Skip to main content

Chromium-Microorganism Interactions in Soils: Remediation Implications

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 178))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACIAR (2000) Towards Better Management of Soils Contaminated with Tannery Waste, Proceedings no 88. Australian Council for International Agricultural Research, Canberra.

    Google Scholar 

  • Adams LF, Ghiorse WC (1988) Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1. Geochim Cosmochim Acta 52:2073–2076.

    Article  CAS  Google Scholar 

  • Al-Khafaji AA, Tabatabai MA (1979) Effects of trace elements on arylsulfatase activity in soils. Soil Sci 127:129–133.

    Article  Google Scholar 

  • Alvarez AH, Moreno-Sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181: 7398–7400.

    PubMed  CAS  Google Scholar 

  • Amacher MC, Baker DE (1982) Redox reactions involving chromium, plutonium, and manganese in soils. In: Institute for Research on Land and Water Resources, Pennsylvania State University and U.S. Department of Energy, Las Vegas, NV, p 166.

    Google Scholar 

  • Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochem Biophys Acta 931:10–15.

    Article  PubMed  CAS  Google Scholar 

  • Avudainayagam S (2002) Long-term tannery waste contamination effect on chromium chemistry. PhD thesis, University of Adelaide, Adelaide, p 232.

    Google Scholar 

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations. Water Air Soil Pollut 47:335–379

    Article  CAS  Google Scholar 

  • Badar U, Ahmed N, Beswick AJ, Pattanapipitpaisal P, Macaskie LE (2000) Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 23:829–836.

    Article  Google Scholar 

  • Bader JL, Gonzales G, Goodell PC, Ali AS, Pillai SD (1999) Chromium-resistant bacterial populations from a site heavily contaminated with hexavalent chromium. Water Air Soil Pollut 109:263–276.

    Article  CAS  Google Scholar 

  • Baldrian P, Gabriel J (1997) Effect of heavy metals on the growth of selected wood-rotting basidiomycetes. Folia Microbiol 42:521–523.

    Article  CAS  Google Scholar 

  • Barceloux DG (1999) Chromium. Clin Toxicol 37:173–194.

    Article  CAS  Google Scholar 

  • Bardgett R, Speir T, Ross D, Yeates G, Kettles H (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79.

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Chromium chemistry and implications for environmental fate and toxicity. J Soil Contam 6:561–568.

    CAS  Google Scholar 

  • Bartlett RJ (1985) Criteria for land spreading of the sludges in the northeast: chromium. In: Serrone DM (ed) Criteria and Recommendations for Land Application of Sludges in the Northeast. Northeast Regional Publication Bulletin, 851. Pennsylvania State University, University Park, pp 49–52.

    Google Scholar 

  • Bartlett RJ (1986) Chromium oxidation in soils and water: measurements and mechanisms. In: Proceedings of the Chromium Symposium: Update, 1986. Industrial Health Foundation, Pittsburgh, pp 310–330.

    Google Scholar 

  • Bartlett R, James B (1979) Behavior of chromium in soils: III. Oxidation. J Environ Qual 8:31–35.

    Article  CAS  Google Scholar 

  • Bartlett RJ, James BR (1988) Mobility and bioavailability of chromium in soils. Adv Environ Sci Technol 20:267–304.

    CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976) Behaviour of chromium in soils: II. Hexavalent forms. J Environ Qual 5:383–386.

    Article  CAS  Google Scholar 

  • Basu M, Bhattacharya S, Paul AK (1997) Isolation and characterization of chromium resistant bacteria from tannery effluents. Bull Environ Contam Toxicol 58:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Bauthio F (1992) Toxic effects of chromium and its compounds. Biol Trace Elem Res 32:145–153.

    Article  Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr(VI) from chromate bearing cooling tower effluent. Biotechnol Lett 18: 667–672.

    Article  CAS  Google Scholar 

  • Bini C, Maleci, L, Zilocchi L (2001) Chromium accumulation and mobility in soils and plants of a tanning inductrial area in NE Italy. In: Proceedings, 6th International Conference on Biogeochemistry of Trace Elements, Guelph, p 79.

    Google Scholar 

  • Bondarenko BM, Ctarodoobova AT (1981) Morphological and cultural changes in bacteria under the effect of chromium salts. Zh Mikrobiol Epidemiol Immunobiol 4:99–100.

    PubMed  Google Scholar 

  • Bopp LH (1980) Chromate reduction and chromate resistance in bacteria. PhD thesis, Rensselaer Polytechnique Institute, Troy, NY, p 165.

    Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromium resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431.

    Article  CAS  Google Scholar 

  • Bopp LH, Chakrabarty AM, Ehrlich HL (1983) Chromate resistance plasmid in Pseudomonas fluorescens. J Bacteriol 155:1105–1109.

    PubMed  CAS  Google Scholar 

  • Brady D, Letebele B, Duncan JR, Rose PD (1994) Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water SA (Pretoria) 20:213–218.

    CAS  Google Scholar 

  • Brendecke JW, Axelson RD, Pepper IL (1993) Soil microbial activity as an indicator of soil fertility: long-term effects of municipal sewage sludge on an arid soil. Soil Biol Biochem 25:751–758.

    Article  Google Scholar 

  • Brochiero E, Bonaly J, Mestre JC (1984) Toxic action of hexavalent chromium on Euglena gracilis strain Z grown under heterotrophic conditions. Arch Environ Contam Toxicol 13:603–608.

    Article  CAS  Google Scholar 

  • Bromfield SM (1976) The deposition of Mn oxide by an alga on acid soil. Aust J Soil Res 14:95–102.

    Article  CAS  Google Scholar 

  • Bromfield SM (1979) Manganous ion oxidation at pH values below 5.0 by cell-free substances from Streptomyces sp. cultures. Soil Biol Biochem 11:115–118.

    Article  CAS  Google Scholar 

  • Bromfield SM, Skerman VBD (1950) Biological oxidation of manganese in soils. Soil Sci 69:337–348.

    Article  CAS  Google Scholar 

  • Brookes PC, McGrath SP, Heijnen C (1986) Metal residues in soils previously treated with sewage sludge and their effects on growth and nitrogen fixation by blue-green algae. Soil Biol Biochem 18:345–353.

    Article  CAS  Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of Amanita and Paxilus. Trans Br Mycol Soc 84:367–369.

    Article  Google Scholar 

  • Buerge IJ, Hug SJ (1998) Influence of organic ligands on chromium (VI) reduction by iron(II). Environ Sci Technol 32:2092–2099.

    Article  CAS  Google Scholar 

  • Campos J, Martinez-Pancheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie Leeuwenhoek. 68:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Garcia J, Martinez-Cadena G, Alvarez-Gonzalez R, Cervantes C (1997) Purification and partial characterization of a chromate reductase from Latinoam Bacillus. Rev Microbiol 39:73–81.

    CAS  Google Scholar 

  • Cervantes C, Ohtake H (1988) Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiol Lett 56:173–176.

    Article  CAS  Google Scholar 

  • Cervantes C, Silver S (1992) Plasmid chromate resistance and chromate reduction. Plasmid 27:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291.

    Google Scholar 

  • Cervantes C, Campos-Gracia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347.

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Hornick SB, Sikora LJ (1981) Review and preliminary studies of industrialland treatment practices. In: Proceedings, 7th Annual USEPA Research Symposium on Land Disposal. EPA-600/9-81-002b, Philadelphia, PA, pp 200–212.

    Google Scholar 

  • Chaney RL, Ryan JA, Brown SL (1996) Development of the USEPA limits for chromium in land-applied biosolids and applicability of these limits to tannery by-product derived fertilisers and other Cr-rich soil amendments. In: Canali S, Tittarelli F, Sequi P (eds) Chromium Environmental Issues. San Miniato, Milano, Italy.

    Google Scholar 

  • Chang F-H, Broadbent FE (1981) Influence of trace metals on carbon dioxide evolution from a Yolo soil. Soil Sci 132:416–421.

    Article  CAS  Google Scholar 

  • Chang F-H, Broadbent FE (1982) Influence of trace metals on some soil nitrogen transformations. J Environ Qual 11:1–4.

    Article  CAS  Google Scholar 

  • Chen JM, Hao OJ (1996) Environmental factors and modeling in microbial chromium(VI) reduction. Water Environ Res 68:1156–1162.

    Article  CAS  Google Scholar 

  • Chen N, Kanazawa S, Horiguchi T (2000) Cr(VI) reduction in wheat rhizosphere. Pedosphere 10:31–36.

    Google Scholar 

  • Chirwa EMN, Wang YT (1997a) Hexavalent chromium reduction by Bacillus sp. in a packed bed bioreactor. Environ Sci Technol 31:1446–1451.

    Article  CAS  Google Scholar 

  • Chirwa EMN, Wang YT (1997b) Chromium(VI) reduction by Pseudomonas fluorescens LB 300 in a fixed-film bioreactor. J Environ Eng 123:760–766.

    Article  CAS  Google Scholar 

  • Cifuentes FR, Lindemann WC, Barton LL (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233–241.

    Article  CAS  Google Scholar 

  • Coleman RN, Paran JH (1983) Accumulation of hexavalent chromium by selected bacteria. Environ Technol Lett 4:149–156.

    Article  CAS  Google Scholar 

  • Corradi MG, Gorbi G, Ricci A, Torelli A, Bassi AM (1995) Chromium-induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmus acutus. Ecotoxicol Environ Saf 32:12–18.

    Article  PubMed  CAS  Google Scholar 

  • Czako-Ver K, Batie M, Raspor P, Sipiczki M, Pesti M (1999) Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol Lett 178:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Dar GH (1996) Effects of cadmium and sewage sludge on soil microbial biomass and enzyme activities. Bioresour Technol 56:141–145.

    Article  CAS  Google Scholar 

  • Das S, Chandra AL (1990) Chromate reduction in Streptomyces. Experientia (Basel) 46: 731–733.

    Article  CAS  Google Scholar 

  • Daulton TL, Little BJ, Lowe K, Jones-Meehan J (2002) Electron energy loss spectroscopy techniques for the study of microbial chromium (VI) reduction. J Microbiol Methods 50:39–54.

    Article  PubMed  CAS  Google Scholar 

  • DeFilippi LJ, Lupton FS (1992) Bioremediation of soluble Cr(VI) using sulfate reducing bacteria. In: Allied Signal Research: National R&D Conference on the Control of Hazardous Materials, San Francisco, CA, pp 138–141.

    Google Scholar 

  • DeFlora S, Bianchi V, Levis AG (1984) Distinctive mechanisms for interaction of hexavalent and trivalent chromium with DNA? Toxicol Environ Chem 8:287–294.

    Article  CAS  Google Scholar 

  • Deleo PC, Ehrlich HL (1994) Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures. Appl Microbiol Biotechnol 40:756–759.

    Article  CAS  Google Scholar 

  • deVrind JPM, Jong EW, Voogt JWH, Westbroek P, Boogerd FC, Rosson RA (1986) Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microbiol 52:1096–1100.

    PubMed  Google Scholar 

  • DeYoung JH, Lee MP, Lipin BR (1984) International strategic minerals inventory summary report: chromium. US Geological Survey Circular 930-B, Washington, DC, p 41.

    Google Scholar 

  • Dhakephalkar PK, Bhide JV, Paknikar KM (1996) Plasmid mediated chromate resistance and reduction in Pseudomonas mendocina MCM B-180. Biotechnol Lett 18:1119–1122.

    Article  CAS  Google Scholar 

  • Doelman P (1985) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjoller A, Sorensen LH (eds) Microbial Communities in Soil. Elsevier, London, pp 369–384.

    Google Scholar 

  • Doelman P, Haanstra L (1979) Effects of lead on the soil bacterial microflora. Soil Biol Biochem 11:487–491.

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1984) Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79:317–327.

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1986) Short-and long-term effect of heavy metals on urease activity in soils. Soil Biol Biochem 2:213–218.

    Google Scholar 

  • Doelman P, Haanstra L (1989) Short-and long-term effects of heavy metals on phosphatase activity in soils: an ecological dose-response model approach. Biol Fertil Soils 8:235–242.

    Article  CAS  Google Scholar 

  • Eary LE, Rai D (1987) Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ Sci Technol 21:1187–1193.

    Article  Google Scholar 

  • Eary LE, Rai D (1988) Chromate removal from aqueous wastes by reduction with ferrous iron. Environ Sci Technol 22:972–977.

    Article  PubMed  CAS  Google Scholar 

  • Edenborn HM, Paquin Y, Chateauneuf G (1985) Bacterial contribution to manganese oxidation in a deep coastal sediment. Estuar Coast Mar Sci 21:801–815.

    CAS  Google Scholar 

  • Efstathiou JD, McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. J Bacteriol 13:257–265.

    Google Scholar 

  • Ehrlich HL (1976) Manganese as an energy source for bacteria. In: Nriagu JO (ed) Environmental Biogeochemistry, vol 2. Metals Transfer and Ecological Mass Balances. Ann Arbor Science, Ann Arbor, MI.

    Google Scholar 

  • Ehrlich HL (1981) Geomicrobiology. Dekker, New York.

    Google Scholar 

  • Ehrlich HL (1982) Enhanced removal of Mn2+ from seawater by marine sediments and clay minerals in the presence of bacteria. Can J Microbiol 28:1389–1395.

    Article  CAS  Google Scholar 

  • Emerson S, Kalhorn S, Jacobs L (1982) Environmental oxidation rate of manganese (II): bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079.

    Article  CAS  Google Scholar 

  • Fein JB, Fowle DA, Cahill J, Kemner K, Boyanov M, Bunker B (2002) Nonmetabolic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiol J 19:369–382.

    Article  CAS  Google Scholar 

  • Fendorf SE, Li G (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30:1614–1617.

    Article  CAS  Google Scholar 

  • Fendorf S, Zasoski RJ (1992) Chromium(III) oxidation by delta-manganese oxide: 1. Characterization. Environ Sci Technol 26:79–85.

    Article  CAS  Google Scholar 

  • Fendorf SE, Zasoski RJ, Burau RG (1993) Competing metal ion influences on chromium(III) oxidation by birnessite. Soil Sci Soc Am J 57:1508–1515.

    Article  CAS  Google Scholar 

  • Fendorf SE, Li G, Gunter ME (1996) Micromorphologies and stabilities of chromium(III) surface precipitates elucidated by scanning force microscopy. Soil Sci Soc Am J 60:99–106.

    Article  CAS  Google Scholar 

  • Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66:543–548.

    Article  PubMed  CAS  Google Scholar 

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and-reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger WT Jr, Tabatabai MA (1981) Amidase activity in soils: IV. Effects of trace elements and pesticides. Soil Sci Soc Am J 45:1120–1124.

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Tabatabai MA (1991) Factors affecting L-asparaginase activity in soils. Biol Fertil Soils 11:1–5.

    Article  CAS  Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Te(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011.

    Article  PubMed  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617.

    PubMed  Google Scholar 

  • Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB III). Appl Environ Microbiol 60:1525–1531.

    PubMed  CAS  Google Scholar 

  • Fujii E, Toda K, Ohtake H (1990) Bacterial reduction of toxic hexavalent chromium using a fed-batch culture of Enterobacter cloacae strain HO1. J Ferment Bioeng 69: 365–367.

    Article  CAS  Google Scholar 

  • Furman CR, Owusu VI, Tsang JC (1984) Interlaboratory effects of some transition metal ions on growth and pigment formation of Serratia marcescens. Microbios 40:45–51.

    PubMed  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilisation and immobilisation. Curr Opin Biotechnol 11:271–279.

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa A2Chr in industrial effluents. Lett Appl Microbiol 60:1525–1531.

    Google Scholar 

  • Ganguli A, Tripathi AK (2001) Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. J Microbiol Biotechnol 11:332–338.

    Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A1Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420.

    Article  PubMed  CAS  Google Scholar 

  • Garnham GW, Green M (1995) Chromate(VI) uptake by and interactions with cyanobacteria. J Ind Microbiol 14:247–251.

    Article  Google Scholar 

  • Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and-defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. BioMetals 11: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Ghiorse WC (1984a) Bacterial transformations of manganese in wetland environments. In: Klug MJ, Reddy CA (eds) Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, DC, pp 615–622.

    Google Scholar 

  • Ghiorse WC (1984b) Biology of iron and manganese depositing bacteria. Annu Rev Microbiol 38:515–550.

    Article  PubMed  CAS  Google Scholar 

  • Ghiorse WC (1988) The biology of manganese transforming microorganisms in soil. In: Graham D, Hannam RJ, Uren NC (eds) Manganese in Soils and Plants. BPH-Utah Minerals International, UT, pp 75–85.

    Chapter  Google Scholar 

  • Greene AC, Madgwick JC (1991) Microbial formation of manganese oxides. Appl Environ Microbiol 57:1114–1120.

    PubMed  CAS  Google Scholar 

  • Giusquiani PL, Gigliotti G, Businelli D (1994) Long-term effects of heavy metals from composted municipal waste on some enzyme activities in a cultivated soil. Biol Fertil Soils 17:257–262.

    Article  CAS  Google Scholar 

  • Gonzales G (2002) Molecular approaches for improving chromate bioremediation. In: 12th Annual West Coast Conference on Contaminated Soils, Sediments and Water. Association for Environmental Health and Sciences, San Diego, CA.

    Google Scholar 

  • Gopalan R, Veeramani H (1994) Studies on microbial chromate reduction by Pseudomonas sp. in aerobic continuous suspended growth cultures. Biotechnol Bioeng 43:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Greene AC, Madgwick JC (1991) Microbial formation of manganese oxides. Appl Environ Microbiol 57:1114–1120.

    PubMed  CAS  Google Scholar 

  • Griffiths BS, Díaz-Raviña Ritz K, McNicol JW, Ebblewhite N, Bååth E (1997) Commu nity DNA hybridisation and % G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24:103–112.

    Article  CAS  Google Scholar 

  • Gvozdyak PI, Mogilevich NF, Ryl’skii AF, Grishchenko NI (1986) Reduction of hexavalent chromium by strains of bacteria. Mikrobiologia 55:962–965.

    CAS  Google Scholar 

  • Haanstra L, Doelman P (1984) Glutamic acid decomposition as a sensitive measure of heavy metal pollution in soil. Soil Biol Biochem 16:595–600.

    Article  CAS  Google Scholar 

  • Haanstra L, Doelman P (1991) An ecological dose-response model approach to short-and long-term effects of heavy metals on arylsulphatase activity in soil. Biol Fertil Soils 11:18–23.

    Article  CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38:93–100.

    Article  CAS  Google Scholar 

  • Hem JD, Lind CJ (1983) Nonequilibrium models for predicting forms of precipitated manganese oxides. Geochim Cosmochim Acta 47:2037–2046.

    Article  CAS  Google Scholar 

  • Higgins TE, Halloran AR, Petura JC (1997) Traditional and innovative treatment methods for Cr (VI) in soil. J Soil Contam 6:767–797.

    CAS  Google Scholar 

  • Horitsu H, Futo S, Ozawa K, Kawai K (1983) Comparison of characteristics of hexavalent chromium-tolerant bacterium, Pseudomonas ambigua G-1, and its hexavalent chromium-sensitive mutant. Agric Biol Chem 47:2907–2908.

    Article  Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S, Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric Biol Chem 51:2417–2420.

    Article  CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270.

    PubMed  CAS  Google Scholar 

  • James BR (1996) The challenge of remediating chromium-contaminated soil. Environ Sci Technol 30:248–251.

    Article  Google Scholar 

  • James BR, Bartlett RJ (1983a) Behavior of chromium in soils: V. Fate of organically complexed Cr (III) added to soil. J Environ Qual 12:169–172.

    Article  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983b) Behavior of chromium in soils: VI. Interactions between oxidation-reduction and organic complexation. J Environ Qual 12:173–176.

    Article  CAS  Google Scholar 

  • James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation-reduction chemistry of chromium: relevance to the regulation and remediation of chromate contaminated soils. J Soil Contam 6:569–580.

    CAS  Google Scholar 

  • Jin TE, Kim IG, Kim WS, Suh SC, Kim BD, Rhim SL (2001) Expression of chromium(VI) reductase gene of heavy metal reducing bacteria in tobacco plants. J Plant Biotechnol 3:13–17.

    Google Scholar 

  • Johnson CA, Xyla AG (1991) The oxidation of chromium (III) to chromium (VI) on the surface of manganite (?MnOOH). Geochim Cosmochim Acta 55:2861–2866.

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effects of ectomycorrhizal infection on the response to Betula papyrifra to nickel and copper. New Phytol 102:429–442.

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1977) Effects of trace elements on phosphatase activity in soils. Soil Sci Soc Am J 41:343–346.

    Article  CAS  Google Scholar 

  • Kamaludeen SPB (2002) Biotic-abiotic transformations of chromium in long-term tannery waste contaminated soils: implications to remediation. PhD thesis, University of Adelaide, Adelaide, Australia.

    Google Scholar 

  • Karnachuk OV (1995) Influence of hexavalent chromium on hydrogen sulfide formation by sulfate-reducing bacteria. Microbiology 64:262–265.

    Google Scholar 

  • Kelly JJ, Häggblom M, Tate RL III (1999a) Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities. Soil Biol Biochem 31:1467–1470.

    Article  CAS  Google Scholar 

  • Kelly JJ, Häggblom M, Tate RL III (1999b) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465.

    Article  CAS  Google Scholar 

  • Khare S, Ganguli A, Tripathi AK (1997) Responses of Pseudomonas aeruginosa to chromium stress. Eur J Soil Biol 33:2268–2270.

    Google Scholar 

  • Kim JG, Dixon JB, Chusuei CC, Deng Y (2002) Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J 66:306–315.

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion. The microbial degradation of lignin. Annu Rev Microbiol 41:465–505.

    Article  PubMed  CAS  Google Scholar 

  • Knauer K, Jabusch T, Sigg L (1999) Manganese uptake and Mn (II) oxidation by the alga Scenedesmus subspicatus. Aquat Sci 61:44–58.

    CAS  Google Scholar 

  • Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570.

    Article  CAS  Google Scholar 

  • Komori K, Rivas R, Toda K, Ohtake H (1990a) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954.

    Article  PubMed  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990b) A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol 33:117–119.

    Article  PubMed  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300.

    Article  CAS  Google Scholar 

  • Krauter P, Martinelli R, Williams K, Martins S (1996) Removal of Cr (VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Kuo CW, Genthner BRS (1996) Effect of added heavy metals on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62:2317–2323.

    PubMed  CAS  Google Scholar 

  • Kuperman RG, Carreiro M (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29: 179–190.

    Article  CAS  Google Scholar 

  • Kvasnikov EI, Stepanyuk VV, Klyushnikova TM, Serpokrylov NS, Simonova GA, Kasatkina TP, Panchenko LP (1985) A new chromium-reducing, gram-variable bacterium with mixed type of flagellation. Mikrobiology 54:69–75.

    Google Scholar 

  • Kvasnikov EI, Serpokrylov NS, Klyushnikova TM, Kasatkina TP, Zukov IM, Tokareva LL (1986) Optimization of a nutrient medium for Aeromonas dechromatica reducing Cr(VI). Khim Tekhnol Vody 8(3):64–66.

    CAS  Google Scholar 

  • Kvasnikov EI, Serpokrylov NS, Klyushnikova TM, Kasatkina TP, Zukov IM, Tokareva LL (1987) Reduction of Cr(VI) by a culture of Aeromonas dechromatica KS-11 in the presence of certain heavy metals. Khim Tekhnol Vody 9(2):159–162.

    CAS  Google Scholar 

  • Kvasnikov EI, Klyusnikova TM, Kasatkina TP, Stepanyuk VV, Kuberskaya SL (1988) Chromium-reducing bacteria in nature and in industrial sewage. Mikrobiologiya 57: 680–685.

    CAS  Google Scholar 

  • Lachance M-A, Pang W-M (1997) Predacious yeats. Yeast 13:225–232.

    Article  PubMed  CAS  Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese (II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264.

    Article  CAS  Google Scholar 

  • Lebedeva EV, Lyalikova NN (1979) Reduction of crocoite by Pseudomonas chromatophila sp. nov. Mikrobiologiya 48:517–522.

    CAS  Google Scholar 

  • Leeper GW, Swaby RL (1940) The oxidation of manganous compounds by microorganisms in the soils. Soil Sci 49:163–164.

    Article  CAS  Google Scholar 

  • Lester JN, Perry R, Dadd AH (1979) The influence of heavy metals on a mixed bacterial population of sewage origin in the chemostat. Water Res 13:1055–1063.

    Article  CAS  Google Scholar 

  • Liang CN, Tabatabai MA (1977) Effects of trace elements on nitrogen mineralization in soils. Environ Pollut 12:141–147.

    Article  Google Scholar 

  • Liang CN, Tabatabai MA (1978) Effects of trace elements on nitrification in soils. J Environ Qual 7:291–293.

    Article  CAS  Google Scholar 

  • Lighthart B, Baham J, Volk VV (1983) Microbial respiration and chemical speciation in metal-amended soils. J Environ Qual 12:543–548.

    Article  CAS  Google Scholar 

  • Liu KJ, Jiang J, Shi X, Gabrys H, Walczak T, Swartz M (1995) Low frequency EPR study of chromium (V) formation from chromium (VI) in living plants. Biochem Biophys Res Commun 206:829–834.

    Article  PubMed  CAS  Google Scholar 

  • Liu LG (1982) Speculations on the composition and origin of the earth. Geochem J 16:287–310.

    Article  CAS  Google Scholar 

  • Llovera S, Bonet R, Simon-Pujol MD, Congregado F (1993) Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl Environ Microbiol 59:3516–3518.

    PubMed  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994a) Bioremediation of chromate contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23: 1141–1150.

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT Jr (1994b) Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150.

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994c) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:92–121.

    Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290.

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289.

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54:1472–1480.

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its C-3 cytochrome. Appl Environ Microbiol 60:726–728.

    PubMed  CAS  Google Scholar 

  • Mandernack KW, Post J, Tebo BM (1995a) Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn (II) to Mn (IV). Geochim Cosmochim Acta 59:4393–4408.

    Article  CAS  Google Scholar 

  • Mandernack KW, Fogel ML, Tebo BM, Usui A (1995b) Oxygen isotope analyses of chemically and microbially produced manganese oxides and manganates. Geochim Cosmochim Acta 59:4409–4425.

    Article  CAS  Google Scholar 

  • Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:517–521.

    Article  Google Scholar 

  • Martin JP, Parkin GF (1985) Land treatment of tannery wastes. J Am Leather Chem Assoc 81:149–173.

    Google Scholar 

  • Masscheleyn PH, Pardue JH, DeLaune RD, Patrick WH Jr (1992) Chromium redox chemistry in a lower Mississippi Valley bottomland hardwood wetland. Environ Sci Technol 26:1217–1226.

    Article  CAS  Google Scholar 

  • McGrath SP, Cegarra J (1992) Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J Soil Sci 43:313–321.

    Article  CAS  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in Soil Environment. Soil Science Society of America, Madison, WI, pp 439–465.

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67: 10760–1084.

    Article  Google Scholar 

  • McLean J, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate contaminated site. Environ Microbiol 2:611–619.

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Ragusa SR, Naidu R (2002) Metal-microalgae interactions. In: Naidu R, et al (eds) Bioavailability, Toxicity, and Risk Relationships in Ecosystems. Science Publishers, Enfield, NH, pp 109–144.

    Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from a long-term tannery waste contaminated soil. Curr Microbiol (in press).

    Google Scholar 

  • MelLytle C, Lytle FW, Yang N, Qian J, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093.

    Article  Google Scholar 

  • Milacic R, Stupar J (1995) Fractionation and oxidation of chromium in tannery waste-and sewage sludge-amended soils. Environ Sci Technol 29:506–514.

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Shanker K, Srivastava MM, Srivastava S, Shrivastav R, Dass S, Prakash S (1997) A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): possible chemical modifications in rhizosphere. Agric Ecosyst Environ 62: 53–58.

    Article  CAS  Google Scholar 

  • Murray JW, Balistrieri LS, Paul B (1984) The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochim Cosmochim Acta 48:1237–1247.

    Article  CAS  Google Scholar 

  • Murray JW, Dillard JG, Giovanoli R, Moers H, Stumm W (1985) Oxidation of Mn(II): initial mineralogy, oxidation state and aging. Geochim Cosmochim Acta 49:463–470.

    Article  CAS  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106.

    Article  PubMed  CAS  Google Scholar 

  • Naguib MI, Haikal NZ, Gouda S (1984) Effects of chromium ions on the growth of Fusarium oxysporum f. sp. lycopersici and Cunninghamella echinulata. Arab Gulf J Sci Res 2:149–157.

    CAS  Google Scholar 

  • Naidu R, Smith L, Mowat D, Kookana RS (2000a) Soil-plant transfer of Cr from tannery wastes sludge: results from a glass house study. In: ACIAR, Canberra, pp 133–143.

    Google Scholar 

  • Naidu R, Kookana RS, Cox J, Mowat D, Smith LH (2000b) Fate of chromium at tannery waste contaminated sites at Mount Barker, South Australia. In: Naidu R, Willett IR, Mahimairaja S, Kookana RS, Ramasamy K (eds) Towards Better Management of Soils Contaminated with Tannery Waste, Proceedings no 88. Australian Council for International Agricultural Research, Canberra, pp 57–70.

    Google Scholar 

  • Nakayama E, Kuamoto T, Tsurubo S, Fujinaga T (1981) Chemical speciation of chromium in sea water, Part 2, Effects of manganese oxides and reducible organic materials on the redox processes of chromium. Anal Chim Acta 130:401–404.

    Article  CAS  Google Scholar 

  • National Research Council (2000) Natural Attenuation for Groundwater Remediation. National Academy Press, Washington, DC.

    Google Scholar 

  • Nealson K (1978) The isolation and characterisation of marine bacteria which catalyse manganese oxidation. In: Krumbein W (ed) Environmental Biogeochemistry, vol 3. Ann Arbor Science, Ann Arbor, MI, pp 847–858.

    Google Scholar 

  • Nealson K (1983) Microbial oxidation and reduction of manganese and iron. In: Westbroek P, deJong EW (eds) Biomineralisation and Biological Metal Accumulation. Reidel, Boston, pp 459–487.

    Chapter  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318.

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159.

    Article  CAS  Google Scholar 

  • Nieboer E, Jusys AA (1988) Biologic chemistry of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in the Natural and Human Environment. Wiley, New York, pp 21–80.

    Google Scholar 

  • Nies A, Nies DH, Silver S (1989) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070.

    PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653.

    PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900.

    PubMed  CAS  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/ sulfate antiporters. J Bacteriol 180:5799–5802.

    PubMed  CAS  Google Scholar 

  • Nriagu JO (1988) Production and uses of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in the Natural and Human Environment. Wiley, New York, pp 81–104.

    Google Scholar 

  • Obraztsova AY, Francis CA, Tebo BM (2002) Sulfur disproportionation by the facultative anaerobe Pantoea agglomerans SP1 as a mechanism for chromium(VI) reduction. Geomicrobiol J 19:121–132.

    Article  CAS  Google Scholar 

  • Ogawa T, Usui M, Yatome C, Idaka E (1989) Influence of chromium compounds on microbial growth and nucleic acid synthesis. Bull Environ Contam Toxicol 43:254–260.

    Article  PubMed  CAS  Google Scholar 

  • Ohtake H, Silver S (1995) Bacterial detoxification of toxic chromate. In: Chaudry GR (ed) Biological Degradation and Bioremediation of Toxic Chemicals. Chapman & Hall, London, pp 403–413.

    Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856.

    PubMed  CAS  Google Scholar 

  • Ohtake H, Fujii E, Toda T (1990) A survey of effective electron donors for reduction of toxic hexavalent chromate by Enterobacter cloacae (strain HO1). J Gen Appl Microbiol 36:203–208.

    Article  CAS  Google Scholar 

  • Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect 92:25–40.

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31:2039–2044.

    Article  CAS  Google Scholar 

  • Pennanen T, Frostegård A, Fritze H, Båth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428.

    PubMed  CAS  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458.

    PubMed  CAS  Google Scholar 

  • Petrilli FL, deFlora S (1977) Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl Environ Microbiol 33:805–809.

    PubMed  CAS  Google Scholar 

  • Pettine M, Millero FJ, Passino R (1994) Reduction of chromium(VI) with hydrogen sulfide in NaCl media. Mar Chem 46:335–344.

    Article  CAS  Google Scholar 

  • Pettine M, Barra I, Campanella L, Millero FJ (1998) Effect of metals on the reduction of chromium(VI) with hydrogen sulfide. Water Res 32:2807–2813.

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (1998) Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124:1165–1170.

    Article  CAS  Google Scholar 

  • Pilz U (1986) Erfahrungen mit dem Bakterientoximeter bei der Untersuchung giftsoffhaltiger Losungen und schadstoffbelasteter Wasserproben. Vom Wasser 66:85–96.

    CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96.

    Article  CAS  Google Scholar 

  • Ponnamperuma FN, Loy TA, Tianco EM (1969) Redox equilibria in flooded soils: II. The manganese oxide systems. Soil Sci 108:48–57.

    Article  CAS  Google Scholar 

  • Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29: 1913–1922.

    Article  PubMed  CAS  Google Scholar 

  • Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal-containing waste waters using metabolically active microorganisms. Adv Appl Microbiol 48: 135–171.

    Article  PubMed  CAS  Google Scholar 

  • QuiIntana M, Curutchet G, Donati E (2001) Factors affecting chromium(VI) reduction by Thiobacillus ferroxidans. Biochem Eng J 9:11–15.

    Article  CAS  Google Scholar 

  • Qureshi AA, Coleman RN, Paran JH (1984) Evaluation and refinement of the Microtox test for use in toxicity screening. In: Liu D, Dukta BJ (eds) Toxicity Screening Systems Procedures Using Bacterial Systems. Dekker, New York, pp 1–22.

    Google Scholar 

  • Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Rajwade JM, Paknikar KM (1997) Microbiological detoxification of chromate from chromate-plating effluents. In: Proceedings, International Biohydrometallurgy Symposium IBS97. Australian Mineral Foundation, Glenside, Australia, pp E-ROM4.1-E-ROM4.10.

    Google Scholar 

  • Raman N, Sambandan K (1998) Distribution of VAM fungi in tannery effluent polluted soils of Tamil Nadu, India. Bull Environ Contam Toxicol 60:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Raman N, Srinivasan V, Ravi M (2002) Effect of chromium on the axenic growth and phosphatase activity of ectomycorrhizal fungi, Laccaria laccata and Suillus bovinus. Bull Environ Contam Toxicol 68:569–575.

    Article  PubMed  CAS  Google Scholar 

  • Rege MA, Petersen JN, Johnstone DL, Turick CE, Yonge DR, Apel WA (1997) Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain HO1 grown on sucrose. Biotechnol Lett 19:691–694.

    Article  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927.

    Article  PubMed  CAS  Google Scholar 

  • Rogers JE, Li SW (1985) Effect of metals and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bull Environ Contam Toxicol 34:858–865.

    Article  PubMed  CAS  Google Scholar 

  • Romanenko VI, Korenkov VN (1977) A pure culture of bacteria utilising chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Microbiology 46:329–332.

    Google Scholar 

  • Ross DS, Bartlett RJ (1981) Evidence for nonmicrobial oxidation of manganese in soil. Soil Sci 132:153–160.

    Article  CAS  Google Scholar 

  • Ross DS, Sjogren RE, Bartlett RJ (1981) Behavior of chromium in soils: IV. Toxicity to microorganisms. J Environ Qual 10:145–148.

    Article  CAS  Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese binding and oxidation by spores of a marine Bacillus. J Bacteriol 151:1027–1034.

    PubMed  CAS  Google Scholar 

  • Ruhling A, Tyler G (1973) Heavy metal pollution and decomposition of spruce needle litter. Oikos 24:402–406.

    Article  Google Scholar 

  • Schmieman EA, Petersen JN, Yonge DR, Johnstone DL, Bereded SY, Apel WA, Turick CE (1997) Bacterial reduction of chromium. Appl Biochem Biotechnol 63–65:855–864.

    Article  PubMed  Google Scholar 

  • Schmieman EA, Rege MA, Yonge DR, Petersen JN, Turick CE, Johnstone DL, Apel WA (1998) Comparative kinetics of bacterial reduction of chromium. J Environ Eng 124:449–455.

    Article  CAS  Google Scholar 

  • Shakoori AR, Tahseen S, Haq RU (1999) Chromate-tolerant bacteria isolated from industrial effluents and their use in detoxication of hexavalent chromium. Folia Microbiol 44:50–54.

    Article  CAS  Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–351.

    Article  PubMed  CAS  Google Scholar 

  • Sharma DC, Forster CF (1993) Removal of hexavalent chromium using sphagnum peat moss. Water Res 27:1201–1208.

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777.

    PubMed  CAS  Google Scholar 

  • Shen H, Wang YT (1994a) Modeling hexavalent chromium reduction in Escherichia coli 33456. Biotechnol Bioeng 43:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Wang YT (1994b) Biological reduction of chromium by Escherichia coli. J Environ Eng 120:560–572.

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1995) Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl Environ Microbiol 61:2754–2758.

    PubMed  CAS  Google Scholar 

  • Shen H, Pritchard PH, Sewell GW (1996) Microbial reduction of Cr(VI) during anaerobic degradation of benzoate. Environ Sci Technol 30:1667–1674.

    Article  CAS  Google Scholar 

  • Shi XL, Dalal NS (1990) NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276:189–191.

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Matsushima K (1983) Isolation of potassium chromate-resistant bacterium and reduction of hexavalent chromium by the bacterium. Bull Fac Agric Mie Univ 67:101–106.

    Google Scholar 

  • Shumate SE II, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Robinson CW, Howell JA (eds) Comprehensive Biotechnology. Pergamon Press, Oxford, pp 235–247.

    Google Scholar 

  • Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 42:717–743.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DCR, Smith GM, Bruce A, Staines HJ (1997) Soil dehydrogenase activity adjacent to remedially treated timber, weathered in a physical field model. Int Biodeterior Biodegrad 39:207–216.

    Article  CAS  Google Scholar 

  • Sisti F, Allegretti P, Donati E (1996) The reduction of dichromate by Thiobacillus ferroxidans. Biotechnol Lett 18:1477–1480.

    Article  CAS  Google Scholar 

  • Sisti F, Allegretti P, Donati E (1998) Bioremediation of chromium(VI)-contaminated effluents using Thiobacillus. Appl Biol Sci 4:47–58.

    CAS  Google Scholar 

  • Skujins J, Nohrstedt HO, Oden S (1986) Development of a sensitive biological method for the determination of a low level toxic contamination in soils. Swed J Agric Sci 16:113–118.

    CAS  Google Scholar 

  • Smillie RH, Loutit MW (1982) Removal of metals from sewage in an oxidation pond. NZ J Sci 25:371–376.

    CAS  Google Scholar 

  • Smillie RH, Hunter K, Loutit M (1981) Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res 15:1351–1354.

    Article  CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991.

    Article  PubMed  CAS  Google Scholar 

  • Srinath T, Khare K, Ramteke PW (2001) Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. J Gen Appl Microbiol 47: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Stuetz RM, Greene AC, Madgwick JC (1996) The potential use of manganese oxidation in treating metal effluents. Mine Eng 9:1253–1261.

    Article  CAS  Google Scholar 

  • Sudhakar G, Jyothi B, Venkateswarlu V (1991) Metal pollution and its impact on algae in flowing waters in India. Arch Environ Contam Toxicol 21:556–566.

    Article  PubMed  CAS  Google Scholar 

  • Summers AO, Jacoby GA (1978) Plasmid-determined resistance to boron and chromium compounds in Pseudomonas aeruginosa. Antimicrob Agents Chemother 13:637–640.

    PubMed  CAS  Google Scholar 

  • Suthersan SS (2002) Monitored natural attenuation. In: Natural and Enhanced Remediation Systems. Arcadis Lewis, Boca Raton, FL, pp 63–129.

    Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAP(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(VI) to Cr(III). J Bacteriol 174:5340–5345.

    PubMed  CAS  Google Scholar 

  • Tabatabai MA (1977) Effects of trace elements on urease activity in soils. Soil Biol Biochem 9:9–13.

    Article  CAS  Google Scholar 

  • Takematsu N, Kusakabe H, Sato Y, Okabe S (1988) Todokorite formation in seawater by microbial mediation. J Ocean Soc Jpn 44:235–243.

    Article  CAS  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198.

    Article  CAS  Google Scholar 

  • Theotou A, Stretton RJ, Norbury AH, Massey AG (1976) Morphological effects of chromium and cobalt complexes on bacteria. Bioinorg Chem 5:235–239.

    Article  Google Scholar 

  • Tipping E, Jones JG, Woof C (1985) Lacustrine manganese oxides: Mn oxidation states and relationships to Mn depositing bacteria. Arch Hydrol 105:161–175.

    CAS  Google Scholar 

  • Travieso L, Canizarez RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151.

    Article  PubMed  CAS  Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilised in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Turick CE, Apel WA, Carmiol NS (1996) Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environ-ments. Appl Microbiol Biotechnol 44:683–688.

    Article  PubMed  CAS  Google Scholar 

  • Turick CE, Camp CE, Apel WA (1997) Reduction of Cr(6+) to Cr(3+) in a packed-bed bioreactor. Appl Biochem Biotechnol 63–65:871–877.

    Article  PubMed  Google Scholar 

  • Turick CE, Graves C, Apel WA (1998) Bioremediation potential of Cr(VI) contaminated soil using indigenous organisms. Bioremed J 2:1–6.

    Article  CAS  Google Scholar 

  • USEPA (1984) Health assessment document for chromium: final report. EPA-600/8-83-014F. USEPA, Environmental Criteria and Assessment Office, Research Traingle Park, NC.

    Google Scholar 

  • USEPA (1988) Chromium. Rev Environ Contam Toxicol 107:39–52.

    Article  Google Scholar 

  • USEPA (1996a) Test methods for evaluating solid wastes, physical/chemical methods (method 7199). SW-846, 3rd Ed. Office of Solid Waste and Emergency Response, Washington, DC.

    Google Scholar 

  • USEPA (1996b) Integrated Risk Information Service (IRIS). USEPA, Cincinnati, OH.

    Google Scholar 

  • USEPA (1996c) Soil screening guidance: technical background document. Office of Solid Waste and Emergency Response, Washington, DC.

    Google Scholar 

  • Venitt S, Levy LS (1974) Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature (Lond) 250:493–495.

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Apel WA, Petersen JN (2002a) Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog 18:290–295.

    Article  PubMed  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Apel WA, Petersen JN (2002b) Chromate/nitrite interactions in Shewanella oneidensis MR-1: evidence for multiple reduction mechanisms dependent on physiological growth conditions. Biotechnol Prog 18 (in press) (as cited by Viamajala et al. 2000a).

    Google Scholar 

  • Vig K, Megharaj M, Sethunathan N, Naidu R (2002). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil. Adv Environ Res (in press).

    Google Scholar 

  • Viti C, Giovannetti L (2001) The impact of chromium concentration on soil heterotrophic and photosynthetic microorganisms. Ecol Environ Microbiol 51:201–214.

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250.

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669.

    PubMed  CAS  Google Scholar 

  • Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672.

    PubMed  CAS  Google Scholar 

  • Wang P, Toda K, Ohtake H, Kusaka I, Yabe I (1991) Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett 78:11–16.

    Article  CAS  Google Scholar 

  • Wang YT, Chirwa EM (1998) Simultaneous removal of Cr(VI) and phenol in chemostat culture of Escherichia coli ATCC 33456 and P. putida DMP-1. Water Sci Technol 38:113–119.

    CAS  Google Scholar 

  • Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Wang YT, Shen H (1997) Modelling Cr(VI) reduction by pure bacterial cultures. Water Res 31:727–732.

    Article  CAS  Google Scholar 

  • Wang YT, Xiao C (1995) Effect of environmental factors on biological reduction of chromium. Water Res 29:2467–2474.

    Article  CAS  Google Scholar 

  • Ward CH, Alexander M, Ryan JA, Spain JC (1999) Transformation. In: Anderson WC, Loeher RC, Smith BP (eds) Environmental Availability in Soils: Chlorinated Organics, Explosives, Metals. American Academy of Environmental Engineers, Annapolis, MD, pp 187–201.

    Google Scholar 

  • Wehrli B, Friedl G, Manceau A (1995) Reaction rates and products of manganese oxidation at the sediment-water interface. In: Huang CP, O’Melia CR, Morgan JJ (eds) Aquatic Chemistry: Interfacial and Interspecies Processes. American Chemical Society, Washington, DC.

    Google Scholar 

  • Welp G (1999) Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fertil Soils 30: 132–139.

    Article  CAS  Google Scholar 

  • Weng CH, Huang CP, Allen HE, Leavens PB, Sanders PF (1996) Chemical interactions between Cr(VI) and hydrous concrete particles. Environ Sci Technol 30:371–376.

    Article  CAS  Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DO (1977) Nitrification in soil treated with domestic and industrial sludge. Environ Pollut 12:73–82.

    Article  CAS  Google Scholar 

  • Wong PTS, Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO, Nieboer E (eds) Chromium in the Natural and Human Environments. Wiley, New York, pp 305–315.

    Google Scholar 

  • Yeates GW, Orchard VA, Speir TW, Hunt JL, Hermans MCC (1994) Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity. Biol Fertil Soils 18:200–208.

    Article  CAS  Google Scholar 

  • Yonni F, Fasoli HJ, Roca E, Feijoo G (2002) Effect of heavy metals on the degradative activity by wood-rotting fungi. Bull Environ Contam Toxicol 68:752–759.

    Article  PubMed  CAS  Google Scholar 

  • Zibilske LM, Wagner H (1982) Bacterial growth and fungal genera distribution in soils amended with sewage sludge containing cadmium, chromium and copper. Soil Sci 134:364–370.

    Article  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Communicated by G.W. Ware.

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Kamaludeen, S.P., Megharaj, M., Juhasz, A.L., Sethunathan, N., Naidu, R. (2003). Chromium-Microorganism Interactions in Soils: Remediation Implications. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-21728-2_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21728-2_4

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00441-9

  • Online ISBN: 978-0-387-21728-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics