Skip to main content

Luminescence-Based Oxygen Sensors

  • Chapter
Reviews in Fluorescence 2005

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

The area of oxygen sensors encompasses a broad range of sensing techniques, devices, and applications. The latter range from monitoring combustion mixtures to use in fish farming.1 The majority of the techniques and devices involve transduction of the changes in oxygen concentration or pressure to changes in an electrical parameter such as voltage, current, or resistance. This sensing approach is older and has more working devices on the market. A more recent approach involves transduction via changes in luminescence characteristics of both organic and inorganic dyes. This approach has attracted considerable interest for applications such as pressure sensitive paints (PSP) and for situations amenable to use of fiber optic technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.11. References

  1. J. N. Demas, B. A. DeGraff, and P. Coleman, Oxygen sensors based on luminescence quenching, Anal. Chem., 71, 793A–800A (1999).

    PubMed  CAS  Google Scholar 

  2. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, Oxygen sensors: materials, methods, designs and applications, J. Materials Sci, 38, 4271–82 (2003).

    Article  CAS  Google Scholar 

  3. O. S. Wolfbeis, Fiber optic chemical sensors and biosensors, Anal.Chem., 76, 3269–8, (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Amao, Probes and polymers for optical sensing of oxygen, Microchim. Acta, 143, 1–12 (2003).

    Article  CAS  Google Scholar 

  5. Wenying Xu, R. Schmidt, M. Whaley, J. N. Demas, B. A. DeGraff, E. K. Karikari, and B. A. Farmer, Oxygen sensors based on luminescence quenching: Interactions of pyrene with the polymer supports, Anal. Chem. 67, 3172–80 (1995.)

    Article  PubMed  CAS  Google Scholar 

  6. B. J. Basu, and K. S. Rajam, Comparison of the oxygen sensor performance of some pyrene derivatives in silicone polymer matrix, Sens. Actuators B, 99, 459–467 (2004).

    Article  CAS  Google Scholar 

  7. Y. Amao, and Y. Fujiwara, Optimizing oxygen-sensitivity of optical sensor using pyrene carboxylic acid by myristic acid co-chemisorption onto anodic oxidized aluminum plate, Talanta, 62, 655–660 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, (Vol. 2, CRC Press, Boca Raton, FL., 1991).

    Google Scholar 

  9. L. M. Coyle, D. Chapman, G. Khalil, E. Schibili, and M. Gouterman, Non-monotonic temperature dependence in molecular referenced pressure sensitive paint, J. Lumin., 82, 33–39 (1999).

    Article  CAS  Google Scholar 

  10. L. M. Coyle, and M. Gouterman, Correcting lifetime measurements for temperature, Sens. Actuators B, 61, 92–99 (1999).

    Article  Google Scholar 

  11. F. A. Nwachukwu, and M G. Baron, Polymeric matrices for immobilising zinc tetraphenylporphyrin in absorbance based gas sensors, Sens. Actuators B, 90, 276–285 (2003).

    Article  CAS  Google Scholar 

  12. P. Hrdlovic, Luminescence quenching by oxygen in polymer matrices: The role of polymer structure, Polymer News, 28, 79–90 (2003).

    CAS  Google Scholar 

  13. G. DiMarco, and M. Lanza, Optical solid-state oxygen sensors using metalloporphyrin complexes immobilized in suitable polymer matrices, Sens. Actuators B, 63, 42–48 (2000).

    Article  Google Scholar 

  14. D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O′Leary, Phosphorescent complexes of porphyrin ketones: Optical properties and application to oxygen sensing, Anal. Chem., 67, 4112–4117 (1995).

    Article  CAS  Google Scholar 

  15. P. Hartmann, and W. Trettnak, Effects of polymer matrixes on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes. Anal. Chem., 68, 2615–2620 (1996).

    Article  CAS  Google Scholar 

  16. G. E. Khalil, C. Costin, J. Crafton, G. Jones, S. Grenoble, M. Gouterman, J. B. Callis, and L. R. Dalton, Dual-luminophor pressure-sensitive paint I. Ratio of reference to sensor giving a small temperature dependency, Sens. Actuators B, 97, 13–21 (2004).

    Article  CAS  Google Scholar 

  17. B. Zelelow, G. E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, Dualluminophor pressure sensitive paint II. Lifetime based measurement of pressure and temperature, Sens. Actuators B, 96, 304–14 (2003).

    Article  CAS  Google Scholar 

  18. V. V. Vasil’ev, and S. M. Borisov, Optical oxygen sensors based on phosphorescent water-soluble platinum metals porphyrins immobilized in perfluorinated ion-exchange membrane, Sens. Actuators B, 82, 272–76 (2002).

    Article  Google Scholar 

  19. B. F. Carroll, J. P. Hubner. K. S. Schanze, and J. M. Bedlek-Anslow, Principal component analysis of dualluminophore pressure/temperature sensitive paint, J. Visualization, 4, 121–129 (2001).

    Article  CAS  Google Scholar 

  20. H-F. Ji, Y. Shen, J. P. Hubner, B. F. Carroll, R. Schmehl, J. A. Simon, and K. A. Schanze, Temperature-independent pressure-sensitive paint based on a bichromophoric luminophore, Appl. Spectroscopy, 54, 856–63 (2000).

    Article  CAS  Google Scholar 

  21. Y. Kostov, and G. Rao, Ratio measurements in oxygen determinations: wavelength ratiometry, lifetime discrimination, and polarization detection, Sens. Actuators B, 90, 139–142 (2003).

    Article  CAS  Google Scholar 

  22. Y. Kostov, K. A. Van Houten, P. Harms, R. A. Pilato, and G. Rao, Unique oxygen analyzer combining a dual emission probe and a low-cost solid-state ratiometric fluorometer. Appl. Spectroscopy, 54, 864–68 (2000).

    Article  CAS  Google Scholar 

  23. Y. Amao, I. Okura, and T. Miyashita, Optical oxygen sensing based on the luminescence quenching of europium(III) complex immobilized in fluoropolymer film, Bull. Chem. Soc. Japan, 73, 2663–68 (2000).

    Article  CAS  Google Scholar 

  24. M. Smiddy, N. Papkovskaia, D. B. Papkovsky, and J. P. Kerry, Use of oxygen sensors for the nondestructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Research International, 35(6), 577–584 (2002).

    Article  CAS  Google Scholar 

  25. D. Birnbaum, S. Kook, and R. Kopelman, Near-field scanning optical spectroscopy: spatially resolved spectra of microcrystals and nanoaggregates in doped polymers, J. Phys. Chem., 97, 3091–94 (1993).

    Article  CAS  Google Scholar 

  26. Wenying Xu, R. C. McDonough, B. Langsdorf, J. N. Demas, and B. A. DeGraff, Oxygen sensors based on luminescence quenching: Interactions of metal complexes with the polymer support, Anal. Chem., 66, 4133–4141 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. I. Klimant, and O. S. Wolfbeis, Oxygen-sensitive luminescent materials based on silicone-soluble ruthenium diimine complexes, Anal. Chem., 67, 3160–6 (1995).

    Article  CAS  Google Scholar 

  28. P. Douglas, and K. Eaton, Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films, Sens. Actuators B, 82, 200–208 (2002).

    Article  Google Scholar 

  29. Z. Wang, A. R. McWilliams, C. E. B. Evans, X. Lu, S. Chung, and M. A. Winnik, I. Manners, Covalent attachment of RuII phenanthroline complexes to polythionylphosphazenes: The development and evaluation of single-component polymeric oxygen sensors, Adv. Funct. Mater., 12, 415–419 (2002).

    Article  Google Scholar 

  30. M. C. DeRosa, P. J. Mosher, G. P. A. Yap, K-S. Focsaneanu, R. J. Crutchley, and C. E. B. Evans, Synthesis, characterization, and evaluation of [Ir(ppy)2(vpy)Cl] as a polymer-bound oxygen sensor, Inorganic Chem., 42, 4864–72 (2003).

    Article  CAS  Google Scholar 

  31. Y. Amao, and I. Okura, Optical oxygen sensing materials: chemisorption film of ruthenium(II) polypyridyl complexes attached to anionic polymer, Sens. Actuators B, 88, 162–167 (2003).

    Article  Google Scholar 

  32. K. F. Mongey, J. G. Vos, B. D. MacCraith, and C. M. McDonagh, The photophysical properties of monomeric and dimeric ruthenium polypyridyl complexes immobilized in sol-gel matrices, Coord. Chem. Rev. 185–186, 417–29 (1999).

    Article  Google Scholar 

  33. O. S. Wolfbeis, I. Oehme, N. Papkovskaya, and I. Klimant, Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background, Biosens. Bioelectron., 15, 69–76 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. M. R. Shahriari,. In Optical Fiber Sensor Technology, K. T. V. Grattan, B. S. Meggitt, Eds.; Kluwer Academic: London, 1998; Vol. 4.

    Google Scholar 

  35. J. T. Bradshaw, S. B. Mendes. and S. S. Saavedra, A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides, Anal.Chem., 74, 1751–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. G. A. Baker, B. R. Wenner, A. N. Watkins, and F. V. Bright, On the origin of the heterogeneous emission from pyrene sequestered within tetramethylorthosilicate-based xerogels: a decay-associated spectra and 02 quenching study, J. Sol-Gel Sci. Technology, 17, 71–82 (2000).

    Article  CAS  Google Scholar 

  37. N. A. Watkins, B. R. Wenner, J. D. Jordan, Wenying Xu, J. N. Demas, and F. V. Bright, Portable, low cost, solid-state luminescence-based 02 sensor, App. Spectroscopy, 52, 750–754 (1998).

    Article  CAS  Google Scholar 

  38. C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cofolla, S. J. Cullen, B. D. MacCraith, Phase fluorometric dissolved oxygen sensor, Sens. Actuators B, 74, 124–130 (2001).

    Article  Google Scholar 

  39. X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, K. Wong, Characterization of ormosil film for dissolved oxygen-sensing, Sens. Actuators B, 87, 233–38 (2002).

    Article  CAS  Google Scholar 

  40. M. T. Murtagh, M. R. Shahriari, M. Krihak, A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a ru(II) complex, Chem. Mater., 10, 3862–69 (1998).

    Article  CAS  Google Scholar 

  41. I. Klimant, F. Ruckruh, G. Liebsch, A. Stangelmayer, O. S. Wolfbeis, Fast response oxygen micro-optodes based on novel soluble ormosil glasses, Mikrochimica Acta, 131, 35–46 (1999).

    Article  CAS  Google Scholar 

  42. Y. Tang, E. C. Tehan, Z. Tao, F. V. Bright, Sol-gel derived sensor materials that yield linear calibration plots, high sensitivity, and long term stability, Anal. Chem., 75, 2407–2413 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. D. Andrzejewski, I. Klimant, H. Podbielska, Method for lifetime-based chemical sensing using the demodulation of the luminescence signal, Sens. Actuators B, 84, 160–66 (2002).

    Article  Google Scholar 

  44. S. M. Buck, H. Xu, M. Brasule, M. A. Philbert, R. Kopelman, Nanoscale probes encapsulated by biologically localizing embedding (PEBBLEs) for ion sensing and imaging in live cells, Talanta, 63, 41–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. W. Lei, A. Duerkop, Z. Lin, M. Wu, and O.S. Wolfbeis, Detection of hydrogen peroxide in river water via a microplate luminescence assay with time-resolved (“gated”) detection, Microchimica Acta 143(4), 269–274 (2003).

    Article  CAS  Google Scholar 

  46. M. Schaeferling, M. Wu, J. Enderlein, H. Bauer, and O.S. Wolfbeis, Time-resolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format, Applied Spectroscopy, 57(11), 1386–1392 (2003).

    Article  CAS  Google Scholar 

  47. H. M. Rowe, S.P. Chan, J.N. Demas, and B.A. DeGraff, Elimination of fluorescence and scattering backgrounds in luminescence lifetime measurements using gated-phase fluorometry, Anal. Chem., 74(18), 4821–4827 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. G. Hoist, and B. Grundwald, Luminescence lifetime imaging with transparent oxygen optodes, Sens. Actuators B, 74, 78–90 (2001) and references therein.

    Article  Google Scholar 

  49. V. Savvate’ev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C-H. Kim, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, Integrated organic light-emitting device/fluorescence-based chemical sensors, Appl. Physics Lett., 81, 4652–54 (2002).

    Article  CAS  Google Scholar 

  50. B. Choudhury, R. Shinar, and J. Shinar, Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component, Proc. SPIE, 5214, 64–72 (2004).

    Article  CAS  Google Scholar 

  51. F. Navarro-Villoslada, G. Orellana, M. C. Moreno-Bondi, T. Vick, M. Driver, G. Hildebrand, and K. Liefeith, Fiber-optic luminescent sensors with composite oxygen-sensitive layers and anti-biofouling coatings, Anal. Chem., 73(21), 5150–56 (2001).

    Article  CAS  Google Scholar 

  52. B. M. Cullum, T. Vo-Dinh, The development of optical nanosensors for biological measurements, Trend Biotechnol, 18, 288–93 (2000).

    Article  Google Scholar 

  53. H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, M. A. Philbert, A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma Anal. Chem., 73, 4124–4133 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. Y-E. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, M. A. Philbert, Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors, Anal. Chem., 76, 2498–2505 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. W. Xu, K.A. Kneas, J.N. Demas, and B.A. DeGraff, Oxygen sensors based on luminescence quenching of metal complexes: Osmium complexes suitable for laser diode excitation, Anal Chem, 68, 2605–2609 (1996).

    Article  CAS  Google Scholar 

  56. A. Mills, and Q. Chang, Modeled diffusion-controlled response and recovery behavior of a naked optical film sensor with a hyperbolic-type response to analyte concentration. Analyst (Cambridge, United Kingdom), 117, 1461–6 (1992).

    Article  CAS  Google Scholar 

  57. E. R. Carraway, J.N. Demas, B.A. DeGraff, and J.R. Bacon,. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes, Anal. Chem., 63, 337–42 (1991).

    Article  CAS  Google Scholar 

  58. K. A. Kneas, J. N. Demas, B. Nguyen, A. Lockhart, W. Xu, and B. A. DeGraff, Simple method for measuring oxygen diffusion coefficients of polymer films by luminescence quenching, Anal. Chem., 74, 1111–1118 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. W. J. Bowyer, W. Xu, and J.N. Demas, Determining oxygen diffusion coefficients in polymer films by lifetimes of luminescent complexes measured in the frequency domain, Anal. Chem., in press.

    Google Scholar 

  60. J.R. Lakowicz,. Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York, 1999.

    Google Scholar 

  61. X. Lu, and M.A. Winnik, Luminescence quenching in polymer/filler nanocomposite films used in oxygen sensors, Chemistry of Materials 13, 3449–3463 (2001).

    Article  CAS  Google Scholar 

  62. X. M. Li, and K.Y. Wong, Luminescent platinum complex in solid films for optical sensing of oxygen, Anal. Chim. Acta, 262, 27–32 (1992).

    Article  CAS  Google Scholar 

  63. X. M. Li, F.C. Ruan, and K.Y. Wong, Optical characteristics of a ruthenium(II) complex immobilized in a silicone rubber film for oxygen measurement, Analyst, 118, 289–92 (1993).

    Article  CAS  Google Scholar 

  64. J. N. Demas, B.A. DeGraff, and W. Xu, Modeling of luminescence quenching-based sensors: Comparison of multisite and nonlinear gas solubility models, Anal. Chem. 67, 1377–80 (1995).

    Article  CAS  Google Scholar 

  65. V. I. Ogurtsov, and D. Papkovsky, Modeling of luminescence-based oxygen sensors with non-uniform distribution of excitation and quenching characteristics inside active medium, Sens. Actuators B, B88, 89–100 (2003).

    Article  CAS  Google Scholar 

  66. V. I. Ogurtsov, D. B. Papkovsky, N.Y. Papkovskaia, Approximation of calibration of phase-fluorometric oxygen sensors on the basis of physical models, Sens. Actuators B. B81, 17–24 (2001).

    Article  CAS  Google Scholar 

  67. K. Eaton, B. Douglas, and P. Douglas, Luminescent oxygen sensors: time-resolved studies and modelling of heterogeneous oxygen quenching of luminescence emission from Pt and Pd octaethylporphyrins in thin polymer films, Sens. Actuators B, B97, 2–12 (2004).

    Article  CAS  Google Scholar 

  68. E. R. Carraway, J.N. Demas, and B.A. DeGraff, Photophysics and oxygen quenching of transition-metal complexes on fumed silica, Langmuir, 7, 2991–8 (1991).

    Article  CAS  Google Scholar 

  69. J. N. Demas, and B. A. DeGraff, Luminescence sensors: Modelling of microheterogeneous systems and model differentiation, SPIE, Optically Based Methods for Process Analysis, Vol. 1681, 2–11, (1992).

    CAS  Google Scholar 

  70. J. W. Hofstraat, H.J. Verhey, J.W. Verhoeven, M.U. Kumke, G. Li, S.L. Hemmingsen, and L.B. McGown, Fluorescence lifetime studies of labeled polystyrene latexes, Polymer, 38, 2899–2906 (1997).

    Article  CAS  Google Scholar 

  71. A. A. Istratov, and O.F. Vyvenko, Exponential analysis in physical phenomena, Rev. Sci. Instrum., 70, 1233–1257 (1999).

    Article  CAS  Google Scholar 

  72. J. K. Kamal, B. Amisha; and D.V. Behere, Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin, J. Biological Inorg. Chem., 7, 273–283 (2002).

    Article  CAS  Google Scholar 

  73. J. M. Bedlek-Anslow, J.P. Hubner, B.F. Carroll, and K.S. Schanze, Micro-heterogeneous oxygen response in luminescence sensor films, Langmuir, 16, 9137–9141 (2000).

    Article  CAS  Google Scholar 

  74. K. A. Kneas, J.N. Demas, B.A. DeGraff, and A Periasamy, Fluorescence microscopy study of heterogeneity in polymer-supported luminescence-based oxygen sensors, Microscopy and Microanalysis, 6, 551–561 (2000).

    PubMed  CAS  Google Scholar 

  75. K. A. Kneas, J.N. Demas, B.A. DeGraff, Jr., and A. Periasamy, Comparison of conventional, confocal, and two-photon microscopy for detection of microcrystals within luminescence-based oxygen sensor films. Proceedings of SPIE-The International Society for Optical Engineering, 4262 (Multiphoton Microscopy in the Biomedical Sciences), 89–97 (2001).

    CAS  Google Scholar 

  76. R. D. Bowman, K.A. Kneas, J.N. Demas, and A. Periasamy, Conventional, confocal and two-photon fluorescence microscopy investigations of polymer-supported oxygen sensors, Journal of Microscopy (Oxford, United Kingdom), 211, 112–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. Mei, Erwen; Vinogradov, Sergei; Hochstrasser, Robin M.. Direct Observation of Triplet State Emission of Single Molecules: Single Molecule Phosphorescence Quenching of Metalloporphyrin and Organometallic Complexes by Molecular Oxygen and Their Quenching Rate Distributions. J. Am. Chem. Soc. (2003), 125(43), 13198–13204.

    Article  PubMed  CAS  Google Scholar 

  78. N.J. Turro, Modern Molecular Photochemistry. (W. A. Benjamin, Inc. 1978).

    Google Scholar 

  79. J.P. Paris, and W.W. Brandt, Charge transfer luminescence of a ruthenium(II) chelate, J. Am. Chem. Soc., 81, 5001–2 (1959).

    Article  CAS  Google Scholar 

  80. A. W. Adamson, and J.N. Demas, New photosensitizer. Tris(2,2′-bipyridine)ruthenium(II) chloride, J. Am. Chem. Soc., 93, 1800–1 (1971).

    Article  CAS  Google Scholar 

  81. J. N. Demas, and A.W. Adamson, Tris (2,2′-bipyridine)ruthenium(II) sensitized reactions of some oxalato complexes, J. Am. Chem. Soc. 95, 5159–68 (1973).

    Article  CAS  Google Scholar 

  82. J. Van Houten, and R.J. Watts, Temperature dependence of the photophysical and photochemical properties of the tris(2,2′-bipyridyl)ruthenium(II) ion in aqueous solution, J. Am. Chem. Soc., 98, 4853–8 (1976).

    Article  Google Scholar 

  83. B. Durham, J.V. Caspar, J.K. Nagle, and T.J. Meyer, Photochemistry of tris(2,2′-bipyridine)ruthenium(2+) ion, J. Am. Chem. Soc. 104, 4803–10 (1982).

    Article  CAS  Google Scholar 

  84. A. Vaidyalingam, and P.K. Dutta, Analysis of the photodecomposition products of Ru(bpy) 2+3 in various buffers and upon zeolite encapsulation, Anal. Chem., 72, 5219–5224 (2000).

    Article  PubMed  CAS  Google Scholar 

  85. J. N. Demas, and B.A. DeGraff, Design and applications of highly luminescent transition metal complexes, Anal. Chem., 63, 829A–837A (1991).

    Article  CAS  Google Scholar 

  86. J. N. Demas, D. Diemente, and E.W. Harris, Oxygen quenching of charge-transfer excited states of ruthenium(II) complexes. Evidence for singlet oxygen production, J. Am. Chem. Soc, 95, 6864–5 (1973).

    Article  CAS  Google Scholar 

  87. J. N. Demas, E.W. Harris, and R.P McBride, Energy transfer from luminescent transition metal complexes to oxygen, J. Am. Chem. Soc., 99, 3547–51 (1977).

    Article  CAS  Google Scholar 

  88. S. L. Buell. and J.N. Demas, Heterogeneous preparation of singlet oxygen using an ion-exchange-resin-bound tris(2,2′-bipyridine)ruthenium(II) photosensitizer, J. Phys. Chem., 87, 4675–81 (1983).

    Article  CAS  Google Scholar 

  89. M. C. DeRosa, and R.J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 233–234, 351–371 (2002).

    Article  Google Scholar 

  90. K. Lang, J. Mosinger, and D.M. Wagnerova, Photophysical properties of porphyrinoid sensitizers noncovalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev., 248, 321–350 (2004).

    Article  CAS  Google Scholar 

  91. S. Wang, R. Gao, F. Zhou, and M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mat. Chem., 14, 487–493 (2004).

    Article  CAS  Google Scholar 

  92. P. A. Schapp, Editor, Benchmark Papers in Organic Chemistry, Vol. 5: Singlet Molecular Oxygen. (Dowden, Hutchinson&Ross, Inc., Stroudsburg, PA., 1976).

    Google Scholar 

  93. P. Hartmann, M. Leiner. J.P. Marc, and P. Kohlbacher, Photobleaching of a ruthenium complex in polymers used for oxygen optodes and its inhibition by singlet oxygen quenchers, Sens. Actuators B, B51, 196–202 (1998).

    Article  CAS  Google Scholar 

  94. Z. J. Fuller, W.D. Bare, K.A. Kneas, W. Xu, J.N. Demas, and B.A. DeGraff, Photostability of luminescent ruthenium(II) complexes in polymers and in solution, Anal. Chem., 75, 2670–2677 (2003)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

DeGraff, B.A., Demas, J.N. (2005). Luminescence-Based Oxygen Sensors. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_6

Download citation

Publish with us

Policies and ethics