Skip to main content

Engineered Skeletal Muscle: Functional Tissues, Organs, and Interfaces

  • Chapter
Functional Tissue Engineering
  • 367 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams L., Carlson B.M., Henderson L., Goldman D. 1995. Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation. J Cell. Biol. 131:1341–1349.

    Article  PubMed  CAS  Google Scholar 

  • Chromiak J.A., Shansky J., Perrone C., Vandenburgh H.H. 1998. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell. Dev. Biol. Anim. 34:694–703.

    PubMed  CAS  Google Scholar 

  • Close R. 1964. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 173:74–95.

    PubMed  CAS  Google Scholar 

  • Close R.I. 1972. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52:129–197.

    PubMed  CAS  Google Scholar 

  • Decary S., Mouly V., Hamida C.B., Sautet A., Barbet J.P., Butler-Browne G.S. 1997. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum. Gene Ther. 8:1429.

    PubMed  CAS  Google Scholar 

  • Delvoye P., Wiliquet P., Leveque J., Nusgens B.V., Lapiere C.M. 1991. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Invest. Dermatol. 97:898–902.

    Article  PubMed  CAS  Google Scholar 

  • Dennis R.G., Kosnik P. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36(5):327–335, 2000.

    CAS  Google Scholar 

  • Dennis, R.G., Kosnik, II, P.E., Gilbert, M.E., and Faulkner, J.A. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295, 2001.

    PubMed  CAS  Google Scholar 

  • Dennis R.G., Kosnik P.E. 2000. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36:327–335.

    CAS  Google Scholar 

  • Dennis R.G., Kosnik P. 2002. Mesenchymal Cell Culture: Instrumentation and Methods for Evaluating Engineered Muscle. Anthony Atala, Robert P. Lanza, Eds. Academic Press San Diego In Methods in Tissue Engineering. Chapter 24 pages 307–315.

    Google Scholar 

  • Dickinson M.H., Farley C.T., Full R.J., Koehl M.A.R., Kram R. Lehman S. 2000. How animals move: an integrative view. Science 288:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Dow D.E., Dennis R.G., Hassett C.A., Faulkner J.A. 1999. Electrical stimulation protocol to maintain mass and contractile force in denervated muscles. BMES-EMBS 1st Joint Conference, Session 6.1.2 Functional Neuromuscular Stimulation, Paper # 573.

    Google Scholar 

  • Dow D.E., Dennis R.G., Hassett C.A., Faulkner J.A. 2000. Electrical stimulation to maintain functional properties of denervated EDL muscles of rats. 31st Annual Neural Prosthesis Workshop, National Institutes of Health, Lister Hill Center, Oct. 25–27.

    Google Scholar 

  • Drachman D.B., Johnston D.M. 1973. Development of a mammalian fast muscle: dynamic and biochemical properties correlated. J. Physiol. (Lond.) 234:29–42.

    CAS  Google Scholar 

  • Engel A.G., Franzini-Armstrong C. 1994. Myology: Volume I, Basic and Clinical. New York, McGraw-Hill, Inc.

    Google Scholar 

  • Faulkner J.A., Brooks S.V., Dennis R.G. 1997. Measurement of recovery of function following whole muscle transfer, myoblast transfer, and gene therapy. In: Methods in Tissue Engineering, Vol. 18: Tissue Engineering Methods and Protocols. J.R. Morgan, M.L. Yarmush, eds. Totowa, NJ: Humana Press Inc., pp. 155–172.

    Google Scholar 

  • Goldman D., Brenner H.R., Heinemann, S. 1988. Acetylcholine receptor α, β, γ, and δ-subunit mRNA levels are regulated by muscle activity. Neuron 1:329–333.

    Article  PubMed  CAS  Google Scholar 

  • Gordon A.M., Huxley A.F., Julian F.J. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.) 184:170–192.

    CAS  Google Scholar 

  • Grinnell F. 1994. Fibroblasts, myofibroblasts, and wound contraction. J. Cell. Biol. 124:401.

    Article  PubMed  CAS  Google Scholar 

  • Harris A.K. 1991. Physical forces and pattern formation in limb development. In: Developmental Patterning of the Vertebrate Limb. J.R. Hinchliffe, J.M. Hurle, D. Summerbell, eds. New York: Plenum Press, pp. 203–210.

    Google Scholar 

  • Harris A.K., Wild P., Stopak D. 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177.

    PubMed  CAS  Google Scholar 

  • Harris A.K., Stopak D., Wild P. 1981. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249.

    Article  PubMed  CAS  Google Scholar 

  • Hatfaludy S., Shansky J., Vandenburgh H.H. 1989. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity. Am. J. Physiol. 256 (1 Pt 1):C175–181.

    PubMed  CAS  Google Scholar 

  • Higton D.I.R., James D.W. 1964. The force of contraction of full-thickness wounds of rabbit skin. Br. J. Surg. 51:462.

    PubMed  CAS  Google Scholar 

  • Hollerbach J.M., Hunter I.W., Ballantyne J. 1991. A comparative analysis of actuator technologies for robotics. In: Robotics Review 2. Cambridge, MA: MIT Press, pp. 299–342.

    Google Scholar 

  • Irintchev A., Rosenblatt J.D., Cullen M.J., Zweyer M., Wernig A. 1998. Ectopic skeletal muscles derived from myoblasts implanted under the skin. J. Cell Sci. 111 (Pt 22):3287–3297.

    PubMed  CAS  Google Scholar 

  • James D.W., Taylor J.F. 1969. The stress developed by sheets of chick fibroblasts in vitro. Exp. Cell Res. 54:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Kolodney M.S., Wysolmerski R.B. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Kosnik P., Dennis R.G. 2002. Mesenchymal Cell Culture: Functional Mammalian Skeletal muscle constructs. In: Methods in Tissue Engineering. Anthony Atala and Robert P. Lanza, editors Academic Press, San Diego Chapter 23 pp. 299–306.

    Google Scholar 

  • Kosnik P. Jr., Dennis R.G., Faulkner J.A. Functional Development of engineered skeletal muscle from adult and neonatal rats. Tissue Engineering 7(5):573–584, 2001.

    Article  PubMed  CAS  Google Scholar 

  • LaFramboise W.A., Daood M.J., Guthrie R.D., Butler-Browne, G.S., Whalen R.G., Ontell M. 1990. Myosin isoforms in neonatal rat extensor digitorum longus, diaphragm, and soleus muscles. Am. J. Physiol. 259:L116–L122.

    PubMed  CAS  Google Scholar 

  • Lewis M.R. 1915. Rhythmical contraction of the skeletal muscle tissue observed in tissue cultures. Am. J. Physiol. 38:153–161.

    Google Scholar 

  • Lewis W.H., Lewis M.R. 1917. Behavior of cross striated muscle in tissue cultures. Am. J. Anat. 22:169.

    Article  Google Scholar 

  • Mayne R., Swasdison S., Sanderson R.D., Irwin M.H. 1989. Extracellular matrix, fibroblasts and the development of skeletal muscle. In: Cellular and Molecular Biology of Muscle Development. New York: Alan R. Liss, Inc., pp. 107–116.

    Google Scholar 

  • Mensinger A.F., Anderson D.J., Buchko C.J., Johnson M.A., Martin D.C., Tresco P.A. Silver R.B., Highstein, S.M. 2000. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode. J. Neurophysiol. 83:611–615.

    PubMed  CAS  Google Scholar 

  • Miller, R.R., Rao J.S., Burton W.V., Festoff B.W. 1991. Proteoglycan synthesis by clonal skeletal muscle cells during in vitro myogenesis: differences detected in the types and patterns from primary cultures. Int. J. Dev. Neurosci. 9:259–267.

    PubMed  CAS  Google Scholar 

  • Nordin M., Frankel V.H. 1989. Basic Biomechanics of the Musculoskeletal System 2nd ed. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Okano T., Matsuda T. 1998a. Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant. 7:71–82.

    PubMed  CAS  Google Scholar 

  • Okano T., Matsuda T. 1998b. Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant, 7:435–442.

    PubMed  CAS  Google Scholar 

  • Okano T., Satoh S., Oka T., Matsuda T. 1997. Tissue engineering of skeletal muscle: highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43:M749–M753.

    PubMed  CAS  Google Scholar 

  • Perrone C.E., Fenwick-Smith D., Vandenburgh H.H. 1995. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J. Biol. Chem. 270:2099–2106.

    PubMed  CAS  Google Scholar 

  • Phillips S.K., Wiseman R.W., Woledge R.C., Kushmerick M.J. 1993. Neither changes in phosphorus metabolite levels nor myosin isoforms can explain the weakness in aged mouse muscle. J. Physiol. (Lond.) 463:157–167.

    CAS  Google Scholar 

  • Powell C., Shansky J., Del Tatto M., Forman D. E., Hennessey J., Sullivan K., Zielinski B.A., Vandenburgh H.H. 1999. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum. Gene Ther. 10:565–577.

    PubMed  CAS  Google Scholar 

  • Putnam A.J., Mooney D.J. 1996. Tissue engineering using synthetic extracellular matrices. Nat. Med. 2:824–826.

    Article  PubMed  CAS  Google Scholar 

  • Reiser P.J., Kasper C.E., Greaser M.L., Moss R.L. 1988. Functional significance of myosin transitions in single fibers of developing soleus muscle. Am. J. Physiol. 254:C605–C613.

    PubMed  CAS  Google Scholar 

  • Sanderson R.D., Fitch J.M., Linsenmayer T.R., Mayne R. 1986. Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J. Cell Biol. 102:740–747.

    Article  PubMed  CAS  Google Scholar 

  • Schultz E., McCormick K.M. 1994. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123:213–257.

    PubMed  CAS  Google Scholar 

  • Shansky J., Chromiak J., Del Tatto M., Vandenburgh H. 1997. A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cell. Dev. Biol. Anim. 33:659–661.

    CAS  Google Scholar 

  • Shea L.D., Smiley E., Bonadio J., Mooney D.J. 1999. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–555.

    PubMed  CAS  Google Scholar 

  • Swasdison S., Mayne R. 1991. In vitro attachment of skeletal muscle fibers to a collagen gel duplicates the structure of the myotendinous junction. Exp. Cell Res. 193:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Swasdison S., Mayne R. 1992. Formation of highly organized skeletal muscle fibers in vitro: comparison with muscle development in vivo. J. Cell. Sci. 102:643–652.

    PubMed  Google Scholar 

  • Turner D.C. 1986. Cell-cell and cell-matrix interactions in the morphogenesis of skeletal muscle. Dev. Biol. 3:205–224.

    CAS  Google Scholar 

  • van Wachem P.B., van Luyn M.J., da Costa M.L. 1996. Myoblast seeding in a collagen matrix evaluated in vitro. J. Biomed. Mater. Res. 30: 353–360.

    PubMed  Google Scholar 

  • van Wachem P.B., Brouwer L.A., van Luyn M.J. 1999. Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts. Biomaterials 20:419–426.

    PubMed  Google Scholar 

  • Vandenburgh H.H. 1982. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev. Biol. 93:438–443.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh H.H. 1988. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell. Dev. Biol. 27:609–619.

    Google Scholar 

  • Vandenburgh H.H. 1992. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am. J. Physiol. 262 (3 Pt 2):R350–355.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H., Karlisch P. 1989. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell. Dev. Biol. 25:607–616.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H., Kaufman S. 1979. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H., Hatfaludy S., Karlisch P., Shansky J. 1989. Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am. J. Physiol. 256 (3 Pt 1):C674–682.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H., Hatfaludy S., Sohar I., Shansky J. 1990. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am. J. Physiol. 259 (2 Pt 1):C232–240.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H., Swasdison S., Karlisch P. 1991a. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5:2860–2867.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H., Hatfaludy S., Karlisch P., Shansky, J. 1991b. Mechanically induced alterations in cultured skeletal muscle growth. J. Biomech 24(Suppl 1):91–99.

    PubMed  Google Scholar 

  • Vandenburgh H., Del Tatto M., Shansky J., LeMaire J., Chang A., Payumo F., Lee P., Goodyear A., Raven L. 1996. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7:2195–2200.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H., Del Tatto M., Shansky J., Goldstein L., Russell K., Genes N., Chromiak J., Yamada S. 1998. Attenuation of skeletal muscle wasting with recombinant human growth hormone secreted from a tissue-engineered bioartificial muscle. Hum. Gene Ther. 9:2555–2564.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh H., Chromiak J., Shansky J., Del Tatto M., LeMaire J. 1999. Space travel directly induces skeletal muscle atrophy. FASEB J. 13:1031–1038.

    PubMed  CAS  Google Scholar 

  • Walke W., Xiao G., Goldman D. 1996. Identification and characterization of a 47 base pair activitydependant enhancer of the rat nicotinic acetylcholine receptor-subunit promoter. J. Neurosci. 16:3641–3651.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dennis, R.G. (2003). Engineered Skeletal Muscle: Functional Tissues, Organs, and Interfaces. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics