw, K. Manning, J. Morales, L.I. Tanner, K.J. Tomaselli and F. Bard, A cell culture method of the brain-blood barrier, J Cell Biol 115, 1725–1735 (1991).

    Article  PubMed  CAS  Google Scholar 

  40. P.F. Baker and A. Carruthers, Insulin regulation of sugar transport in giant muscle fibres of the barnacle, J Physiol (Lond ) 336, 397–431 (1983).

    PubMed  CAS  Google Scholar 

  41. K.G. Beam, E.J. Nestler and P. Greengard, Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle, Nature 267, 534–536 (1977).

    Article  PubMed  CAS  Google Scholar 

  42. D.A. Carter and D. Murphy, Cyclic nucleotide dynamics in the rat hypothalamus during osmotic stimulation: In vivo and in vitro studies, Brain Res 487, 350–356 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. D. Häussinger and F. Lang, Cell volume and hormone action, TIPS 13, 371–373 (1992).

    PubMed  Google Scholar 

  44. O. Christensen, Mediation of cell volume regulation by Ca influx through stretch-activated channels, Nature 330, 66–68 (1987).

    Article  PubMed  CAS  Google Scholar 

  45. F. Sachs, Mechanical transduction by membrane ion channels: A mini review, Mol Cell Biochem 104, 57–60 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. H. Sackin, A stretch-activated K+ channel sensitive to cell volume, Proc Natl Acad Sci USA 86, 1731–1735 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. S.I. Sukharev, B. Martinac, V.Y. Arshavky and C. Kung, Two types of mechanosensitive channels in the E. coli cell envelop: Solubilization and functional reconstitution, Biophys J 65, 177–183 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. R. Motais, H. Guizouarn and F. Garcia-Romeu, Red cell volume regulation: The pivotal role of ionic strength in controlling swelling-dependent transport systems, Biochim Biophys Acta Gen Subj 1075, 169–180, 1991.

    CAS  Google Scholar 

  49. B. Sarkadi and J.C. Parker, Activation of ion transport pathways by changes in cell volume, Biochim Biophys Acta Rev Biomembr 1071, 407–427 (1991).

    Article  CAS  Google Scholar 

  50. B. Martinac, Mechanosesnsitive Ion Channels: Biophysics and Physiology, In: Thermodynamics of membrane receptors and channels, edited by MB. Jackson, Boca Raton: CRC Press (1993).

    Google Scholar 

  51. H. Sackin, Stretch-activated ion channels, edited by Strange K. CRC Press (1994).

    Google Scholar 

  52. D. Kim, Novel cation-selective mechanosensitive ion channel in the atrial cell membrane, Circ Res 72, 225–231 (1993).

    PubMed  CAS  Google Scholar 

  53. S. Sorota, Swelling-induced chloride-sensitive current in canine arterial cells revealed by whole-cell patch-clamp method, Circ Res 70, 679–687 (1992).

    PubMed  CAS  Google Scholar 

  54. O.P. Hamill and D.W. McBride, Jr., The cloning of a mechano-gated membrane ion channel, Trends Neurosci 17, 439–443 (1994).

    Article  PubMed  CAS  Google Scholar 

  55. F. Maingret, E. Honore, M. Lazdunski and A.J. Patel, Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K channel, Biochem Biophys Res Commun 292, 339–346 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. E, Perozo, D.M. Cortes, P. Sompornpisut, A. Kloda and B. Martinac, Open channel structure of MscL and the gating mechanism of mechanosensitive channels, Nature 418, 942–948 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. M.L. Jennings and R.K. Schulz, Swelling-activated KCl cotransport in rabbit red cells: Flux is determined mainly by cell volume rather than shape, Am J Physiol Cell Physiol 259, C960–C967 (1990).

    CAS  Google Scholar 

  58. J.F. Hoffman, M. Eden, J.S. Barr and H.S. Bedell, The hemolytic volume of human erythrocytes, J Cell Comp Physiol 51, 405–414 (1958).

    Article  Google Scholar 

  59. J.W. Lohr and J.J. Grantham, Isovolumetric regulation of isolated S2 proximal tubes in anisotonic media, J Clin Invest 78, 1165–1172 (1986).

    Article  PubMed  CAS  Google Scholar 

  60. L. Trais, J.C. Summers, R. Lajvardi, K. Goharderakhshan, D. Hergan, R. Buechler H. Chang, C. Pena-Rasgado and H. Rasgado-Flores, Identification of the volume sensor in barnacle muscle cells, Biophysical Journal 72, A410 (1997).

    Google Scholar 

  61. J.C. Parker, Volume-responsive sodium movements in dog red blood cells, Am J Physiol 244, C324–C330 (1983).

    PubMed  CAS  Google Scholar 

  62. A.P. Minton, The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences, Mol Cell Biochem 55, 119–140 (1983).

    Article  PubMed  CAS  Google Scholar 

  63. A.P. Minton, C.C. Colclasure and J.C. Parker, Model for the role of macromolecular crowding in regulation of cellular volume, Proc Natl Acad Sci USA 89, 10504–10506 (1992).

    Article  PubMed  CAS  Google Scholar 

  64. J.C. Parker, In defense of cell volume? Am J Physiol 34, C1191–C1200 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Rasgado-Flores, H. et al. (2004). Cell Volume Sensing and Regulation in Skeletal Muscle Cells. In: Lauf, P.K., Adragna, N.C. (eds) Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol 559. Springer, Boston, MA . https://doi.org/10.1007/0-387-23752-6_25

Download citation

Publish with us

Policies and ethics