Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCord, J. M., and Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–55.

    CAS  PubMed  Google Scholar 

  2. Sun, Y.-A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K., and Lambeth, J. D. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79–82.

    Google Scholar 

  3. Lambeth, J. D., Cheng, G., Arnold, R. S., and Edens, W. E. 2000. Novel homologs of gp91phox. TIBS 25:459–461.

    CAS  PubMed  Google Scholar 

  4. Edens, W. A., Sharling, L., Cheng, G., Shapira, R., Kinkade, J. M., Edens, H. A., Tang, X., Flaherty, D. B., Benian, G., and Lambeth, J. D. 2001. Tyrosine cross-linking of extracellullar matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91 phox. J. Cell Biol. 154: 879–891.

    Article  CAS  PubMed  Google Scholar 

  5. Sbarra, A. J., and Karnovsky, M. L. 1959. The biochemical basis of phagocytosis. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234: 1355–1368.

    CAS  PubMed  Google Scholar 

  6. Babior, B. M. 1995. The respiratory burst oxidase. Curr. Opin. Hematol. 2: 55–60.

    CAS  PubMed  Google Scholar 

  7. Cheng, G., Cao, Z., Xu, X., Van meir, E. G., and Lambeth, J. D. 2001. Homologs of gp91phox cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 131: 140.

    Google Scholar 

  8. Tauber, A. I., Borregaard, N., Simons, E., and Wright, J. 1983. Chronic Granulomatous Disease: A Syndrome of Phagocytic Oxidase Deficiencies. Medicine 62: 286–309.

    CAS  PubMed  Google Scholar 

  9. Sumimoto, H., Sakamoto, N., Nozaki, M., Sakaki, Y., Takeshige, K., and Minakami, S. 1992. Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem. Biophys. Res. Commun. 186: 1368–1375.

    Article  CAS  PubMed  Google Scholar 

  10. Rotrosen, D., Yeung, C. L., Leto, T. L., Malech, H. L., and Kwong, C. H. 1992. Cytochrome b558: The flavin-binding component of the phagocyte NADPH oxidase. Science 256: 1459–1462.

    CAS  PubMed  Google Scholar 

  11. Segal, A. W., West, L, Wientjes, F., Nugent, J. H. A., Chavan, A. J., Haley, B., Garcia, R. C., Rosen, H., and Scrace, G. 1992. Cytochrome b−245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagoctyes. Biochem. J. 284:781–788.

    CAS  PubMed  Google Scholar 

  12. Yu, L., Quinn, M. T., Cross, A. R., and Dinauer, M. C. 1998. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc. Nat. Acad. Sci. 95: 7993–7998.

    CAS  PubMed  Google Scholar 

  13. Parkos, C. A., Dinauer, M. C., Walker, L. E., Rodger, A. A., Jesaitis, A. J., and Orkin, S. H. 1988. Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil Cytochrome. Proc. Nat. Acad. Sci. 85: 3319–3323.

    CAS  PubMed  Google Scholar 

  14. de Mendez, I., Homayounpour, N., and Leto, T. 1997. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol. Cell. Biol. 17: 2177–2185.

    PubMed  Google Scholar 

  15. Sumimoto, H., Hata, K., Mizuki, K., Ito, T., Kage, Y., Sakaki, Y., Fukumaki, Y., Nakamura, M., and Takeshige, K. 1996. Assembly and activation of the phagocyte NADPH oxidase: Specific Interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase complex. J. Biol. Chem. 36:22152–22158.

    Google Scholar 

  16. Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A. 1983. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation. J. Cell Biol. 97: 52–61.

    Article  CAS  PubMed  Google Scholar 

  17. Borregaard, N., Lollike, K., Kjeldsen, L., Sengelov, H., Bastholm, L., Nielsen, M. H., and Bainton, D. F. 1993. Human neutrophil granules and scretory vesicles. Eur. J. Haematol. 51: 187–198.

    CAS  PubMed  Google Scholar 

  18. Wientjes, F. B., Hsuan, J. J., Totty, N. F., and Segal, A. W. 1993. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem. J. 296: 557–561.

    CAS  PubMed  Google Scholar 

  19. El Benna, J., Faust, L., and Babior, B. 1994. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J. Biol. Chem. 269: 23431–23436.

    PubMed  Google Scholar 

  20. El Benna, J., Dang, P. M-C., Gaudry, M., Fay, M., Morel, F., Hakim, J., and Gougerot-Pocidalo, M. 1997. Phosphorylation of the respiratoiy burst oxidase subunit p67phox during human neutrophil activation. J. Biol. Chem. 272: 17204–17208.

    Article  CAS  PubMed  Google Scholar 

  21. Lambeth, J. D. 2000. Regulation of the phagocyte respiratory burst oxidase by protein interactions. J. Biochem. Mol Biol. 33: 427–439.

    CAS  Google Scholar 

  22. Han, C.-H., Freeman, J. L. R., Lee, T., Motalebi, S. A., and Lambeth, J. D. 1998. Regulation of the neutrophil respiratory burst oxidase: Identification of an activation domain in p67phox. J. Biol. Chem. 273, 16663–16668.

    CAS  PubMed  Google Scholar 

  23. Nisimoto, Y., Motalebi, S., Han, C.-H., and Lambeth, J. D. 1999. The p67phox activation domain regulates electron transfer flow from NADPH to flavin in flavocytochrome b558. J. Biol. Chem. 274: 22999–23005.

    Article  CAS  PubMed  Google Scholar 

  24. Burdon, R. 1995. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18: 775–794.

    Article  CAS  PubMed  Google Scholar 

  25. Meier, B., Cross, A. R., Hancock, J. T., Kaup, F. J., and Jones, T. G. 1991. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. B. J. 275: 241–245.

    CAS  Google Scholar 

  26. Banfi, B., Molinar, G., Maturana, A., Steger, K., Hegedus, B., Demaurex, N., and Krause, K..-H. 2001. A Ca2+-activated NADPH oxidase in testis, spleen and lymph nodes. J. Biol. Chem. 276:37594–37601.

    Article  CAS  PubMed  Google Scholar 

  27. De Deken, X., Wang, D., Many, M. C., Costagliola, S., Libert, F., Vassart, G., Dumont, J. E., and Miot, F. 2000. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275: 23227–23233.

    PubMed  Google Scholar 

  28. Geiszt, M., Kopp, J. B., Varnai, P., and Leto, T. L. 2000. Identification of Renox, an NAD(P)H oxidase in kidney. Proc. Nat. Acad. Sci. 97: 8010–8014.

    CAS  PubMed  Google Scholar 

  29. Shiose, A., Kuroda, J., Tsuruya, K., Hirai, M, Hirakata, H., Naito, S., Hattori, M., Sakaki, Y., and Sumimoto, H. 2001. A novel superoxide-producing NAD(P)H oxidase in kidney. J. Biol. Chem. 276, 1417–1423.

    Article  CAS  PubMed  Google Scholar 

  30. Wallach, T. M., and Segal, A. W. 1997. Analysis of glycosylation sites on gp91phox, the flavocytochrome of the NADPH oxidase, by site-directed mutagenesis and translation in vitro. Biochem. J. 321: 583–585.

    CAS  PubMed  Google Scholar 

  31. Biberstine-Kinkade, B., Yu, L., and Dinauer, M. 1999. Mutagenesis of an arginine-and lysine-rich domain in the gp91phox subunit of the phagocyte NADPH-oxidase flavocytochrome b558J. Biol. Chem. 274: 10451–10457.

    Article  CAS  PubMed  Google Scholar 

  32. Bibersine-Kinkade, K. J., DeLeo, F. R., Epstein, R. I., LeRoy, B. A., Bauseef, W. M., and Dinauer, M. C. 2001. Heme-ligating histidines in flavocytochrome b558. Identification of specific histidines in gp91phoxJ. Biol Chem. 276: 31105–31112.

    Google Scholar 

  33. Dupuy, C., Pomerance, M., Ohayon, R., Noel-Hudson, M.-S., Deme, D., Chaaraoui, M., Francon, J., and Virion, A. 2000. Thyroid oxidase (THOX2) gene expression in the rat thyroid eel line FRTL-5. Biochem. Biophys. Res. Commun. 277: 287–292.

    Article  CAS  PubMed  Google Scholar 

  34. Dupuy, C., Ohayon, R., Valent, A., Noe-Hudson, M., Dee, D., and Virion, A. 1999. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J. Biol. Chem. 274: 37265–37269.

    CAS  PubMed  Google Scholar 

  35. Kawahara, T., Teshima, S., Oka, A., Sugiyama, T., Kishi, K., and Rokutan, K. 2001. Type 1 Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect. Immun. 69: 4382–9.

    Article  CAS  PubMed  Google Scholar 

  36. Arbiser, J. L., Petros, J. A., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., Cohen, C., Moses, M., Kilroy, S., Arnold, R. S., and Lambeth, J. D. 2002. Reactive oxygen generated by Nox 1 triggers the angiogenic switch. Proc. Nat. Acad. Sci. 99: 715–720.

    CAS  PubMed  Google Scholar 

  37. Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., Parthasarathy, S., Petros, J. A., and Lambeth, J. D. 2001. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox 1. Proc. Nat. Acad. Sci. 98: 5550–5555.

    CAS  PubMed  Google Scholar 

  38. Lee, S.-R., Kwon, K.-S., Kim, S.-R., and Rhee, S. G. 1998. Reversible inactivation of protein tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273: 15366–15372.

    CAS  PubMed  Google Scholar 

  39. Barrett, W. C., DeGnore, J. P., Keng, Y-F., Zhang, Z.-Y., Yim, M. B., and Chock, P. B. 1999. Role of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem. 274: 34543–34546.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, K., Amstad, K., Cerutti, P., and Baeuerle, P. 1995. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kB. Chem. Biol. 2: 13–22.

    Article  CAS  PubMed  Google Scholar 

  41. Caillou, B., Dupuy, C., LaCroix, L., Nocera, M., Talbot, M., Ohayon, R., Deme, D., Bidart, J.-M., Schlumberger, M., and Virion, A. 2001. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (Thox1, LNOX, Duox) genes and proteins in human thyroid tissues. J. Clin. Endocrin. Metabol. 86: 3351–3358.

    CAS  Google Scholar 

  42. Heinecke, J. W., and Shapiro, B. M. 1990. Superoxide peroxidase activity of ovoperoxidase, the cross-linking enzyme of fertilization. J. Biol. Chem. 265: 9241–6.

    CAS  PubMed  Google Scholar 

  43. Szatrowski, T., and Nathan, C. 1991. Production of large amounts of hydrogen peroxide by humor tumor cells. Cancer Res. 51: 794–798.

    CAS  PubMed  Google Scholar 

  44. Sundaresan, M., Yu, Z.-X., Ferrans, V. J., Irani, K., and Finkel, T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299.

    CAS  PubMed  Google Scholar 

  45. Sundaresan, M., Yu, Z.-X., Ferrans, V. J., Sulciner, D. J., Gutkind, J. S., Irani, K., Goldschmidt-Clermont, P. J., and Finkel, T. 1996. Regulation of reactive-oxygen-species generation in fibroblasts by Rac 1. Biochem J. 318: 379–382.

    CAS  PubMed  Google Scholar 

  46. Irani, K., Xia, Y., Zweier, J., Solicit, S., Der, C., Rearon, E., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. 1997. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652.

    Article  CAS  PubMed  Google Scholar 

  47. Griendling, K. K., and Alexander, R. W. 1997. Oxidative stress and cardiovascular disease. Circulation 96: 3264–3265.

    CAS  PubMed  Google Scholar 

  48. Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. 2000. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res 86: 494–501.

    CAS  PubMed  Google Scholar 

  49. Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N., and Griendling, K. 1996. p22phox is a critical component of the superoxide-generating NADPH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271: 23317–23321.

    CAS  PubMed  Google Scholar 

  50. Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D., and Griendling, K. K. 2001. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88: 888–94.

    CAS  PubMed  Google Scholar 

  51. Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M., and Schmidt, H. H. 2001. Upregulation of the vascular NAD(P)H-oxidase isoforms Noxl and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radi. Bio. l Med. 31: 1456–64.

    CAS  Google Scholar 

  52. Katsuyama, M., Fan, C., and Yabe-Nishimura, C. 2002. NADPH oxidase is involved in prostaglandin F2α-induced hypertrophy of vascular smooth muscle cells: induction of NOX1 by PGF2α. J. Biol. Chem. 277: 13438–42.

    Article  CAS  PubMed  Google Scholar 

  53. Szocs, K., Lassegue, B., Sorescu, D., Hilenski, L. L., Valppu, L., Couse, T. L., Wilcox, J. N., Quinn, M. T., Lambeth, J. D., and Griendling, K. K. 2002. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler, Thromb, Vas,c Biol. 22: 21–7.

    CAS  Google Scholar 

  54. Griendling, K. K., Sorescu, D., Lassegue, B., and Ushio-Fukai, M. 2000. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscle.r Thromb. Vasc. Biol. 20: 2175–83.

    CAS  Google Scholar 

  55. Griendling, K. K., and Ushio-Fukai, M. 2000. Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept. 91: 21–7.

    Article  CAS  PubMed  Google Scholar 

  56. Shringarpure, R., and Davies, K. J. 2002. Protein turnover by the proteasome in aging and disease(1,2). Free Radic. Biol. Med. 32: 1084–9.

    Article  CAS  PubMed  Google Scholar 

  57. Butterfield, D. A., and Lauderback, C. M. 2002. Lipid peroxidalion and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress(l,2). Free Radic. Bio. Med. 32: 1050–60.

    CAS  Google Scholar 

  58. Mattson, M. P. 2002. Involvement of superoxide in pathogenic action of mutations that cause Alzheimer’s disease. Meth. Enzymol. 352: 455–74.

    CAS  PubMed  Google Scholar 

  59. Laight, D. W., Carrier, M. J., and Anggard, E. E. 2000. Antioxidants, diabetes and endothelial dysfunction. Cardiovasc. Res. 47: 457–64.

    Article  CAS  PubMed  Google Scholar 

  60. Laight, D. W., Desai, K. M., Anggard, E. E., and Carrier, M. J. 2000. Endothelial dysfunction accompanies a pro-oxidant, pro-diabetic challenge in the insulin resistant, obese Zucker rat in vivo. Eur. J. Pharmacol. 402: 95–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Arnold, R.S., Lambeth, J.D. (2003). The Nox Enzymes and the Regulated Generation of Reactive Oxygen Species. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics