Skip to main content

The Hypersensitive Response in Plant Disease Resistance

  • Chapter
Multigenic and Induced Systemic Resistance in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad, M.S., Hakimi, S.M., Kaniewski, W.K., Rommens, C.M.T., Shulaev, V., Lam, E., and Shah, D. 1997. Characterization of acquired resistance in lesion mimic transgenic potato expressing bacterio-opsin. Mol. Plant Microbe Interact. 10:653–645.

    Google Scholar 

  • Aharoni, A., and Vorst, O. 2002. DNA microarrays for functional plant genomics. Plant. Mol. Biol. 48:99–118.

    Article  PubMed  CAS  Google Scholar 

  • Auh, C.-K., and Murphy. T.M. 1995. Plasma membrane redox enzyme is involved in the synthesis of O 2 and H2O2 by Phytothora elicitor-stimulated rose cells. Plant Physiol. 107:1241–1247.

    PubMed  CAS  Google Scholar 

  • Alfano, J.R., and Collmer, A. 1996. Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698.

    Article  PubMed  CAS  Google Scholar 

  • Amicucci, E., Gaschler, K., and Ward, J. 1999. NADPH oxidase genes from tomato (Lycopersicon esculentum and curly-leaf pondweed (Potamogeton crispus). Plant Biol. 1:524–528.

    CAS  Google Scholar 

  • Arabidopsis Genome Initiative, The 2000. Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Aravind, L., Dixit, V.M., and Koonin, E.V. 1999. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, M.M., and Baker, C.J. 1989. Role of the plasmalemma H+-ATPase in Pseudomonas syringae-induced K+/H+ exchange in suspension-cultured tobacco cells. Plant Physiol. 91:298–303.

    PubMed  CAS  Google Scholar 

  • Atkinson, M.M., Keppler, L.D., Orlandi, E.W., Baker, C.J., and Mischke, C.F. 1990. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ exchange and hypersensitive responses in tobacco. Plant Physiol. 92:1241–1247.

    Article  Google Scholar 

  • Beers, E.P., Woffenden, B.J., and Zhao, C. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399–415.

    Article  PubMed  CAS  Google Scholar 

  • Beffa, R., Szell, M., Meuwly, P., Pay, A., Vogeli-Lange, R., Metraux, J.P., Neuhaus, G., Meins, F. Jr., and Nagy, F. 1995. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J. 14:5753–5761.

    PubMed  CAS  Google Scholar 

  • Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B.J. 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance gene. Science 265:1856–1860.

    Article  PubMed  CAS  Google Scholar 

  • Bortner, C.D., Oldenburg, N.B.E., and Cidlowski, J.A. 1995. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 208:8–16.

    Google Scholar 

  • Bouche, N., and Bouchez, D. 2001. Arabidopsis gene knockout: phenotype wanted. Curr. Opin. Plant Biol. 4:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S.A., Clark, J.D., Liu, Y., Klessig, D.F., and Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D.J., Kjellbom, P., and Lamb, C. 1992. Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant-cell wall protein: a novel, rapid defense response. Cell 70: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Bratton, S.B., and Cohen, G.M. 2001. Apoptotic death sensor: an organelle’s alter ego? Trends Pharmacol Sci. 22:306–315.

    Article  PubMed  CAS  Google Scholar 

  • Brodersen, P., Petersen, M., Pike, H.M., Olszak, B., Ødum, N., Jørgensen, L.B., Brown, R.E., and Mundy, J. 2002. Knockout of Arabidopsis ACCELERATED-CELL-DEATH encoding a shingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 16:490–502.

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhof, A. 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99:9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Büuschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705.

    Article  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., van Montagu, M., Inze, D., and van Camp, W. 1996. Transgenic tobacco with a reduced catalase activity develop necrotic lesions and induces pathogenesis-related expression under high light. Plant J. 10:491–503.

    Article  CAS  Google Scholar 

  • Chandra, S., and Low, P.S. 1995. Role of phosphorylation in elicination of the oxidative burst in cultured soybean cells. Proc. Natl. Acad. Sci. USA 92: 4120–4123.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, K.D. 2000. Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chem. Phys. Lipids 108:221–230.

    Article  PubMed  CAS  Google Scholar 

  • Che, F.-S., Iwano, M., Tanaka, N., Takayama, S., Minami, E., Shibuya, N., Kadota, I., and Isogai A. 1999. Biochemical and morphological features of rice cell death induced by Pseudomonas avenae. Plant Cell Physiol. 40:1036–1045.

    CAS  Google Scholar 

  • Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., and Zhu, T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D.F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Chivasa, S., and Carr, J.P. 1998. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing sacylic acid hydroxylase. Plant Cell 10:1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D., Durner, J., Navarre, D.A., and Klessig, D.F. 2000. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol. Plant Microbe Interact. 13:1380–1384.

    PubMed  CAS  Google Scholar 

  • Clough, S.J., Fengler, K.A., Yu, I-C., Lippok, B., Smith, R.K.Jr., and Bent, A.F. 2000. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97:9323–9328.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J.L., Dietrich, R.A., Richberg, M.H. 1996. Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807.

    Article  PubMed  CAS  Google Scholar 

  • Dangl J.L., and Jones, J.T.G. 2001. Plant pathogens and integrated defense responses to infection. Nature 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, X., Lacomme, C., Morel, J.B., and Roby, D. 1999. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant J. 20:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne, M., Xia, Y.J., Dixon, R.A., and Lamb, C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo, O., and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8:1129–1132.

    Article  PubMed  Google Scholar 

  • del Pozo, O., and Lam, E. 2003. Expression of the baculovirus p35 protein in tobacco delays cell death progression and enhanced systemic movement of tobacco mosaic virus during the hypersensitive responses. Mol. Plant Microbe Interact. 16:485–494.

    PubMed  Google Scholar 

  • Després C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290.

    Article  PubMed  Google Scholar 

  • Dickman, M.B., Park, Y.K., Oltersdorf, T., Clemente, T., and French, R. 2001. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc. Natl. Acad. Sci. USA 98:6957–6962.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A., and Dangl, J.L. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, R.A., Richberg, M.H., Schmidt, R., Dean, C., and Dangl, J.L. 1997. A novel zinc finger proteins is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694.

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar, S.P., Wai-Hong Tham, and Baker, B.J. 2000. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97:14789–14794.

    Article  PubMed  CAS  Google Scholar 

  • Doke, N. 1983. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 23:359–367.

    CAS  Google Scholar 

  • Doke, N. 1985. NADPH-dependent O 2 generation in membrane fraction isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol. Plant Pathol. 27:311–322.

    CAS  Google Scholar 

  • Doke, N., and Ohashi, Y. 1988. Involvement of an O 2 generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Pathol. 32:163–175.

    CAS  Google Scholar 

  • Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • D’Silva, I., Pirier, G.G., and Heath, M.C. 1998. Activation of cysteine proteases in cowpea plants during the hypersensitive response, a form of programmed cell death. Exp. Cell Res. 245:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Durner, J., and Klessig, D.F. 1996. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol. Chem. 271:28492–28501.

    Article  PubMed  CAS  Google Scholar 

  • Durner, J., Wedndehenne, D., and Klessig, D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95:10328–10333.

    Article  PubMed  CAS  Google Scholar 

  • Dunigan, D.D., and Madlener, J.C. 1995. Serine/threonine protein phosphatase is required for tobacco mosaic virus-mediated programmed cell death. Virology 207:460–466.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–296.

    Article  Google Scholar 

  • Falk, A., Fey, B.J., Frost, L.N., Jones, J.D.G., Daniels, M.J., and Parker, J.E. 1999. EDS1, an essential component of R-gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96:3292–3297.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, L., Lowton, K., Dincher, S., Winter, A., Staub, T., Uknes, S., Kessmann, H., and Ryals, J. 1996. Benxothiadiazole induces systemic acquired resistance in tobacco. Plant. J. 10:61–70.

    Article  CAS  Google Scholar 

  • Frampton, J., Ramqvist, T., and Graf, T. 1996. v-Myb of Eleukemia virus up-Regulates bcl-2 and suppresses apoptosis in myeloid cells. Genes Dev. 10:2720–2731.

    PubMed  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooji, B., Negrotto, D., Nye, G., Uknes, S, Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement for salicylic acid for the induction of systemic acquired resistance. Science 261:754–756.

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, D.G. 1998 Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36:393–414.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R.N., and Novacky, A.J. 1994. The Hypersensitive Reaction in Plants to Pathogens. St. Paul, MN: APS Press.

    Google Scholar 

  • Goulden, M.G., and Baulcombe, D.C. 1993. Functionally homologous host components recognize potato virus X in Gompherena globosa and potato. Plant Cell 5:921–930.

    Article  PubMed  CAS  Google Scholar 

  • Govrin, E.M., and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Boytrytis cinerea. Curr. Biol. 10:751–757.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J., Close, P.S., Briggs, S.P., and Johal, G.S. 1997 A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25–31.

    Article  PubMed  CAS  Google Scholar 

  • Green, D.R. 2000. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., and Ausubel, F.M. 1993. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4:327–341.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. 1994. Programmed cell death in plants: A pathogen triggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalf, W., Lee, J., Chaudhuri, B. 1999. A selection system for human apoptosis inhibitors using yeast. Yeast 15:1307–1321.

    Article  PubMed  CAS  Google Scholar 

  • Groom, Q.J., Torres, M.A., Forrdam-Skelton, A.P., Hammond-Kosack, K.E., Robinson, N.J., and Jones, J.D.G. 1996. RbohA, a rice homologue of the mammalian gp91 phox respiratory burst oxidase gene. Plant J. 10:515–522.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K.N., and Jones, J.D.G. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • He, S.Y., Huang, H.-C., and Collmer, A. 1993. Pseudomonas syringae pv. syringae HarpinPSS: a protein that is secreted by the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  • Heath, M.C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Heo, W.D, Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y., Cho, M.J. 1999. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci USA 96:766–771.

    Article  PubMed  CAS  Google Scholar 

  • Herbers, K., Meuwly, P., Frommer, W.B., Metraux, J.P., and Sonnewald, U. 1996. Systematic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, F.O. 1938. Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28:553–561.

    Google Scholar 

  • Hu, G., Yalpani, N., Briggs, S.P., and Johal, G.S. 1998. A porphyrin pathywa inpairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, M.D., Delaney, T.P., Dietrich, R.A., Weymann, K.B., Dangl, J.L., and Ryals, J.A. 1997. Salicylate-independent lesion formation in Arabidopsis lsd mutant. Mol. Plant Microbe Interact. 10:531–536.

    PubMed  CAS  Google Scholar 

  • Ishikawa, A., Okamoto, H., Iwasaki, Y., and Asahi, T. 2001. A deficiency of coprotoporphyrinogen III oxidese causes lesion formation in Arabidopsis. Plant J. 27:89–99.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T., Dietrich, R.A., and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856.

    PubMed  CAS  Google Scholar 

  • Jabs, T., Tschope, M., Colling, C., Hahlbrock, K., and Scheel, D. 1997. Elicitor-stimulated ion fluxes and O 2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94:4800–4805.

    Article  PubMed  CAS  Google Scholar 

  • Jirage, D., Tootle, T.L., Reuber, L., Frost, L.N., Fey, B.J., Parker, J.E., Ausbel, F.M., and Glazebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96:13583–13588.

    Article  PubMed  CAS  Google Scholar 

  • Johal, G.S., Hulbert, S., and Briggs, S.P. 1995. Disease lesion mimic mutations of maize: A model for cell death in plants. Bioessays 17:685–692.

    Article  Google Scholar 

  • Kawai, M., Pan, L., Reed, J.C., and Uchimiya, H. 1999. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada, M., Jin, U., Yoshinaga, K., Hirata, A., and Uchimiya, H. 2001. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax inhibitor-1 (AtBI-1). Proc. Natl. Acad. Sci. USA 98:12295–12300.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., Satoh, H., and Shimamoto K. 1999. The small GTP-binding protein Rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA 96:10922–10926.

    Article  PubMed  CAS  Google Scholar 

  • Kazan, K., Schenk, P.M., Wilson, I., and Manners, J.M. 2001. DNA microarrays: new tools in the analysis of plant defense responses. Mol. Plant Pathol. 2:177–185.

    Article  CAS  Google Scholar 

  • Keller, T., Damude, H.G., Werner, D., Doener, P., Dixion, R.A., and Lamb, C. 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motif. Plant Cell 10:255–266.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.C., Lee, S.H., Kim, J.K., Chun, H.J., Choi, M.S., Chung, W.S., Moon, B.C., Kang, C.H., Park, C.Y., Yoo, J.H., Kang, Y.H., Koo, S.C., Koo, Y.D., Jung, J.C., Kim, S.T., Schulze-Lefert, P., Lee, S.Y., and Cho, M.J. 2002a. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 277:19304–9314.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H.W., Park, H.C., Cho, M.J., Schulze-Lefert, P. 2002b. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451.

    Article  PubMed  CAS  Google Scholar 

  • Kobe, B., and Deisenhofer, J. 1995. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 15: 409–416.

    Article  Google Scholar 

  • Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D.G. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744–747.

    Article  PubMed  Google Scholar 

  • Kunkel, B.N., Bent, A.F., Dahlbeck, D., Innes, R.W., and Staskawicz, B.J. 1993. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875.

    Article  PubMed  CAS  Google Scholar 

  • Kuwchuk L.M., Hachey, J., Lynch, D.R., Kulcsar, F., van Rooijen, G., Waterer, D.R., Robertson, A., Kokko, E., Byers, R., Howard, R.J., Fischer, R., and Prüfer, D. 2001. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 98:6511–6515.

    Article  Google Scholar 

  • Lacomme, C., and Santa Cruz, S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96:7956–7961.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Pontier, D., and del Pozo, O. 1999a. Die and let live—programmed cell death in plants. Curr. Opin. Plant Biol. 2:502–507.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., del Pozo, O., and Pontier, D. 1999b. BAXing in the hypersensitive response. Trends Plant Sci. 4:419–421.

    Article  PubMed  Google Scholar 

  • Lam E., and del Pozo, O. 2000. Caspase-like protease involvement in the control of plant cell death. Plant Mol. Biol. 44:417–428.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Kato, N., and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411 848–853.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., and Dixon, R.A. 1997. The oxidative burst in plant disease resistance. Anuu. Rev. Plant Physiol. Plant Mol. Biol. 48:251–275.

    Article  CAS  Google Scholar 

  • Legendre, L., Heinstein, P.F., and Low, P.S. 1992. Evidence for participation of GTP-binding proteins in elicination of the rapid oxidative burst in cultured soybean cells. J. Biol. Chem. 267:20140–20147.

    PubMed  CAS  Google Scholar 

  • Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R., and Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6:427–437.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. 1994. H2O2 from the oxidative burst orchestrate the plant hypersensitive disease resistance response. Cell 79:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar S.P. 2002 Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30:415–429.

    Article  PubMed  CAS  Google Scholar 

  • Madeo, F., Herker, E., Maldener, C., Wissing, S., Lächelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S.J., Wesselborg, S., and Fröhlich, K.-U. 2002. A Caspase-related protease regulates apoptosis in yeast. Mol. Cell 9: 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J., and Cameron, R.K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 419:399–403.

    Article  PubMed  CAS  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Marco, Y., Regueh, F., Goldlard, L., and Froissard, D. 1990. Transcriptional activation of 2 classes of genes during the hypersensitive reaction of tobacco leaves infiltrated with an incompatible isolate of the phytopathogenic bacterium Pseudomonas solanacearum. Plant Mol. Biol. 15:145–154.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.J., Green, D.R., and Cotter, T.G. 1994. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem. Sci. 19:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, J.-C., and Green, D.R. 2001. Breaking the mitochondrial barrier. Nature Cell Biol. 2: 63–67.

    Article  CAS  Google Scholar 

  • Maxwell, D.P., Wang, Y., and McIntosh, L. 1999. The alternative oxidase lowers mitochondria reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96:8271–8276.

    Article  PubMed  CAS  Google Scholar 

  • Métraux, J.P., Singer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006.

    Article  PubMed  Google Scholar 

  • Mindrinos, M., Katagiri, F., Yu, G., and Ausubel, F.M. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide binding site and a leucine-rich repeats. Cell 78:1089–1099.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara, I., Malik, K.A., Miura, M., and Ohashi Y. 1999. Animal cell-death suppressors Bcl-XL and Ced-9 inhibit cell death in tobacco cells. Curr. Biol. 9:775–778.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., and Lam, E. 1995. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7:1951–1962.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Shulaev, V., and Lam, E. 1995. Coordiated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., and Lam, E. 1996. Sacrifice in the face of foes: pathogen-induced programmed cell death in higher plants. Trends Microbiol. 4:10–15.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., and Lam, E. 1997 Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Mol. Biol. 34:209–221.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., del Pozo, O., Meisel, L., and Lam, E. 1997a. Pathogen-induced programmed cell death in plants, a possible defense mechanism. Dev. Genet. 21:279–289.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Simon, L., and Lam, E. 1997b. Pathogen-induced programmed cell death in tobacco. J. Cell Sci. 110: 333–1344.

    Google Scholar 

  • Mittler, R., and Rizhsky, L. 2000. Transgene-induced lesion mimic. Plant Mol. Biol. 44:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Molina, A., Volrath, S., Guyer, D., Maleck, K., Ryals, J., and Ward, E. 1999. Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J. 17:667–678.

    Article  PubMed  CAS  Google Scholar 

  • Munnik, K. 2001. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6:227–233.

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Jab, T., Sacks, W.R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense response. Cell 78:229–460.

    Article  Google Scholar 

  • Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R., and Sikoeska, M. 1993. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12:367–3684.

    Google Scholar 

  • Ono, E., Wong, H.L., Kawasaki, T., Hasegawa, M., Kodama, O., and Shimamoto K. 2001. Essential role of the small GTPase rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98:759–764.

    Article  PubMed  CAS  Google Scholar 

  • Peart, J.R., Cook, G., Feys, B.J., Parker, J.E., Baulcombe, D.C. 2002. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29:569–579.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, M.C., Polzar, B., Stephan, H., Cromptom, T., MacDonald, H.R. Mannherz, H.G., and Tschopp, J. 1993. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12:371–377.

    PubMed  CAS  Google Scholar 

  • Pike, S.M., Adam, A.L., Pu, X.-A., Hoyos, M.E., Laby, R., Beer, S.V., and Novacky, A. 1998. Effects of Erwinia amylovora harpin on tobacco leaf cell membranes are related to leaf necrosis and electrolyte leakage and distinct from perturbation caused by inoculated E. amylovora. Physiol. Mol. Plant Pathol. 53: 39–60.

    Article  CAS  Google Scholar 

  • Pontier, D., Godiard, L., Marco, Y., and Roby, D. 1994. hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J. 5:507–521.

    PubMed  CAS  Google Scholar 

  • Pontier, D., Tronchet, M., Rogowsky, P., Lam, E., and Roby, D. 1998. Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol. Plant Microbe Interact. 11:544–554.

    PubMed  CAS  Google Scholar 

  • Pontier, D., Mittler, R., and Lam, E. 2002. Mechanism of cell death and disease resistance induction by transgenic expression of bacterio-opsin. Plant J. 30:499–510.

    Article  PubMed  CAS  Google Scholar 

  • Richael, C., Lincoln, J E., Bostock, R.M., and Gilchrist, D.G. 2001. Caspase inhibitors reduce symptom development and limit bacterial proliferation in susceptible plant tissues. Physiol. Mol. Plant Pathol. 59:213–221.

    Article  CAS  Google Scholar 

  • Roebuck, P., Sexton, R., and Mansfield, J.W. 1978. Ultrastructual observations on the development of the hypersensitive reaction in leaves of Phaseolus vulgaris cv. Red Mexican inoculated with Pseudomonas phaseolicola (race 1). Physiol. Plant Pathol. 12:151–157.

    Article  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1809–1819.

    Article  PubMed  CAS  Google Scholar 

  • Ryerson, D.E., and Heath, M.C. 1996. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatment. Plant Cell 8: 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Sagi, M., and Fluhr, R. 2001. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126:1281–1290.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, P., de Torres Zebala, M., and Grant, M. 2000. AtBI-1, a plant homologue of Bax inhibitor-1, supperss Bax-induced cell death in yeast is rapidly upregulated during wounding and pathogen challenge. Plant J. 21:393–399.

    Article  PubMed  CAS  Google Scholar 

  • Sano, H., and Ohashi, Y. 1995. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc. Natl. Acad. Sci. USA 94:4138–144.

    Article  Google Scholar 

  • Schaller, A., and Oecking, C. 1999. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Scheideler, M., Scjlaich, N.L., Fellenberg, K., Beissbarth, T., Hauser, N.C., Vingron, M., Slusarenko, A.J., and Hoheosel, J.D. 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA microarray. J. Biol. Chem. 277:10555–10561.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. 2000. Proc. Natl. Acad. Sci. USA 97:11655–11660.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman, R.A., Cidlowski, J.A. 1993. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14:133–151.

    Article  PubMed  CAS  Google Scholar 

  • Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., Nakajima, N., and Ohashi, Y. 2000. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:1–10.

    Article  Google Scholar 

  • Shirasu, K., and Schulze-Lefert, P. 2000. Regulator of cell death in disease resistance. Plant Mol. Biol. 44:371–385.

    Article  PubMed  CAS  Google Scholar 

  • Simons, B.H., Millenaar, F.F., Mulder, L., van Loon, L.C., and Lambers, H. 1999. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato. Plant Physiol. 120:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Solomoni, P., Perrotti, D., Martinez, R., Franceschi, C., and Calabretta, B. 1997. Resistance to apoptosis in CTLL-2 cells constitutively expressing c-myb is associated with induction of BCL-2 expression and Myb-dependent regulation of bcl-2 promoter activity. Proc. Natl. Acad. Sci. USA 94:3296–3301.

    Article  Google Scholar 

  • Stone, J.M., Heard, J.E., Asai, T., and Ausubel, F.M. 2000. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12:1811–1822.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, M., Ito, J., Aoyagi, S., and Fukuda, H. 2000. Endonnuclease. Plant Mol. Biol. 44:387–397.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Chen, Z., Du, H., Liu, Y., Klessig, D.F. 1997. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J. 11:993–1005.

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken, R., Levine, A., Brisson, L.F., Dixon, R.A., and Lamb, C. 1995. Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92:4158–4163.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Dangl, J.L., and Jones, J.D.G. 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99:523–528.

    Article  CAS  Google Scholar 

  • Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K.E., and Jones, J.D.G. 1998. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91 phox). Plant J. 14:365–370.

    Article  PubMed  CAS  Google Scholar 

  • Uren, A.G., O’Rourke, K., Aravind, L., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., and Dixit, V.M. 2000. Identification of paracaspase and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6:961–967.

    PubMed  CAS  Google Scholar 

  • Wang, H., Jones, C., Ciacci-Zannella, J., Holt, T., Gilchrist, D.G., and Dickman, M. 1996a. Sphinganine analog mycotoxins induce apoptosis in monkey cells. Proc. Natl. Acad. Sci. USA 93:3461–3465.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G. 1996b. Apoptosis: a functional paradigm for programmed cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M.-B., and Waterhouse, P.M. 2001. Application of gene silencing in plants. Curr. Opin. Plant Biol. 5:146–150.

    Article  Google Scholar 

  • Wasternack, C., and Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2:302–307.

    Article  Google Scholar 

  • Weymann, K., Hunt, M., Uknes, S., Neuenschwandler, U., Lawton, K., Steiner, H.Y., and Ryals, J. 1995. Suppression and restoration of lesion formation in Arabidopsis lsd mutant. Plant Cell 7:2013–2022.

    Article  PubMed  CAS  Google Scholar 

  • White, E. 1996. Life, death, and pursuit of apoptosis. Genes Dev. 10:1–15.

    PubMed  CAS  Google Scholar 

  • Wirtz, K.W. 1997. Phospholipid transfer proteins revisited. Biochem. J. 324:353–360.

    PubMed  CAS  Google Scholar 

  • Wolpert, T.J., Dunkle, L.D., and Ciuffetti, L.M. 2002. Host-selective toxins and avirulence determinants: what’s in a name? Annu. Rev. Phytopathol. 40:251–285.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H., Morris, R.G., Smith, A.L., and Dunlop, D. 1984. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular system. Mol. Gen. Genet. 239:122–128.

    Google Scholar 

  • Xu, Q., and Reed, J.C. 1998. Bax inhibitor-1, a mammalian apoptosis supperssor identified by functional screening in yeast. Mol. Cell 1:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., and Klessig, D.F. 1996. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc. Natl. Acad. Sci. USA 93:14972–14977.

    Article  PubMed  CAS  Google Scholar 

  • Yu, I-C., Parker, J., and Bent, A.F. 1998. Gene-for-gene resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. 95:7819–7824.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L.H., Kawai-Yamada, M., Naito, M., Watanabe, K., Reed, J.C., Uchimiya, H. 2002. Induction of mammalian cell death by a plant Bax inhibitor. FEBS Lett. 512:308–312.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.L., Fan, W.H., Kinkema, M., Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96:6523–6528.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F., Andersen, C.H., Burhenne, K., Fischer, P.H., Collinge, D.B., and Thordal-Christensen, H. 2000a. Proton extrusion is an essential signaling component in the HR of epidermal single cells in the barley-powdery mildew interaction. Plant J. 23: 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., Klessig, D.F. 2000b. NPR1 differentially interacts with member of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact. 13: 191–202.

    PubMed  CAS  Google Scholar 

  • Zhu, T., and Wang, X. 2000. Large scale profiling of the Arabidopsis transcriptome. Plant Physiol. 124:1472–1476.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Watanabe, N., Lam, E. (2006). The Hypersensitive Response in Plant Disease Resistance. In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_5

Download citation

Publish with us

Policies and ethics