Skip to main content

Cancer and Cancer Metastasis-Related Genes

  • Chapter
  • 188 Accesses

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 1))

Abstract

Neoplastic disease follows the acquisition of mutations within genes, a process that may span many years. When these mutations occur in proto-oncogenes that normally encode for proteins which control the cell cycle, DNA repair and transcriptional events, the result is deregulation of cellular proliferation and other intracellular pathways, ultimately leading to tumour development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellermann V and Bang O (1908). Experimentel leukamie bei huhnern. Zentralbl Bakteriol Abt I 46:595

    Google Scholar 

  2. Rous P (1911). A sarcoma of the foul transmittable by an agent seperable from the tumour cells. J. Exp. Med. 13:397

    PubMed  Google Scholar 

  3. Gross L (1951). Pathogenic properties and ‘vertical’ transmission of the mouse leukemia agent. Proc. Soc. Exp. Biol. Med. 62:523

    Google Scholar 

  4. Gross L (1953). A filterable agent recoverable from Akr leukemia extracts causing salivary gland carcinomas in C3H mice. Proc Soc, Exp. Biol. Med. 83:414

    CAS  Google Scholar 

  5. Steward SE (1953). Leukemia in mice produced by a filterable agent present in AKR leukemic tissues with notes on sarcoma produced by the same agent. Anat Rev. 117:532

    Google Scholar 

  6. Varmus H (1989). An historical view of oncogenes. In Oncogenes and the molecular origins of cancer (Weinberg RA Ed. Old Spring Harbour Laboratory Press pp3–44.

    Google Scholar 

  7. Heim S and Mietleman F. (1989). Primary chromosome abnormalities in human cancer. Adv. Cancer Res. 52:1

    PubMed  CAS  Google Scholar 

  8. Fidler IJ and Hart IR (1982). Biological diversity in metastatic neoplasms–origins and implications. Science. 217:998

    PubMed  CAS  Google Scholar 

  9. Weinberg RA (1989). Oncogenes, antioncogenes and the molecular basis of multistep carcinogenesis. Cancer Res. 49:3713

    PubMed  CAS  Google Scholar 

  10. Barbacid M (1987). Ras genes. Ann. Rev. Biochem. 56:779

    PubMed  CAS  Google Scholar 

  11. Buday L and Downward J (1993). Epidermal growth factor regulates p21 Ras through the formation of a complex of receptor, grb2 adapter proteins and sos nucelotide exchange factor. Cell 73:611

    Article  PubMed  CAS  Google Scholar 

  12. Howe LR, Leevers SJ, Gomez N et al (1992). Activation of the MAP kinase pathway by the proteins kinase Raf. Cell. 71:335

    Article  PubMed  CAS  Google Scholar 

  13. Fujita J, Srivastava SK, Kraus MH, Rhim JS, Tronick SR and Aaronson SA. (1985) Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors. Proc Natl Acad Sci USA. 82:3849–3853

    PubMed  CAS  Google Scholar 

  14. Sekiya T, Fushimi M, Hori H, Hirohashi S, Nishimura S and Sugimura T. (1984) Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. Proc Natl Acad Sci USA. 81:4771–4775

    PubMed  CAS  Google Scholar 

  15. Schwab M. (1998). Amplification of oncogenes in human cancer cells. Bioessays. 20:473–479

    Article  PubMed  CAS  Google Scholar 

  16. Fortin A, Guerry M, Guerry R, Talbot M, Parise O, Schwaab G, Bosq J

    Google Scholar 

  17. Bea S, Ribas M, Hernandez JM, Bosch F, Pinyol M, Hernandez L, Garcia Becker K-F, Atkinson M, Reich U, Amada Y and Fukayama M (1994). Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54:3011–20.

    Google Scholar 

  18. Pardee AB (1989). Gl events and regulation of cell proliferation. Science 246:603

    PubMed  CAS  Google Scholar 

  19. Simanis V and Nurse P (1986). The cell cycle control gene and cdc2+ of fission yeast encodes a proteins kinase potentially regulated by phosphorylation. Cell. 45:261

    Article  PubMed  CAS  Google Scholar 

  20. de Jong JS, van Diest PJ, Michalides RJ and Baak JP. (1999). Concerted overexpression of the genes encoding p21 and cyclin D1 is associated with growth inhibition and differentiation in various carcinomas. Mol Path. 52:78–83.

    Google Scholar 

  21. Ishida F, Kitano K., Ichikawa N, Ito T, Kohara Y, Taniguchi T, Motokura T, Kiyosawa K. (1999). Hairy cell leukemia with translocation (11;20)(ql3;qll) and overexpression of cyclin Dl. Leukemia Res. 23:763–765

    Article  CAS  Google Scholar 

  22. Vos CB, Ter Haar NT, Peterse JL, Cornelisse CJ and van de Vijver MJ. (1999). Cyclin Dl gene amplification and overexpression are present in ductal carcinoma in situ of the breast. J, Path. 187:279–284.

    CAS  Google Scholar 

  23. Greenberg AH, Egen SE and Wright JA (1989). Oncogenes and metastatic progression. Invasion Metastasis. 9:360

    PubMed  CAS  Google Scholar 

  24. McCarthy JB, Skubitz AP, Lida J, Mooradian DL, Wilke MS and Furcht LT (1991). Tumor cell adhesive mechanisms and their relationship to metastasis. Sem. Cancer Biol. 2:155–167.

    CAS  Google Scholar 

  25. Takeichi M (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–5.

    PubMed  CAS  Google Scholar 

  26. Takeichi M (1993). Cadherins in cancer: implications for invasion and metastasis. Curr. Opinion. Cell Biol. 5:806–811.

    Article  PubMed  CAS  Google Scholar 

  27. Takeichi M. (1990). Cadherins: a molecular family improtant in selective cell-cell adhesion. Ann. Rev. Biochem. 59:237.

    PubMed  CAS  Google Scholar 

  28. Jiang WG (1996). E-cadherin and its associated proetin catenins, cancer invasion and metastasis. Br. J. Surg. 83:437–446.

    PubMed  CAS  Google Scholar 

  29. Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C and van Roy F. (1995). E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 14:6107–6115.

    PubMed  CAS  Google Scholar 

  30. Chen WC and Obrink B (1991). Cell cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behaviour of L-cells. J. Cell Biol. 114:319–327.

    Article  PubMed  CAS  Google Scholar 

  31. Nagafuchi A, Shirayoshi Y, Yasuda K and Takeichi M (1987). Transformation of cell-adhesion property by exogenously introduced E-cadherin cDNA. Cell Structure Function 12:628–633.

    Google Scholar 

  32. Nagafuchi A and Takeichi M (1988). Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7:3679–3684.

    PubMed  CAS  Google Scholar 

  33. Nagafuchi A, Ishihara S, and Tsukita S (1994). The role of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha-catenin fusion molucules. J. Cell Biol. 127:235–245.

    Article  PubMed  CAS  Google Scholar 

  34. Ozawa M, Baribault H and Kemler R (1990a). The cyoplasmic domain of the cell adhesion molecule, uvomorulin associates with three independant proteins structurally related in different species. EMBO J. 8:1711–1717.

    Google Scholar 

  35. Ozawa M, Ringwald M and Kemler R (1990b). Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. USA. 87:4246–4250.

    PubMed  CAS  Google Scholar 

  36. Miyaki M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Konishi M and Takeichi M (1995). Increased cell-substratum adhesion, and decreased gelatinase secretion and cell growth, induced by E-cadherin transfection of human colon carcinoma cells. Oncogene 11:2547–2552.

    PubMed  CAS  Google Scholar 

  37. Barth AIM, Pollack AL, Altschuler Y, Mostov KE and Nelson WJ (1997). NH2-terminal deletion of ß-catenin results in stable colocalization of mutant ß-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J. Cell Biol. 136: 693–706.

    Article  PubMed  CAS  Google Scholar 

  38. Hulsken J, Birchmeier W and Behrens J (1994). E-cadherin and APC compete for the interaction with ß-catenin and the cytoskeleton. J. Cell Biol. 127:2061–2069.

    Article  PubMed  CAS  Google Scholar 

  39. Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P Association of the ape gene-product with beta-catenin. Science, 1993, 262, 1731–1734

    PubMed  CAS  Google Scholar 

  40. Papkoff J, Rubinfeld B, Schryver B and Polakis P (1996). WNT-1 regulates free pools of catenins and stabilizes apc-catenin complexes. Mol. Cell Biol 16:2128–2134.

    PubMed  CAS  Google Scholar 

  41. Papkoff J and Schryver B (1990). Secreted wnt-1 protein is associated with the cell surface. Mol. Cell. Biol. 10:2723–2730.

    PubMed  CAS  Google Scholar 

  42. Moon RT, Brown JD, YangSnyder JA and Miller JR (1997). Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88:725–728.

    Article  PubMed  CAS  Google Scholar 

  43. Hinck L, Nathke IS, Papkoff J and Nelson WJ (1994). Beta-catenin — a common target for the regulation of cell-adhesion by wnt-1 and src signaling pathways. Trends Biomed. Sci. 19:538–542.

    CAS  Google Scholar 

  44. Hinck L, Nelson WJ and Papkoff J (1994). Wnt-1 modulates cell-cell adhesion in mammalian-cells by stabilizing beta-catenin binding to the cell-adhesion protein cadherin. J. Cell Biol. 124: 729–741.

    Article  PubMed  CAS  Google Scholar 

  45. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O and Clevers H (1996). XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399.

    Article  PubMed  CAS  Google Scholar 

  46. Brunner E, Peter O, Schweizer L and Basler K (1997). Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385: 829–833.

    Article  PubMed  CAS  Google Scholar 

  47. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B and Clevers H (1997). Constitutive transcriptional activation by a ß-catenin-Tcf complex in APC-/- colo carcinoma. Science 275:1784–1787.

    Article  PubMed  CAS  Google Scholar 

  48. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D and Birchmeier W (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113:173–185.

    Article  PubMed  CAS  Google Scholar 

  49. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K and Birchmeier W (1991). E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 51:6328–6237.

    PubMed  CAS  Google Scholar 

  50. Bongiorno PF, AI-Kasspooles M, Lee SW, Rachwal WJ, Moore JH, Whyte RI, Orringer MB and Beer DG. (1995). E-cadherin expression in primary and metastatic thoracic neoplasms and in Barrett’s oesophagus. Br. J. Cancer 71: 166–172.

    PubMed  CAS  Google Scholar 

  51. Bringuier PP, Umbas R, Schaafsma HE, Karthaus HFM, Debruyne FMJ and Schalken JA (1993). Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res. 53: 3241–3245.

    PubMed  CAS  Google Scholar 

  52. Otto T, Rembrink K, Goepel M, Meyer-Schwickerath M and Rubben H (1993). E-cadherin: a marker for differentiation and invasiveness in prostatic carcinoma. Urol. Res. 21:359–362.

    Article  PubMed  CAS  Google Scholar 

  53. Pignatelli M, Anasri TW, Gunter P, Liu D, Hirano S, Takeichi M, Kloppel G and Lemoine NR (1994). Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J. Pathol. 174, 243–248.

    Article  PubMed  CAS  Google Scholar 

  54. Becker KF, Atkinson MJ, Reich U, Huang HH, Nekarda H, Siewert JR and Hotter H. (1993). Exon skipping in the E-cadherin gene transcript in metastatic human gastric carcinomas. Human Mol. Genetics 2:803–804.

    CAS  Google Scholar 

  55. Becker I, Nekarda H, Siewert J and Hofler H (1994). E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54:3845–3852.

    PubMed  CAS  Google Scholar 

  56. Oda T, Kanai Y, Shimoyama Y, Nagafuchi A, Tsukita S and Hirohashi S (1993). Cloning of the human alpha-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem. Biophys. Res. Commun. 193:897–904.

    Article  PubMed  CAS  Google Scholar 

  57. Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M and Kato I (1994). Soluble E-cadherin fragments increased in circulation of cancer patients. Br. J. Cancer 69:580–585.

    PubMed  CAS  Google Scholar 

  58. Katayama M, Hirai S, Yasumoto M, Nishikawa K, Nagata S, Otsuka M, Kamihagi K, and Kato I (1995). Soluble fragments of E-cadherin cell adhesion moleucle increase in urinary excretion of cancer patients, potentially indicating its shedding from epithelial tumor cells. Int. J. Oncol. 5:1049–1057.

    Google Scholar 

  59. Banks RE, Porter WH, Whelan P, Smith PH, and Selby PJ (1995). Soluble forms of the adhesion molecule E-cadherin in urine. J. Clin. Pathol. 48:179–180.

    PubMed  CAS  Google Scholar 

  60. Brady-Kalnay SM, Rimm DL and Tonks NK (1995). Receptor protein ktyrosine phosphatase PTPu associates with cadherins and catenins in vivo. J. Cell Biol. 130: 977–986.

    Article  PubMed  CAS  Google Scholar 

  61. Mattijssen V, Peters HM, Schalkwijk L, Manni JJ, van Hof-Grootenboer B. de Mulder PH and Ruiter DJ (1993). E-cadherin expression in head and neck squamous-cell carcinoma is associated with clinical outcome. Int. J. Cancer. 55:580–585.

    PubMed  CAS  Google Scholar 

  62. Mayer B, Johnson JP, Leitl F, Jauch KW, Heiss MM, Schildberg FW, Birchmeier W and Funke I (1993). E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res. 53:1690–1695.

    PubMed  CAS  Google Scholar 

  63. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, Debruyne FM and Schalken JA (1994). Decreased E-cadherin expression is associated with poorprognosis in patients with prostate cancer. Cancer Res. 54:3929–3933.

    PubMed  CAS  Google Scholar 

  64. Umbas R, Schlaken J, Aalders T, Carter B, Karthaus H, Schaafsma H, Debruyne F and Isaacs W (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52:5104–5109.

    PubMed  CAS  Google Scholar 

  65. Buck CA (1992). Immunoglobulin superfamily: structure, function and relationship to other receptor molecules. Sem. Cell Biol. 3:179–188.

    Article  CAS  Google Scholar 

  66. Fearon JM, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G and Kinzler KW (1990). Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56.

    PubMed  CAS  Google Scholar 

  67. Williams AF and Barclay AN (1988). The immunoglobulin superfamily — domains for cell surface recognition. Ann. Rev. Immunol. 6:381–405.

    CAS  Google Scholar 

  68. Kainz C, Tempfer C, Kohlberger P, Janisch S, Koelbl H, Gitsch G and Breitenecker G. (1996). Immunohistochemical detection of adhesion molecule CD44 splice variants in lymph node metastases of cervical cancer. Int. J. Cancer 69:170–173.

    Article  PubMed  CAS  Google Scholar 

  69. Klausner RD and Samelson LE (1991). T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell 64:875–878.

    Article  PubMed  CAS  Google Scholar 

  70. Hansen NL, Ralfkiaer E, Hou-Jensen K, Thomsen K, Drzewiecki KT, Rothlein R and Vejlsgaard GL (1991). Expression of intercellular adhesion molecule-1 (ICAM-1) in benign naevi and malignant melanomas. Acta Dermato-Venereologica 71:48–51.

    PubMed  CAS  Google Scholar 

  71. Kawaguchi S, Kikuchi K, Ishii S, Takada Y, Kobayashi S and Uede T (1992). VLA-4 molecules on tumour cells initiate an adhesive interaction with VCAM-1 molecules on endothelial cell surface. Jp. Jn. Cancer Res. 83:1304–1316.

    CAS  Google Scholar 

  72. Taichman DB, Cybulsky MI, Djaffar I, Longnecker BM, Teixido J, Rice GE, Aruffo A and Bevilacqua MP (1991). Tumoue cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-l. Cell Regulation 2:347–355.

    PubMed  CAS  Google Scholar 

  73. Rucklidge GJ, Edvardsen K and Bock E (1994). Cell-adhesion molecules and metalloproteinases: a linked role in tumour cell invasiveness. Biochem. Soc. Trans. 22:63–68

    PubMed  CAS  Google Scholar 

  74. Krause T and Turner GA. (1999) Are selectins involved in metastasis?. Clin Exp. Met 17:183–192

    Article  CAS  Google Scholar 

  75. Dejana E, Martin-Padura I, Lauri D, Bernasconi S, Bani MR, Garofalo A, Giavazzi R, Magnani J, Mantovani A and Menard S (1992). Endothelial leukocyte adhesion molecule-1-dependent adhesion of colon carcinoma cells to vascular endothelium is inhibited by an antibody to Lewis fucosylated type I carbohydrate chain. Lab. Invest. 66:324–330.

    PubMed  CAS  Google Scholar 

  76. Majuri ML, Mattila P and Renkonen R (1992). Recombinant E-selectin protein mediates tumour cell adhesion via sialyl-Lex and sialyl-Lea Biochim. Biophys. Res. Commun. 182:1376–1382.

    Article  CAS  Google Scholar 

  77. Ruoslahti E and Pierschbacher MD (1987). New perspectives in cell adhesion: RGD and integrins. Science 238:491–497.

    PubMed  CAS  Google Scholar 

  78. Hynes RO (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  79. Springer TA (1990). Adhesion receptors of the immune system. Nature 346:425–434.

    Article  PubMed  CAS  Google Scholar 

  80. Schwartz MA (1993). Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J. Cell Biol. 120:1003–1010.

    Article  PubMed  CAS  Google Scholar 

  81. Schwartz MA, Ingber DE, Lawrence M, Springer TA and Lechene C (1991). Multiple integrins share the ability to induce elevation of intracellular pH. Exp. Cell Res. 195:533–535.

    Article  PubMed  CAS  Google Scholar 

  82. Guan JL and Shalloway D (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692.

    Article  PubMed  CAS  Google Scholar 

  83. Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT and Brugge JS (1992). Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol. 119:905–912.

    Article  PubMed  CAS  Google Scholar 

  84. Hanks SK, Calalb MB, Harper MC and Patel SK (1992). Focal adhesion protein tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl. Acad. Sci. USA. 89:8487–8491.

    PubMed  CAS  Google Scholar 

  85. Dedhar S and Saulnier R (1990). Alterations in integrin receptro expression on chemically transformed human cells: specific enhancement of collagen and laminin receptor complexes. J. Cell. Biol. 110:481–489.

    PubMed  CAS  Google Scholar 

  86. Giancotti FG and Mainiero F (1994). Integrin-mediated adhesion and signalling in tumourogenesis. Biochem. Biophys. Acta. 1198:47–64.

    PubMed  CAS  Google Scholar 

  87. Stallmach A, von Lampe B, Orzechowski HD, Matthes H and Riecken EO (1994). Increased fibronectin-receptor expression in coloncarcinoma-derived HT 29 cells decreases tumorigenicity in nude mice. Gastroenterology 106:19–27.

    PubMed  CAS  Google Scholar 

  88. Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M and Buck CA (1990). Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 50: 6757–6764.

    PubMed  CAS  Google Scholar 

  89. Agrez MV, Bates RC, Mitchell D, Wilson N, Ferguson N, Anseline P and Sheppard D (1996). Multiplicity of fibronectin-binding alpha V integrin receptors in colorectal cancer. Br. J. Cancer 73:887–892.

    PubMed  CAS  Google Scholar 

  90. Humphries M, Olden K and Yamada K (1986). A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233:467–470.

    PubMed  CAS  Google Scholar 

  91. Tanabe KK and Saya H. (1994). The CD44 adhesion molecule and metastasis. Crit. Rev. Oncogenes 5:201–212

    CAS  Google Scholar 

  92. Horst E, Meijer CJ, Radaskiewicz T, van Dongen JJ, Pieters R, Figdor CG, Hooftman A and Pals ST (1990). Expression of a human homing receptor (CD44) in lymphoid malignancies and related stages of lymphoid development. Leukemia 4:383–389.

    PubMed  CAS  Google Scholar 

  93. Yokota A, Ishii G, Sugaya Y, Nishimura M, Saito Y and Harigaya K. (1998). Expression of exon v6-containing CD44 isoforms is related to poor prognosis of acute myelocytic leukemia. Hematol Oncol 16:131–141

    Article  PubMed  CAS  Google Scholar 

  94. Kainz C, Tempfer C, Kohlberger P, Janisch S, Koelbl H, Gitsch G and Breitenecker G. (1996).Immunohistochemical detection of adhesion molecule CD44 splice variants in lymph node metastases of cervical cancer. Int.J. Cancer 69:170–173.

    Article  PubMed  CAS  Google Scholar 

  95. Orzechowski HD, Beckenbach C, Herbst H, Stolzel U, Riecken EO and Stallmach A (1995). Expression of CD44v6 is associated with cellular dysplasia in colorectal epithelial cells. Eur. J. Cancer 31A:2073–2079.

    PubMed  CAS  Google Scholar 

  96. Culty, M, Nguyen HA and Underbill CB (1992). The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J. Cell Biol. 116:1055–1062.

    Article  PubMed  CAS  Google Scholar 

  97. Herrera-Gayol A and Jothy S. (1999). CD44 modulates Hs578T human breast cancer cell adhesion, migration, and invasiveness. Exp. Mol. Path. 66:99–108

    CAS  Google Scholar 

  98. Ioachim E, Goussia A and Agnantis NJ (1999).Glycoprotein CD44 expression in colorectal neoplasms. An immunohistochemical study including correlation with cathepsin D, extracellular matrix components, p53, Rb, bcl-2, c-erbB-2, EGFR and proliferation indices. Virchows Archiv 434:45–50

    Article  PubMed  CAS  Google Scholar 

  99. Merzak A, Koocheckpour S and Pilkington GJ. (1994). CD44 mediateshuman glioma cell adhesion and invasion in vitro. Cancer Res. 54:3988–3992

    PubMed  CAS  Google Scholar 

  100. Dommann SN, Ziegler T, Dommann-Schener CC, Meyer J, Panizzon R and Burg G. (1995). CD44v6 is a marker for systemic spread in cutaneous T-cell lymphomas. A comparative study between nodal and cutaneous lymphomas.J. Cutaneous Path. 22:407–412

    CAS  Google Scholar 

  101. Terpe HJ, Koopmann R, Imhof BA and Gunthert U (1994).Expression of integrins and CD44 isoforms in non-Hodgkin’s lymphomas: CD44 variant isoforms are preferentially expressed in high-grade malignant lymphomas. J. Path. 174:89–100

    PubMed  CAS  Google Scholar 

  102. Domenech N, Henderson RA, Finn OJ Identification of an hla-al 1-restricted epitope from the tandem repeat domain of the epithelial tumor-antigen mucin. J Immunol, 1995, 55, 4766–4774

    Google Scholar 

  103. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E and Seki M (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65.

    Article  PubMed  CAS  Google Scholar 

  104. Cao J, Sato H, Takino T and Seki M (1995). The C-terminal region of membrane-type matrix metalloproteinase is a functional transmembrane domain required for progelatinase activation. J. Biol. Chem. 270: 801–805.

    PubMed  CAS  Google Scholar 

  105. Van Wart HE and Birkedal-Hansen H (1990). The cycteine switch:a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87:5578–5582.

    PubMed  Google Scholar 

  106. Stetler-Stevenson WG, Aznavoorian S and Liotta LA (1993). Tumour cell interactions with the extracellular matrix during invasion and metastasis. Annu.Rev. Cell Biol. 93:541–573.

    Google Scholar 

  107. Birkedal-Hansen, H (1995). Proteolytic remodeling of the extracellular matrix. Curr Opin. Cell Biol. 7: 728–735.

    Article  PubMed  CAS  Google Scholar 

  108. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N and Duffy MJ. (1999). High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patientswith breastcancer. Int. J. Cancer 84:44–48

    Article  PubMed  CAS  Google Scholar 

  109. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chernard MP, Rio MC and Chambon P (1990). A novel metalloproteinase gene specifically expressed in stromal cells of breast cancer. Nature 348: 699–704.

    Article  PubMed  CAS  Google Scholar 

  110. Talvensaari-Mattila A, Paakko P, Hoyhtya M, Blanco-Sequeiros G and Turpeenniemi-Hujanen T. (1998). Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83:1153–1162

    Article  PubMed  CAS  Google Scholar 

  111. Yamamoto H, Itoh F, Hinoda Y, Senota A, Yoshimoyo M, Nakamura H, Imai K and Yachi A (1994). Expression of matrilysin mRNA in colorectal adenomas and its induction by truncated fibronectin. Biochem. Biophys. Res. Comm. 201:657–664.

    Article  PubMed  CAS  Google Scholar 

  112. Canete-Soler R, Lizky L, Lubensky I and Muschel RJ (1994). Localization of the 92kDa gelatinase mRNA in squamous cell and adenocarcenoma of the lung using in situ hybridization. Am. J. Path. 144: 518–527.

    PubMed  CAS  Google Scholar 

  113. Torzewski M, Sarbia M, Verreet P, Dutkowski P, Heep H, Willers R and Gabbert HE. (1997). Prognostic significance of urokinase-type plasminogen activator expression in squamous cellcarcinomas of the esophagus. Clin. CancerRes. 1:1079–1087

    Google Scholar 

  114. Grondahl-Hansen J, Peters HA, van Putten WL, Look MP, Pappot H, Ronne E, Dano K, Klijn JG, Brunner N and Foekens JA. (1995). Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin. Cancer

    Google Scholar 

  115. Blasi F (1993). Molecular mechanisms of protease-mediated tumor invasiveness. J. Surg. Oncol. 3:21–3

    CAS  Google Scholar 

  116. Ghiso JA, Alonso DF, Farias EF, Gomez DE and de Kier Joffe EB (1999). Deregulation of the signalling pathways controlling urokinase production. Its relationship with theinvasive phenotype. Eur. J. Biochem. 263:295–304

    CAS  Google Scholar 

  117. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y and Imai K. (1999). Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut. 45:252–258

    Article  PubMed  CAS  Google Scholar 

  118. Kim TS and Kim YB. (1999). Correlation between expression of matrix metalloproteinase-2(MMP-2), and matrix metalloproteinase-9(MMP-9) and angiogenesis in colorectal adenocarcinoma. J. Korean Med Sci. 14:263–270

    PubMed  CAS  Google Scholar 

  119. Zucker S, Hymowitz M, Conner C, Zarrabi HM, Hurewitz AN, Matrisian L

    Google Scholar 

  120. Garbisa S, Pozzatti R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G and Liotta LA (1987). Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-Ela. Cancer Res. 47:1523–1528.

    PubMed  CAS  Google Scholar 

  121. Ura H, Bonfil RD, Reich R, Reddel R, Pfeifer A, Harris CC and Klein-Szanto AJ (1989).Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res. 49:4615–4621.

    PubMed  CAS  Google Scholar 

  122. Wang LM, Patel U, Ghosh L, Chen HC, Banerjee S. Mutation in the nm23 gene is associated with metastasis in colorectal-cancer. Cancer Res, 1993, 53, 717–720

    PubMed  CAS  Google Scholar 

  123. Fisher C, Gilbertson-Beadling S, Powers EA, Petzold G, Poorman R and Mitchell MA (1994). Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol. 162:499–510.

    Article  PubMed  CAS  Google Scholar 

  124. Hayakawa T, Fujimoto N, Ward RY, Iwata K. Interaction between progelatinase-a and TIMP-2. Ann NY Acad Sci, 1994, 732, 389–391

    PubMed  CAS  Google Scholar 

  125. Ogata Y, Itoh Y and Nagase H. (1995). Steps involved in activation of the pro-matrix metalloproteinase 9(progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J. Biol. Chem. 270): 18506–18511.

    PubMed  CAS  Google Scholar 

  126. Blavier L, Henriet P, Imren S and Declerck YA.(1999). Tissue inhibitors of matrix metalloproteinases in cancer. Ann. New York Acad Sci. 878:108–119.

    CAS  Google Scholar 

  127. Baker AH, Zaltsman AB, George SJ and Newby AC. (1998). Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J. Clin. Invest. 101:1478–1487.

    Article  PubMed  CAS  Google Scholar 

  128. Alonso DF, Skilton G, De Lorenzo MS, Scursoni AM, Yoshiji H and Gomez DE. (1998) Histopathological findings in a highly invasive mouse mammary carcinoma transfected with human tissue inhibitor of metalloproteinases-1.Oncol Rep. 5:1083–1087

    PubMed  CAS  Google Scholar 

  129. Imren S, Kohn DB, Shimada H, Blavier L and DeClerck YA. (1996). Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 56:2891–2895.

    PubMed  CAS  Google Scholar 

  130. Postel EH. (1998). NM23-NDP kinase. Int. J. Biochem. Cell Biol. 30:1291–1295

    Article  PubMed  CAS  Google Scholar 

  131. Russell RL, Pedersen AN, Kantor J, Geisinger K, Long R, Zbieranski N, Townsend A, Shelton B, Brunner N and Kute TE. (1998). Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br. J. Cancer. 78:710–717

    PubMed  CAS  Google Scholar 

  132. Leone A, Flatow U, King CR, Sandeen MA, Margulies IMK, Liotta LA, Steeg PS. (1991). Reduced tumor-incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma-cells. Cell 65:25–35

    Article  PubMed  CAS  Google Scholar 

  133. Leone A, Flatow U, Vanhoutte K, Steeg PS. (1993) Transfection of human nm23-Hl into the human MDA MB 435 breast-carcinoma cell-line–effects on tumor metastatic potential, colonization and enzymatic-activity. Oncogene 8:2325–2333

    PubMed  CAS  Google Scholar 

  134. Kantor JD, Mccormick B, Steeg PS, Zetter BR (1993). Inhibition of cell motility after nm23 transfection of human and murine tumor-cells. Cancer Res 53:1971–1973

    PubMed  CAS  Google Scholar 

  135. Hsu S, Huang F, Ossowski L, Friedman E (1995). Colon-carcinoma cells with inactive nm23 show increased motility and response to motility factors. Carcinogenesis 16:2259–2262

    PubMed  CAS  Google Scholar 

  136. Nakamura T, Tabuchi Y and Ohno M. (1998). Relations of nm23 expression to clinicopathologic variables and proliferative activity of gastric cancer lesions. Cancer Detec. Prevent. 22:246–250

    CAS  Google Scholar 

  137. Muller W, Schneiders A, Hommel G and Gabbert HE. (1998). Expression of nm23 in gastric carcinoma: association with tumor progression and poor prognosis. Cancer. 83:2481–2487

    PubMed  CAS  Google Scholar 

  138. Yamaguchi A, Urano T, Fushida S, Furukawa K, Nishimura G, Onemura Y, Miyazaki I, Nakagawara G, Shiku H. Inverse association of nm23-hl expression by colorectal-cancer with liver metastasis. Br J Cancer, 1993, 68, 1020–1024

    PubMed  CAS  Google Scholar 

  139. Campo E, Miquel R, Jares P, Bosch F, Juan M, Leone A, Vives J, Cardesa A, Yague J. Prognostic-significance of the loss of heterozygosity of nm23-Hl and p53 genes in human colorectal carcinomas. Cancer, 1994, 73, 2913–2921

    PubMed  CAS  Google Scholar 

  140. Royds JA, Cross SS, Silcocks PB, Scholefield JH, Rees RC, Stephenson TJ. NM23 antimetastatic gene-product expression in colorectal-carcinoma. J Pathol, 1994, 172, 261–266

    Article  PubMed  CAS  Google Scholar 

  141. Hennessy C, Henry JA, May FEB, Westley BR, Angus B, Lennard TWJ. Expression of the antimetastatic gene nm23 in human breast cancer–an association with good prognosis. J Natl Cancer Inst, 1991, 83, 281–285

    PubMed  CAS  Google Scholar 

  142. Tokunaga Y, Urano T, Furukawa K, Kondo H, Kanematsu T, Shiku H. (1993) Reduced expression of nm23-Hl, but not of nm23-H2, is concordant with the frequency of lymph-node metastasis of human breast-cancer. Int J Cancer 55:66–71

    PubMed  CAS  Google Scholar 

  143. Noguchi M, Earashi M, Ohnishi I, Kitagawa H, Fusida S, Miyazaki I, Mizukami Y. Relationship between nm23 expression and axillary and internal mammary lymph-node metastases in invasive breast-cancer. Oncology Rep, 1994, 4, 795–799

    Google Scholar 

  144. Simpson JF, Omalley F, Dupont WD, Page DL. Heterogeneous expression of nm23 gene-product in noninvasive breast-carcinoma. Cancer, 1994, 73, 2352–2358

    PubMed  CAS  Google Scholar 

  145. Iizuka N, Oka M, Noma T, Nakazawa A, Hirose K, Suzuki T. NM23-H1 and NM23-H2 messenger-RNAa abundance in human hepatocellular-carcinoma. Cancer Res, 1995, 55, 652–657

    PubMed  CAS  Google Scholar 

  146. Xerri L, Grob JJ, Battyani Z, Gouvernet J, Hassoun J, Bonerandi JJ. Nm23 expression in metastasis of malignant-melanoma is a predictive prognostic parameter correlated with survival. Br J Cancer, 1994, 70, 1224–1228

    PubMed  CAS  Google Scholar 

  147. Fujii K, Yasui W, Shimamoto F, Yokozaki H, Nakayama H, Kajiyama G, Tahara E. Immunohistochemical analysis of nm23 gene-product in human gallbladder carcinomas. Virch Arch, 1995, 426, 355–359

    CAS  Google Scholar 

  148. Viel A, Dallagnese L, Canzonieri V, Sopracordevole F, Capozzi E, Carbone A, Visentin Mc, Boiocchi M. Suppressive role of the metastasis-related nm23-hl gene in human ovarian carcinomas–association of high messenger-rna expression with lack of lymph-node metastasis. Cancer Res, 1995, 55, 2645–2650

    PubMed  CAS  Google Scholar 

  149. Mandai M, Konishi I, Komatsu T, Mori T, Arao S, Nomura H, Kanda Y, Hiai H, Fukumoto M. Mutation of the nm23 gene, loss of heterozygosity at the nm23 locus and k-ras mutation in ovarian-carcinoma–correlation with tumor progression and nm23 gene-expression. Br J Cancer, 1995, 72, 691–695

    PubMed  CAS  Google Scholar 

  150. Holm R, Hoie J, Kaalhus 0, Nesland JM. Immunohistochemical detection of nm23/ndp kinase and cathepsin-D in medullary carcinomas of the thyroid-gland. Virch Arch, 1995, 427, 289–294

    CAS  Google Scholar 

  151. Martinez JA, Prevot S, Nordinger B, Nguyen TMA, Lacarriere Y, Munier A, Lascu I, Vaillant JC, Capeau J, Lacombe ML. Overexpression of nm23-HI and nm23-H2 genes in colorectal carcinomas and loss of nm23-Hl expression in advanced tumor stages. Gut 1995, 37, 712–720

    PubMed  CAS  Google Scholar 

  152. Cropp CS, Lidereau R, Leone A, Liscia D, Cappa APM, Campbell G, Barker E, Ledoussal V, Steeg PS, Callahan R. NME1 protein expression and loss of heterozygosity mutations in primary human breast-tumors. J Natl Cancer Inst, 1994, 86, 1167–1169

    PubMed  CAS  Google Scholar 

  153. Jiang WG, Hiscox S, Bryce RP, Horrobin DF and Mansel RE. (1996). The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br. J. Cancer. 77:731–738

    Google Scholar 

  154. Steeg PS (1991). Genetic control of the metastatic phenotype. Cancer Biol. 2:105

    CAS  Google Scholar 

  155. Thoreirsson UP, Turpeenniemi-Hujanen T, Williams JE et al (1985). NIH 3T3 cells transfected with human tumour DNA containing activated Ras oncogenes express the metastatic phenotype in nude mice. Mol. Cell. Biol. 5:259

    Google Scholar 

  156. Muschel RJ, Williams JE, Lowy DR et al (1985). Harvey Ras induction of metastatic potential depends upon oncogene activation and the type of recipient cell. Am. J. Path. 121:1

    PubMed  CAS  Google Scholar 

  157. Bradley MO, Kraynak AR, Strorer RD et al (1986). Expresimental metastasis in nude mice of NIH-3T3 cells containing various Ras genes. Proc. Natl. Acad. Sci. USA. 83:5277

    PubMed  CAS  Google Scholar 

  158. Hill SA, Willson A and Chambers AF (1988). Clonal heterogenicity, experimental metastatic ability and p21 expression in H-ras transformed NIH 3T3 cells. Natl. ancer Inst. 80:484

    CAS  Google Scholar 

  159. Mason RW, Gal S and Gottesmann MM (1987). The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 248:449

    PubMed  CAS  Google Scholar 

  160. Ishido K and Kominami E (1998). Gene regulation and extracellular functions of procathepsin L. Biological Chem. 379:131–135

    Google Scholar 

  161. Ton Y, Pencil SD and Nicolson GL (1994). A novel candidate metastasis-associated gene, mtal, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression and protein analysis. J. Biological Chem. 269:22958–22963

    Google Scholar 

  162. Toh Y, Pencil SD and Nicolson GL (1995). Analysis of the complete sequence of the novel metastasis associated candidate gene, mtal, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene. 159:97–104

    Article  PubMed  CAS  Google Scholar 

  163. Nicolson GL and Moustafa AS (1998). Metastasis-associated genes and metastaic tumour progression. In Vivo. 12:579–588

    PubMed  CAS  Google Scholar 

  164. Toh Y, Kuwano H, Mori M, Micolson GL and Sugimachi K (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br. J. Cancer. 79:1723–1726

    Article  PubMed  CAS  Google Scholar 

  165. Toh Y, Oki E, Oda S, Tokunaga E, Ohno S, Maehara Y, Nicolson GL and Sugimachi K (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int. J. Cancer. 74:459–463

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hiscox, S. (2000). Cancer and Cancer Metastasis-Related Genes. In: Jiang, W.G., Mansel, R.E. (eds) Cancer Metastasis, Molecular and Cellular Mechanisms and Clinical Intervention. Cancer Metastasis — Biology and Treatment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-48388-2_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48388-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6395-8

  • Online ISBN: 978-0-306-48388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics