Skip to main content

Induced Systemic Resistance Mediated by Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF)

  • Chapter
Book cover Multigenic and Induced Systemic Resistance in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad, M.S., Hakimi, S.M., Kaniewki, W.K., Rommens, C.M.T., Shulaev, V., Lam, E., and Shah, D.M. 1997. Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin. Mol. Plant Microbe Interact. 10:635–645.

    PubMed  CAS  Google Scholar 

  • Agrawal, A.A., Tuzun, S., and Bent, E. 1999. Editor’s note on terminology. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture, eds. Agrawal, A.A., Tuzun, S., and Bent, E., p. ix. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Ahn, I.P., Park, K., and Kim, C.H. 2002. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Molecules and Cells 13:302–308.

    PubMed  CAS  Google Scholar 

  • Alami, Y., Achouak, W., Marol, C., and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66:3393–3398.

    PubMed  CAS  Google Scholar 

  • Alström, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. Microbiol. 37:495–501.

    Google Scholar 

  • Amann, R.I., Ludwig, W., and Schleifer, K.-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.

    PubMed  CAS  Google Scholar 

  • Arndt, W., Kolle, C., and Buchenauer, H. 1998. Effectiveness of fluorescent pseudomonads on cucumber and tomato plants under practical conditions and preliminary studies on the mode of action of the antagonists. Z. Pflanzenkrank. Pflanzenschutz 105:198–215.

    Google Scholar 

  • Attitalla, I.H., Johnson, P., Brishammar, S., and Quintanilla, P. 2001. Systemic resistance to Fusarium wilt in tomato induced by Phytopththora cryptogea. J. Phytopathol. 149:373–380.

    Google Scholar 

  • Bardgett, R.D., Wardle, D.A., and Yeates, G.W. 1998. Linking above-ground and belowground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol. Biochem. 30:1867–1878.

    CAS  Google Scholar 

  • Bashan, Y., and de-Bashan, L.E. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasiliense. Appl. Environ. Microbiol. 68:2637–2643.

    PubMed  CAS  Google Scholar 

  • Batten, J.S., Scholthof, K-B.G., Lovic, B.R., Miller, M.E., and Martyn, R.D. 2000. Potential for biocontrol of Monosporascus root rot/vine decline under greenhouse conditions using hypovirulent isolates of Monosporascus cannonballus. Eur. J. Plant Pathol. 106:639–649.

    Google Scholar 

  • Bekman, E.P., Saibo, N.J.M., di Cataldo, A., Regalado, A.P., Ricardo, C.P., and Rodrigues-Pousada, C. 2000. Differential expression of four genes encoding 1-aminocyclopropane-1-carboxylate synthase in Lupinus albus during germination, and in response to indole-3-acetic acid and wounding. Planta 211:633–672.

    Google Scholar 

  • Belimov, A.A., Sebrennikova, N.V., and Stepanok, V.V. 1999. Interaction of associative bacteria and an endomycorrhizal fungus with barley upon dual inoculation. Microbiology 68:122–126.

    Google Scholar 

  • Benhamou, N., Belanger, R.R., Rey, P., and Tirilly, Y. 2001. Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol. Biochem. 39:681–698.

    CAS  Google Scholar 

  • Benhamou, N., Gagné, S., Le Quéré, D., and Dehbi, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56.

    Google Scholar 

  • Benhamou, N., Garand, C., and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68:4044–4060.

    PubMed  CAS  Google Scholar 

  • Benhamou, N., Kloepper, J.W., Quadt-Hallmann, A., and Tuzun, S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919–929.

    PubMed  CAS  Google Scholar 

  • Benhamou, N., Kloepper, J.W., and Tuzun, S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168.

    CAS  Google Scholar 

  • Bent, E., Breuil, C., Chanway, C.P., and Enebak, S. 2002. Surface colonization of lodgepole pine (Pinus contorta var. latifolia [Dougl. Engelm.]) roots by Pseudomonas fluorescens and Paenibacillus polymyxa under gnototbiotic conditions. Plant Soil 240:187–196.

    Google Scholar 

  • Bent, E., and Chanway, C.P. 1998. The growth-promoting effects of an endophytic rhizobacterium on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can. J. Microbiol. 44:980–988.

    CAS  Google Scholar 

  • Bent, E., Tuzun, S., Chanway, C.P., and Enebak, S. 2000. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 47:793–800.

    Google Scholar 

  • Berger, S., Bell, E., Sadka, A., and Mullet, J.E. 1995. Arabidopsis thaliana AtVsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol. Biol. 27:933–942.

    PubMed  CAS  Google Scholar 

  • Bigirimana, J., and Hofte, M., 2002. Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159–168.

    Google Scholar 

  • Bonkowski, M. 2002. Protozoa and plant growth: trophic links and mutualism. Eur. J. Protistol. 37:363–365.

    Google Scholar 

  • Borowicz, V.A. 1997. A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542.

    Google Scholar 

  • Bostock, R.M., Karban, R., Thaler, J.S., Weyman, P.D., and Gilchrist, D. 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol. 107:103–111.

    CAS  Google Scholar 

  • Buchenauer, H. 1998. Biological control of soil-borne diseases by rhizobacteria. Z. Pflanzenkrank. Pflanzenschutz 105:329–348.

    Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46:237–245.

    PubMed  CAS  Google Scholar 

  • Catellan, A.J., Hartel, P.G., and Fuhrman, J.J. 1998. Bacterial composition in the rhizosphere of nodulating and non-nodulating soybean. Soil Sci. Soc. Am. J. 62:1549–1555.

    Google Scholar 

  • Chen, C., Belanger, R.R., Benhamou, N., and Paulitz, T.C. 1998. Induced systemic resistance ISR by Pseudomonas spp. Impairs pre-and post-infection development of Pythium aphanidermatum on cucumber roots. Eur. J. Plant Pathol. 104:877–886.

    Google Scholar 

  • Chen, C., Belanger, R.R., Benhamou, N., and Paulitz, T.C. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria PGPR and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56:13–23.

    CAS  Google Scholar 

  • Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S., and Gianinazzi-Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11:1017–1028.

    CAS  Google Scholar 

  • Costacurta, A., and Vanderleyden, J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1–18.

    PubMed  Google Scholar 

  • Cristescu, S.M., de Martinis, D., te Lintel Hekkert, S., Parker, D.H., and Harren, F.M.J. 2002. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68:5342–5350.

    PubMed  CAS  Google Scholar 

  • Daane, L.L., Molina, J.A.E., and Sadowsky, M.J. 1997. Plasmid transfer between spatially separated donor and recipient bacteria in earthworm-containing soil microcosms. Appl. Environ. Microbiol. 63:679–686.

    PubMed  CAS  Google Scholar 

  • de Meyer, G., Bigirimana, J., Elad, Y., and Hofte, M. 1998. Induced systemic resistance in Trichoderma harizanum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104:279–286.

    Google Scholar 

  • de Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Metraux, J.P., and Hofte, M. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7SNK2 activate the systemic acquired resistance pathway in bean. Mol. Plant Microbe Interact. 12:450–458.

    PubMed  Google Scholar 

  • de Meyer, G., and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7SNK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593.

    Google Scholar 

  • de Weger, L.A., van Arendonk, J.J.C.M., Recourt, K., van der Hofstad, G.A.J.M., Weisbeek, P.J., and Lugtenberg, B. 1988. Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J. Bacteriol. 170:4693–4698

    PubMed  Google Scholar 

  • del Campillo, E., and Lewis, L.N. 1992. Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol. 98:955–961.

    PubMed  Google Scholar 

  • Denton, C.S., Bardgett, R.D., Cook, R., and Hobbs, P.J. 1999. Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol. Biochem. 31:155–165.

    CAS  Google Scholar 

  • Dong, H., and Beer, S.V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811.

    CAS  Google Scholar 

  • Dong, H., Delaney, T.P., Bauer, D.W., and Beer, S.V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20:207–215.

    PubMed  CAS  Google Scholar 

  • Dong, Y.-H., Gusti, A.R., Zhang, Q., Xu, J.-L., and Zhang, L.-H. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68:1754–1759.

    PubMed  CAS  Google Scholar 

  • Dow, M., Newman, M.-A., and von Roepenack, E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38:241–261.

    PubMed  CAS  Google Scholar 

  • Duffy, B.K., and Defago, G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429–2438.

    PubMed  CAS  Google Scholar 

  • Duijff, B.J., Pouhair, D., Olivain, C., Alabouvette, C., and Lemanceau, P. 1998. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusaruim oxysporum Fo47. Eur. J. Plant Pathol. 104:903–910.

    Google Scholar 

  • El Ghaouth, A., Arul, J., Wilson, C., and Benhamou, N. 1994. Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiol. Mol. Plant Pathol. 44:417–432.

    CAS  Google Scholar 

  • Ellis, H., Jeger, M.J., and van Beusichem, M.L. 2000. Effect of nitrogen supply rate on disease resistance in tomato depends upon the pathogen. Plant Soil 218:239–347.

    Google Scholar 

  • Enebak, S.A., and Carey, W.A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis. 84:306–308.

    Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the conserved domain of bacterial flagellin. Plant J. 18:265–276.

    PubMed  CAS  Google Scholar 

  • Fontenla, S., Garcia-Romera, I., and Ocampo, J.A. 1999. Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol. Biochem. 31:1591–1597.

    CAS  Google Scholar 

  • Freer, J.H. 1985. Illustrated guide to the anatomy of the bacterial cell envelope. In Immunology of the Bacterial Cell Envelope, eds. D.E.S. Stewart-Tull, and M. Davies, pp. 355–383. New York: John Wiley & Sons.

    Google Scholar 

  • Froissard, D., Gough, C., Czernic, P., Schneider, M., Toppan, A., Roby, D., and Marco, Y. 1994. Structural organization of str246C and str246N, plant defense-related genes from Nicotania tabacum. Plant Mol. Biol. 26:515–521.

    PubMed  CAS  Google Scholar 

  • Fuchs, J.-G., Moënne-Loccoz, Y., and Défago, G. 2000. The laboratory medium used to grow biocontrol Pseudomonas sp. Pf153 influences its subsequent ability to protect cucumber from black root rot. Soil Biol. Biochem. 32:421–424.

    CAS  Google Scholar 

  • Furukawa, T., Koga, J., Adachi, T., Kishi, K., and Syono, K. 1996. Efficient conversion of L-tryptophan to indole-3-acetic acid and/or tryptophol by some species of Rhizoctonia. Plant Cell Physiol. 37:899–905.

    CAS  Google Scholar 

  • Galiana, E., Bonnet, P., Conrod, S., Keller, H., Panabieres, F., Ponchet, M., Poupet, A., and Ricci, A. 1997. RNase activity prevents the growth of a fungal pathogen in tobacco leaves and increases upon induction of systemic acquired resistance with elicitin. Plant Physiol. 115:1557–1567.

    PubMed  CAS  Google Scholar 

  • Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128:197–210.

    Google Scholar 

  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109–117.

    CAS  Google Scholar 

  • Gómez-Gómez, L., Felix, G., and Boller, T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18:277–284.

    PubMed  Google Scholar 

  • Goncalves, M.C., de Souza-Dias, J.A.C., Granja, N.P., Furlani, P.R., and Costa, A.S. 2000 Effect of nutrient supply on symptom expression and concentration of potato leafroll virus (PLRV) in Physalis heterophylla. Summa Phytopathol. 26:9–14.

    CAS  Google Scholar 

  • Govrin, E.M., and Levine, A. 2002. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicts various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol. Biol. 48:267–276.

    PubMed  CAS  Google Scholar 

  • Gupta, V.P., Bochow, H., Dolej, S., and Fischer, I. 2000. Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt. Z. Pflanzenkrank. Pflanzenschutz 107:145–154.

    Google Scholar 

  • Guzzo, S.D., and Martins, E.M.F. 1996. Local and systemic induction of β-1,3-glucanase and chitinase in coffee leaves protected against Hemileia vastatrix by Bacillus thuringiensis. J. Phytopathol. 144:449–454.

    CAS  Google Scholar 

  • Hahn, M.G. 1996. Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34:387–412.

    PubMed  CAS  Google Scholar 

  • Hammerschmidt, R., and Smith-Becker, J.A. 1999. The role of salicylic acid in disease resistance. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture, eds. A.A. Agrawal, S. Tuzun, and E. Bent, pp. 37–53. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Han, D.Y., Coplin, D.L., Bauer, W.D., and Hoitink, H.A.J. 2000. A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology 90:327–332.

    CAS  Google Scholar 

  • Hase, S., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2003. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiol. Mol. Plant Pathol. 62:219–226.

    CAS  Google Scholar 

  • Hasky-Günther, K., Hoffmann-Hergarten, S., and Sikora, R.A. 1998. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fund. Appl. Nematol. 21:511–517.

    Google Scholar 

  • He, C.Y., Hsiang, T., and Wolyn, D.J. 2002. Induction of systemic disease resistance and pathogen defense responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusaruim oxysporum. Plant Pathol. 51:225–230.

    Google Scholar 

  • Hennin, C., Diederichsen, E., and Hofte, M. 2001. Local and systemic resistance to fungal pathogens triggered by an AVR9-mediated hypersensitive response in tomato and oilseed rape carrying the Cf-9 resistance gene. Physiol. Mol. Plant Pathol. 59:287–295.

    CAS  Google Scholar 

  • Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y., and Cho, M.J. 1999. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96:766–771.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, U., Janetta, K., and Bothe, H. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919–1924.

    PubMed  CAS  Google Scholar 

  • Hoitink, H.A.J., and Boehm, M.J. 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu. Rev. Phytopathol. 37:427–446.

    PubMed  CAS  Google Scholar 

  • Hynes, R.K., Hill, J., Reddy, M.S., and Lazarovitz, G. 1994. Phytoalexin production by wounded white bean Phaseolus vulgaris) cotyledons and hypocotyls in response to inoculation with rhizobacteria. Can. J. Microbiol. 40:548–554.

    CAS  Google Scholar 

  • Ippolito, A., El Ghaouth, A., Wilson, C.L., and Wsiniewski, M. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol. 19:265–272.

    CAS  Google Scholar 

  • Jakab, G., Cottier, V., Toquin, B., Rigoli, G. Zimmerli, L., Metraux, J.P., and Mauch-Mani, B. 2001. B-aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29–37.

    CAS  Google Scholar 

  • Jennings, J.C., Apel-Birkhold, P.C., Bailey, B.A., and Anderson, J.D. 2000. Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein. Weed Sci. 48:7–14.

    CAS  Google Scholar 

  • Jentschke, G., Bonkowski, M., Godbold, D.L., and Scheu, S. 1995. Soil protozoa and forest tree growth:non-nutritional effects and interaction with mycorrhizae. Biol. Fert. Soils 20:263–269.

    Google Scholar 

  • Jeun, Y.C., Park, K., and Kim, C.H. 2001. Different mechanisms of induced systemic resistance and systemic acquired resistance against Colletotrichum orbiculare on the leaves of cucumber plants. Mycobiology 29:19–26.

    Google Scholar 

  • Jouanneau, J.P., Lapous, D., and Guern, J. 1991. In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol. 96:459–466.

    PubMed  CAS  Google Scholar 

  • Jung, H.W., and Hwang, B.K. 2000. Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. Mol. Plant. Microbe Interact. 13:136–142.

    PubMed  CAS  Google Scholar 

  • Kaeberlein, T., Lewis, K., and Epstein, S.S. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129.

    PubMed  CAS  Google Scholar 

  • Kandeler, E., Kampichler, C., Joergensen, R.G., and Molter, K. 1999. Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms. Soil Biol. Biochem. 31:1783–1792.

    CAS  Google Scholar 

  • Keller, H., Blein, J.P., Bonnet, P., and Ricci, P. 1996. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol. 110:365–376.

    PubMed  CAS  Google Scholar 

  • Kempster, V.N., Davies, K.A., and Scott, E.S. 2001. Chemical and biological induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology 3:35–43.

    Google Scholar 

  • Knoester, M., Pieterse, C.J.M., Bol, J.F., and van Loon, L.C. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant Microbe Interact. 12:720–727.

    PubMed  CAS  Google Scholar 

  • Kobayashi, I., Murdoch, L.J., Kunoh, H., and Hardham, A.R. 1995. Cell biology of early events in the plant resistance response to infection by pathogenic fungi. Can. J. Bot. 73:S418–S425.

    Google Scholar 

  • Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., and Doke, N. 2001. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107:523–533.

    CAS  Google Scholar 

  • Krishnamurthy, K., and Gnanamanickam, S.S. 1998. Induction of systemic resistance and salicylic acid accumulation in Oryza sativa, L. in the biological suppression of rice blast cause by treatments with Pseudomonas spp. World J. Microbiol. Biotechnol. 14:935–937.

    CAS  Google Scholar 

  • Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A., Barns, S.M., and Belnap, J. 2002. Comparison of soil bacterial communities in the rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microbiol. 68:1854–1863.

    PubMed  CAS  Google Scholar 

  • Larkin, R.P., and Fravel, D.R. 1999. Mechanisms of action and dose-response relationships governing biological control of Fusaruim wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152–1161.

    Google Scholar 

  • Larkin, R.P., Hopkins, D.L., and Martin, F.N. 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from disease-suppressive soil. Phytopathology 86:812–819.

    Google Scholar 

  • Lambais, M.R., and Mehdy, M.C. 1995. Differential expression of defense-related genes in arbuscular mycorrhiza. Can. J. Bot. 73:S533–S540.

    CAS  Google Scholar 

  • Latour, X., Corberand, T., Laguerre, G., Allard, F., and Lemanceau, P. 1996. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62:2449–2456.

    PubMed  CAS  Google Scholar 

  • Lawrence, J.R., and Snyder, R.A. 1998. Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria. Can. J. Microbiol. 44:623–629.

    CAS  Google Scholar 

  • Lee, Y.H., Lee, W.H., Lee, D.K., and Shim, H.K. 2001. Factors relating to induced systemic resistance in watermelon by plant growth-promoting Pseudomonas sp. Plant Pathol. J. 17:174–179.

    Google Scholar 

  • Leeman, M., den Ouden, F.M., van Pelt, J.A., Dirkx, F.P.M, Steijl, H., Bakker, P.A.H.M., and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155.

    CAS  Google Scholar 

  • Leeman, M., van Pelt, J.A., Den Ouden, F.M. Heinsbroek, M., Bakker, P.A.H.M., and Schippers, B. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027.

    CAS  Google Scholar 

  • Leyser, O. 2002. Molecular genetics of auxin signaling. Annu. Rev. Plant Biol. 53:377–398.

    PubMed  CAS  Google Scholar 

  • Liu, L., Kloepper, J.W., and Tuzun, S. 1995a. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847.

    Google Scholar 

  • Liu, L., Kloepper, J.W., and Tuzun, S. 1995b. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698.

    Google Scholar 

  • Madi, L., and Katan, J. 1998. Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53:163–175.

    CAS  Google Scholar 

  • Maurhofer, M., Hase, C., Meuwly, P., Métraux, J.P., and Défago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146.

    CAS  Google Scholar 

  • Matichenkov, V.V., Calvert, D.V., and Snyder, G.H. 2000. Prospective of silicon fertilization for citrus in Florida. Soil Crop Sci. Soc. Florida Proc. 59:137–141.

    Google Scholar 

  • Mauchline, T.H., Kerry, B.R., and Hirsch, P.R. 2002. Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Appl. Environ. Microbiol. 68:1846–1853.

    PubMed  CAS  Google Scholar 

  • Mawdsley, J.L., and Burns, R.G. 1994. Root colonization by a Flavobacterium species and the influence of percolating water. Soil Biol. Biochem. 26:861–870.

    Google Scholar 

  • Mayda, E., Marqués, C., Conejero, V., and Vera, P. 2000a. Expression of a pathogeninduced gene can be mimicked by auxin insensitivity. Mol. Plant Microbe Interact, 13:23–31.

    PubMed  CAS  Google Scholar 

  • Mayda, E., Mauch-Mani, B., and Vera, P. 2000b. Arabidopsis dth9 mutation identifies a gene involved in regulating disease susceptibility without affecting salicylic acid-dependent responses. Plant Cell 12:2119–2128.

    PubMed  CAS  Google Scholar 

  • Meera, M.S., Shivanna, M.B., Kageyama, K., and Hyakumachi, M. 1995. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14:123–130.

    Google Scholar 

  • Moller, S., Sternberg, C., Andersen, J.B., Christensen, B.B., Ramos, J.L., Givskov, M., and Molin, S. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64:721–732.

    PubMed  CAS  Google Scholar 

  • Momol., M.T., Norelli, J.L., Aldwinckle, H.S., and Saygili, H. 1999. Evaluation of biological control agents, systemic acquired resistance inducers and bactericides for the control of fire blight on apple blossom. Acta Hort. 489:553–557.

    CAS  Google Scholar 

  • M’Piga, P., Bélanger, R.R., Paulitz, T.C., and Benhamou, N. 1997. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens stran 63-28. Physiol. Mol. Plant Pathol. 50:301–320.

    Google Scholar 

  • Murphy, J.F., Zhender, G.W., Schuster, D.J., Sikora, E.J., Polston, J.E., and Kloepper, J.W. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84:779–784.

    Google Scholar 

  • Nandakumar, R., Babu, S., Viswanathan, R., Raguchanger, T., and Samiyappan, R. 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol. Biochem. 33:603–612.

    CAS  Google Scholar 

  • Norman-Setterblad, C., Vidal, S., and Palva, E.T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe Interact. 13:430–438.

    PubMed  CAS  Google Scholar 

  • Okada, M., Matsumura, M., Ito, Y., and Shibuya, N. 2002. High-affinity binding proteins for N-acetylchitooligosaccharided elicitor in the plasma membranes from wheat, barley and carrot cells: conserved presence and correlation with the responsiveness to the elicitor. Plant Cell Physiol. 43:505–512.

    PubMed  CAS  Google Scholar 

  • Ongena, M., Daayf, F., Jacques, P., Thonart, P., Benhamou, N., Paulitz, T.C., and Belanger, R.R. 2000. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol. 49:523–530.

    CAS  Google Scholar 

  • Ousley, M.A., Lynch, J.M., and Whipps, J.M. 1993. Effect of Trichoderma on plant growth: a balance between inhibition and growth promotion. Microb. Ecol. 26:277–285.

    Google Scholar 

  • Ozeki, Y., Komamine, A., and Tanaka, Y. 1990. Induction and repression of phenylalanine ammonia-lyase and chalcone synthase enzyme proteins and mRNAs in carrot cell suspension cultures regulated by 2,4-D. Physiol. Plant. 78:400–408.

    CAS  Google Scholar 

  • Patten, C.L., and Glick, B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42:207–220.

    PubMed  CAS  Google Scholar 

  • Patten, C.L., and Glick, B.R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system Appl. Environ. Microbiol. 68:3795–3801.

    PubMed  CAS  Google Scholar 

  • Peck, S.C., Nühse, T.S., Hess, D., Iglesias, A., Meins, F., and Boller, T. 2001. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475.

    PubMed  CAS  Google Scholar 

  • Peterson, R.L., and Farquhar, M.L. 1994. Mycorrhizas-integrated development between roots and fungi. Mycologia 86:311–326.

    Google Scholar 

  • Pierson, L.S., Wood, D.W., and Pierson, E.A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36:207–225.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., van Wees, S.C.M., Hoffland, E., van Pelt, J.A., and van Loon, L.C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., van Wees, S.C.M., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580.

    PubMed  CAS  Google Scholar 

  • Press, C.M., Loper, J.E., and Kloepper, J.W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593–598.

    CAS  Google Scholar 

  • Press, C.M., Wilson, M., Tuzun, S., and Kloepper, J.W. 1997. Salicylic acid produced by Serratia marcesens 90–166 is not the primary determinant of induced systematic resistance in cucumber or tobacco. Mol. Plant Microbe Interact. 10:761–768.

    CAS  Google Scholar 

  • Preston, G.M., Bertrand, N., and Ralney, P.B. 2001. Type III secretion in plant growthpromoting Pseudomonas fluorescens SBW25. Mol. Microbiol. 41(5):999–1014.

    PubMed  CAS  Google Scholar 

  • Ramani, N., and Boyake, K. 2001. Salicylate inhibits the translation and transcription of ompF in Escherichia coli. Can. J. Microbiol. 47:1053–1057.

    PubMed  CAS  Google Scholar 

  • Raupach, G.S., and Kloepper, J.W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance control of multiple cucumber pathogens. Phytopathology 88:1158–1164.

    Google Scholar 

  • Reitz, M., Rudolph, K., Schröder, I., Hoffmann-Hergarten, S., Hallmann, J., and Sikora, R.A. 2000. Lipopolysaccharides of Rhizobium elti strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66:3515–3518.

    PubMed  CAS  Google Scholar 

  • Reitz, M., Hoffmann-Hergarten, S., Hallmann, J., and Sikora, R.A. 2001. Induction of systemic resistance in potato by rhizobacterium Rhizobium elti strain G12 is not associated with accumulation of pathogenesis-related proteins and enhanced lignin biosynthesis. Z. Pflanzenkrank. Pflanzenschutz 108:11–20.

    CAS  Google Scholar 

  • Requena, N., Perez-Solis, E., Azcon-Aguilar, C., Jeffries, P., and Barea, J.-M. 2001. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 67:495–498.

    PubMed  CAS  Google Scholar 

  • Reuveni, M., and Reuveni, R. 2000. Prior inoculation with non-pathogenic fungi induces systemic resistance to powdery mildew on cucumber plants. Eur. J. Plant Pathol. 106:633–638.

    Google Scholar 

  • Ruiz-Lozano, J.M., Roussel, H., Gianinazzi. S., and Gianinazzi-Pearson, V. 1999. Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol. Plant Microbe Interact. 12:976–984.

    CAS  Google Scholar 

  • Ryu, C.-M., Hu, C.-H., Reddy, M.S., and Kloepper, J.W. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160:413–420.

    CAS  Google Scholar 

  • Sailaja, P.R., Podile, A.R., and Reddanna, R. 1997. Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur. J. Plant Pathol. 104:125–132.

    Google Scholar 

  • Salzer, P., Hebe, G., Reith, A., Zitterel-Haid, B., Stransky, H., Gaschler, K., and Hager, A. 1996. Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustiniliforme, and inactivation of these elicitors by extracellular spruce enzymes. Planta 198:118–126.

    CAS  Google Scholar 

  • Sevilla, M., Burris, R.H., Gunapala, N., and Kennedy, C. 2001. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nifmutant strains. Mol. Plant Microbe Interact. 14:358–366.

    PubMed  CAS  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B. 2001. Plant receptor-like kinase gene family: diversity, function and signaling. Science’s STKE, http://www.stke.org/cgi/content/full/OC_sigtrans;2001/113/re22

    Google Scholar 

  • Shivanna, M.B., Meera, M.S., and Hyakumachi, M. 1996. Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Prot. 15:497–504.

    Google Scholar 

  • Sirrenberg, A., Salzer, P., and Hager, A. 1995. Induction of mycorrhiza-like structures and defence reactions in dual cultures of spruce callus and ectomycorrhizal fungi. NewPhytol. 130:149–156.

    Google Scholar 

  • Srinivasan, M., Petersen, D.J., and Holl, F.B. 1996. Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium elti under gnotobiotic conditions. Can. J. Microbiol. 42:1006–1014.

    CAS  Google Scholar 

  • Staswick, P.E. and Lehman, C.C. 1999. Jasmonic acid-signaled responses in plants. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture, eds. A.A. Agrawal, S. Tuzun, and E. Bent, pp. 117–136. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Steidle, A., Sigl, K., Schuhegger, R., Ihring, A., Schmid, M., Gantner, A. Stoffels, M., Reidel, K., Givskov, M., Hartmann, A., Langebartels, C., and Eberl, L. 2001. Visualization of Nacylhomoserine lactone-meidated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67:5761–5770.

    PubMed  CAS  Google Scholar 

  • Steijl, H., Niemann, G.J., and Boon, J.J. 1999. Changes in chemical composition related to fungal infection and induced resistance in carnation and radish investigated by pyrolysis and mass spectrometry. Physiol. Mol. Plant Pathol. 55:297–311.

    CAS  Google Scholar 

  • Strobel, N.E., Ji, C., Gopalan, S., Kuć, J.A., and He, S.Y. 1996 Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J. 9:431–439.

    CAS  Google Scholar 

  • Strobel, N.E and Sinclair, W.A. 1991. Role of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-fir. Phytopathology 81:420–425.

    CAS  Google Scholar 

  • Sturz, A.V., Christie, B.R., and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1–30.

    Google Scholar 

  • Sylvia, D.M., and Sinclair, W.A. 1983. Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria bicolor. Phytopathology 73:390–397.

    Google Scholar 

  • Teplitski, M., Robinson, J.B., and Bauer, W.D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13:637–648.

    PubMed  CAS  Google Scholar 

  • Timmusk, S., and Wagner, E.G.H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12:951–959.

    PubMed  CAS  Google Scholar 

  • Timonen, S., Jorgensen, K.S., Haahtela, K., and Sen, R. 1998. Bacterial community structure at defined locations of Pinus sylvestrisSuillus bovinus and Pinus-sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can. J. Microbiol. 44:499–513.

    CAS  Google Scholar 

  • Tokala, R.K., Strap, J.L., Jung, C.M., Crawford, D.L., Salove, M.H., Deobald, L.A., Bailey, J.F., and Morra, M.J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant Pisum sativum. Appl. Environ. Microbiol. 68:2161–2171.

    PubMed  CAS  Google Scholar 

  • Ton, J., Davison, S., van Wees, S.C.M., van Loon, L.C., and Pieterse, C.J.M. 2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125:652–661.

    PubMed  CAS  Google Scholar 

  • Ton, J., Pieterse, C.J.M., and van Loon, L.C. 1999. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR and basal resistance against Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact. 12:911–918.

    PubMed  CAS  Google Scholar 

  • Ton, J., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M.J. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15:27–34.

    PubMed  CAS  Google Scholar 

  • Tuzun, S., and Bent, E. 1999. The role of hydrolytic enzymes in multigenic and microbially-induced resistance in plants. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture, eds. A.A. Agrawal, S. Tuzun, and E. Bent, pp. 95–115. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Valinsky, L., Vedova, G.D., Scupham, A.J., Alvey, S. Figueroa, A. Yin, B., Hartin, R.J. Chrobak, M., Crowley, D.E., Jiang, T., and Borneman, J. 2002a Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl. Environ. Microbiol. 68:3243–3250.

    PubMed  CAS  Google Scholar 

  • Valinsky, L., Vedova, G.D., Jiang, T., and Borneman, J. 2002b. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl. Environ. Microbiol. 68:5999–6004.

    PubMed  CAS  Google Scholar 

  • van Loon, L.C., Bakker, P.A.H.M., and C.M.J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.

    PubMed  Google Scholar 

  • van Peer, R., Niemann, G.J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734.

    Google Scholar 

  • van Wees, S.C.M., Luijendijk, M., Smoorenburg, I., van Loon, L.C., and Pieterse, C.M.J. 1999. Rhizobacteria-mediated induced systemic resistance ISR in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537–549.

    PubMed  Google Scholar 

  • van Wees, S.C.M., Pieterse, C.M.J., Trisjssenaar, A., Van’t Westende, Y.A.M., Hartog, F., and van Loon, L.C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microb. Interact. 10:716–724.

    Google Scholar 

  • Varagas-Ayala, R., Rodriguez-Kabana, R., Morgan-Jones, G. McInroy, J.A., and Kloepper, J.W. 2000. Shifts in soil microflora induced by velvetbean (Mucina deeringiana) in cropping systems to control root-knot nematodes. Biol. Control 17:11–22.

    Google Scholar 

  • Viswanathan, R., and Samiyappan, R. 2002a. Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot. 21:1–10.

    Google Scholar 

  • Viswanathan, R., and Samiyappan, R. 2002b. Role of oxidative enzymes in the plant growth promoting rhizobacteria (PGPR) mediated induced systemic resistance in sugarcane against Colletotrichum falcatum. Z. Pflanzenkrank. Pflanzenschutz 109:88–100.

    CAS  Google Scholar 

  • Vleeshouwers, V.G.A.A., van Dooijeweert, W., Govers, F., Kamoun, S., and Colon, L.T. 2000. Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans? Physiol. Mol. Plant Pathol. 57:35–42.

    CAS  Google Scholar 

  • Weland, G., Neumann, R., and Backhaus, H. 2001. Variation in microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67:5849–5854.

    Google Scholar 

  • Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487–511.

    PubMed  CAS  Google Scholar 

  • Whitelaw, M.A., Harden, T.J., and Heylar, K.R. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31:655–665.

    CAS  Google Scholar 

  • Xu, P., Narasimhan, M.L., Samson, T., Coca, M.A., Huh, G.-H., Zhou, J., Martin, G.B. Hasegawa, P.M., and Bressan, R.A. 1998. A nitrilase-like protein interacts with GCC box DNA-binding proteins involved in ethylene and defense responses. Plant Physiol. 118:867–874.

    PubMed  CAS  Google Scholar 

  • Xue, L., Charest, P.M., and Jabaji-Hare, S.H. 1998. Systemic induction of peroxidases, 1,3-β-glucanases, chitinases and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88:359–365.

    CAS  Google Scholar 

  • Yamakazi, H., Sunao, K., Tsuguo, H., and Takeshi, K. 2000. Effect of calcium concentration in nutrient solution on development of bacterial wilt and population of its pathogen Ralstonia solanacearum in grafted tomato seedlings. Soil Sci. Plant Nutrition 46:535–539.

    Google Scholar 

  • Yamane, A., Nishimura, H., and Mizutani, J. 1992. Allelopathy of yellow fieldcress Rorippa sylvestris): identification and characterization of phytotoxic constituents. J. Chem. Ecol. 18:683–691.

    CAS  Google Scholar 

  • Yang, C.H., and Crowley, D.E. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66:345–351.

    PubMed  CAS  Google Scholar 

  • Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G., and Kim, W.T. 1999. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylase synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol. 41:443–454.

    PubMed  CAS  Google Scholar 

  • Yin, B., Scupham, A.J., Menge, J.A., and Borneman, J. 2004. Identifying microorganisms which fill a niche similar to that of the pathogen: a new investigative model for biological control research. Plant Soil. 259:19–27.

    CAS  Google Scholar 

  • Zdor, R.E., and Anderson, A.J. 1992. Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140:99–107.

    Google Scholar 

  • Zhang, S., Reddy, M.S., and Kloepper, J.W. 2002. Development of assays for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 23:79–86.

    Google Scholar 

  • Zhang, S., Reddy, M.S., Kokalis-Burelle, N., Wells, L.W., Nightengale, S.P., and Kloepper, J.W. 2001. Lack of induced resistance in peanut to late blight spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Dis. 85:879–884.

    CAS  Google Scholar 

  • Zhang, W., Dick, W.A., and Hoitink, H.A.J. 1996. Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology 86:1066–1070.

    Google Scholar 

  • Zhang, W., Han, D.Y., Dick, W.A., Davis, K.R., and Hoitink, H.A.J. 1998. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455.

    Google Scholar 

  • Zhender, G., Kloepper, J., Tuzun, S., Yao, C., Wei. G. Chambliss, O., and Shelby, R. 1997a. Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomologia Experimentalis et Applicata 83:81–85.

    Google Scholar 

  • Zhender, G., Kloepper, J., Yao, C., and Wei, G. 1997b. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J. Econ. Entomol. 90:391–396.

    Google Scholar 

  • Zhender, G.W., Yao, C., Murphy, J.F., Sikora, E.R., and Kloepper, J.W. 2000. Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45:127–137.

    Google Scholar 

  • Zhender, G.W., Yao, C., Wei, G., and Kloepper, J.W. 2000. Influence of methyl bromide fumigation on microbe-induced resistance in cucumber. Biocontrol Sci. Technol. 10:687–693.

    Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.P., and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920–12925.

    PubMed  CAS  Google Scholar 

  • Zoubenko, O., Hudak, K., and Tumer, N.E. 2000. A non-toxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway. Plant Mol. Biol. 44:219–229.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bent, E. (2006). Induced Systemic Resistance Mediated by Plant Growth-Promoting Rhizobacteria (PGPR) and Fungi (PGPF). In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_10

Download citation

Publish with us

Policies and ethics