Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

  • 787 Accesses

Summary

For chloroplast transformation, the most efficient method to introduce DNA is particle bombardment. To then select the cells which harbor a transformed plastid, two classes of markers are available. With one class, selection is based on the rescue of a non-photosynthetic mutant with the wild-type chloroplast gene. With the other class, selection is based on a mutation or a foreign gene conferring resistance to an antibiotic or a herbicide. Transforming DNA is integrated by homologous recombination, and only in exceptional cases is it maintained extrachromosomally. The modified and wild-type copies of the highly polyploid plastid genome usually segregate rapidly, although in some circumstances a heteroplasmic mixture of genomes is retained. The available technology and markers readily allow chloroplast gene inactivation and site-directed mutagenesis. These possibilities are enhanced by strategies such as co-transformation or the repeated use of unstable markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAD:

aminoglycoside 3′′-adenyltransferase (or aminoglycoside 3′′-adenylyl transferase)

GUS:

β-Glucuronidase

PCR:

polymerase chain reaction

rDNA:

ribosomal RNA gene cluster

RFLP:

restriction fragment length polymorphism

rRNA:

ribosomal RNA

References

  • Allison LA, Simon LD and Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15: 2802–2809

    CAS  PubMed  Google Scholar 

  • Bingham SE and Webber AN (1994) Maintenance and expression of heterologous genes in chloroplast of Chlamydomonas reinhardtii. J Appl Phycol 6: 239–245

    Article  CAS  Google Scholar 

  • Blowers AD, Bogorad L, Shark KB and Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: Foreign DNA can be stably maintained in the chromosome. Plant Cell 1: 123–132

    Article  CAS  PubMed  Google Scholar 

  • Blowers AD, Ellmore GS, Klein U and Bogorad L (1990) Transcriptional analysis of endogenous and foreign genes in chloroplast transformants of Chlamydomonas. Plant Cell 2: 1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Boudreau E, Turmel M, Goldschmidt-Clermont M, Rochaix J-D, Sivan S, Michaels A and Leu S (1997) A large open reading frame (orf1995) in the chloroplast DNA of Chlamydomonas reinhardtii encodes an essential protein. Mol Gen Genet 253: 649–653

    CAS  PubMed  Google Scholar 

  • Boynton JE and Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Methods in Enzymol 217: 510–536

    CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    CAS  PubMed  Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE and Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 15:3003–3011

    CAS  PubMed  Google Scholar 

  • Choquet Y, Rahire M, Girard-Bascou J, Erickson J and Rochaix J-D (1992) A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704

    CAS  PubMed  Google Scholar 

  • Deshpande NN, Hollingsworth M, Herrin DL (1995) The atpF group-II intron-containing gene from spinach chloroplasts is not spliced in transgenic Chlamydomonas chloroplasts. Curr Genet 28: 122–127

    Article  CAS  PubMed  Google Scholar 

  • Erickson JM (1996) Chloroplast transformation: Current results and future prospects. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 589–619. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Finer JJ, Vain P, Jones MW and McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports 11: 323–328

    Article  CAS  Google Scholar 

  • Fischer N, Stampacchia O, Redding K and Rochaix J-D (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251: 373–380

    CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M, Choquet Y, Girard Bascou J, Michel F, Schirmer-Rahire M and Rochaix J-D (1991) A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65: 135–143

    CAS  PubMed  Google Scholar 

  • Heifetz PB, Lers A, Turpin DH, Gillham NW, Boynton JE and Osmond CB (1997) sr and spr/sr mutations of Chlamydomonas reinhardtii affecting D1 protein function and synthesis define two independent steps leading to chronic photoinhibiion and confer differential fitness. Plant Cell Env 20: 1145–1157

    CAS  Google Scholar 

  • Herdenberger F, Holländer B and Kück U (1994) Correct in vivo RNA splicing of a mitochondrial intron in algal chloroplasts. Nucleic Acids Res 22: 2869–2875

    CAS  PubMed  Google Scholar 

  • Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M and Liu XQ (1994) The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for growth. Mol Gen Genet 244: 151–159

    Article  CAS  PubMed  Google Scholar 

  • Johanningmeier U and Heiss S (1993) Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene. Plant Mol Biol 22: 91–99

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL, Richards KL and Stern DB (1991) Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88: 1721–1725

    CAS  PubMed  Google Scholar 

  • Kindle KL, Suzuki H and Stern DB (1994) Gene amplification can correct a photosynthetic growth defect caused by mRNA instability in Chlamydomonas chloroplasts. Plant Cell 6: 187–200

    Article  CAS  PubMed  Google Scholar 

  • Klein TM, Wolf ED, Wu R and Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature (London) 327: 70–73

    Article  CAS  Google Scholar 

  • Klein U, De Camp JD and Bogorad L (1992) Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 89: 3453–3457

    CAS  PubMed  Google Scholar 

  • Kunstner P, Guardiola A, Takahashi Y and Rochaix J-D (1995) A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast Photosystem II psbI gene grows photoautotrophically. J Biol Chem 270: 9651–9654

    CAS  PubMed  Google Scholar 

  • Lers A, Heifetz PB, Boynton JE, Gillham NW and Osmond, CB (1992) The carboxyl-terminal extension of the D1 protein of Photosystem II is not required for optimal photosynthetic performance under CO2-and light-saturated growth conditions. J Biol Chem 267: 17494–17497

    CAS  PubMed  Google Scholar 

  • Leu S, Schlesinger J, Michaels A and Shavit N (1992) Complete DNA sequence of the Chlamydomonas reinhardtii chloroplast atpA gene. Plant Mol Biol 18: 613–616

    Article  CAS  PubMed  Google Scholar 

  • Liu X-Q, Huang C and Xu H (1993) The unusual rps3-like orf712 is functionally essential and structurally conserved in Chlamydomonas. FEBS Lett 336: 225–230

    Article  CAS  PubMed  Google Scholar 

  • Mayfield SP, Cohen A, Danon A and Yohn CB (1994) Translation of the psbA mRNA of Chlamydomonas reinhardtii requires a structured RNA element contained within the 5′ untranslated region. J Cell Biol 127: 1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J and Crofts AR (1994) A robust protocol for site-directed mutagenesis of the D1 protein in Chlamydomonas reinhardtii: A PCR-spliced gene in a plasmid conferring spectinomycin resistance was introduced into a psbA deletion strain. Photosynth Res 42: 121–131

    Article  CAS  Google Scholar 

  • Monod C, Takahashi Y, Goldschmidt-Clermont M and Rochaix JD (1994) The chloroplast ycf8 open reading frame encodes a Photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditions. EMBO J 13: 2747–2754

    CAS  PubMed  Google Scholar 

  • Newman S, Boynton JE, Gillham NW, Randorph-Anderson BL, Johnson AM and Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics 126: 875–888

    CAS  PubMed  Google Scholar 

  • Newman S, Gillham NW, Harris EH, Johnson AM and Boynton JE (1991) Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol Gen Genet 230: 65–74

    Article  CAS  PubMed  Google Scholar 

  • Newman S, Harris EH, Johnson AM, Boynton JE and Gillham NW (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: Evidence for a hotspot and an adjacent cold region. Genetics 132: 413–429

    CAS  PubMed  Google Scholar 

  • Nickelsen J, van Dillewijn J, Rahire M and Rochaix JD (1994) Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J 13: 3182–3191

    CAS  PubMed  Google Scholar 

  • Przibilla E, Heiss S, Johanningmeier U and Trebst A (1991) Site-specific mutagenesis of the D1 subunit of Photosystem II in wild-type Chlamydomonas. Plant Cell 3: 169–174

    Article  CAS  PubMed  Google Scholar 

  • Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J and Rochaix J-D (1998) A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J 17: 50–60

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D (1997) Chloroplast reverse genetics; New insights into the function of plastid genes. Trends Plant Sci 2: 419–425

    Article  Google Scholar 

  • Roffey RA, Goldbeck JH, Hille CR and Sayre RT (1991) Photosynthetic electron transport in genetically altered Photosystem II reactioncenters of chloroplasts. Proc Natl Acad Sci USA 88: 9122–9126

    CAS  PubMed  Google Scholar 

  • Sakamoto W, Kindle K and Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions. Proc Natl Acad Sci USA 90: 497–501

    CAS  PubMed  Google Scholar 

  • Sanford JC, Smith FD and Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods in Enzymol 217: 483–509

    CAS  Google Scholar 

  • Stampacchia O, Girard-Bascou J, Zanasco J-L, Zerges W, Bennoun P and Rochaix J-D (1997) A nuclear-encoded function essential for translation of the chloroplast psaB mRNA in Chlamydomonas. Plant Cell 9: 773–782

    Article  CAS  PubMed  Google Scholar 

  • Staub JM and Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4: 39–15

    Article  CAS  PubMed  Google Scholar 

  • Staub JM and Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci USA 91: 7468–7472

    CAS  PubMed  Google Scholar 

  • Suzuki H, Ingersoll J, Stern DB and Kindle KL (1997) Generation and maintenance of tandemly repeated extrachromosomal plasmid DNA in Chlamydomonas chloroplasts. Plant J 11: 635–648

    Article  CAS  PubMed  Google Scholar 

  • Svab Z and Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917

    CAS  PubMed  Google Scholar 

  • Svab Z, Hajdukiewicz P and Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526–8530

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Dotson M and Keen NT (1992) Plant transformation: A simple particle bombardment device based on flowing helium. Plant Mol Biol 18: 835–839

    Article  CAS  PubMed  Google Scholar 

  • Webber AN, Bingham SE and Lee H (1995) Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. Photosynth Res 44: 191–205

    Article  CAS  Google Scholar 

  • Zerges W and Rochaix JD (1994) The 5′ leader of a chloroplast mRNA mediates the translational requirements for two nucleusencoded functions in Chlamydomonas reinhardtii. Mol Cell Biol 14: 5268–77

    CAS  PubMed  Google Scholar 

  • Zerges W, Girard-Bascou J and Rochaix J-D (1997) Translation of the chloroplast psbC mRNA is controlled by interactions between its 5′leader and the nuclear loci TBC1 and TBC3 in Chlamydomonas reinhardtii. MolCell Biol 17: 3440–3448

    CAS  Google Scholar 

  • Zumbrunn G, Schneider M and Rochaix J-D (1989) A simple particle gun for DNA-mediated cell transformation. Technique 1: 204–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goldschmidt-Clermont, M. (1998). Chloroplast Transformation and Reverse Genetics. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics