Skip to main content

Ultrastructural Effects of Salinity in Higher Plants

  • Chapter
Salinity: Environment - Plants - Molecules

Abstract

Salinity leads to structural and ultrastructural effects, particularly in salt-sensitive species. Some of them are indicative of the onset of injury, for example the aggregation of chloroplasts accompanied by a swelling in the granal and fret compartments or the complete distortion of chloroplastic grana and thylakoid structures. Others are associated with metabolic acclimation to salinity stress. For instance increased density of mitochondria, enhanced ATPase particle frequencies in membranes may be related to enhanced energy demand at moderate salinity. Salinity-induced ultrastructural changes, such as the build up of transfer cells and many small vesicles, may be a sign of extensive exchange of substances across membranes. Several examples of structural adjustment of halophytic and glycophytic plant species will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beesley, J.E. (1989) Colloidal gold: A new perspective for cytochemical marking. Royal Microscopy Handbooks Vol. 17, Oxford University Press.

    Google Scholar 

  • Berger C. and Schnepf, E. (1970) Entwicklung und Altern der Spadix-Appendices von Sauromatum guttatum Schott und Arum maculatum L. I. Veränderungen der Feinstruktur: Protoplasma 69, 237–251.

    Article  Google Scholar 

  • Bergfeld, R. and Falk, H. (1968) Geordnete Aggregationen von endoplasmatischem Retikulum in den weißen Hochblättern von Davidia involucrata. Z. Pflanzenphysiol. 62, 297–300.

    Google Scholar 

  • Bernstein, N., Läuchli, A. and Silk, W.K. (1993) kinematics and dynamics of Sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. I. Elongation growth. Plant Physiol. 103, 1107–1114.

    PubMed  CAS  Google Scholar 

  • Binzel, M.L., Hasegawa, P.M., Rhodes, D., Handa, S., Handa, A.K. and Bressan, R.A. (1987) Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol. 84, 1408–1415.

    CAS  Google Scholar 

  • Blumenthal-Goldschmidt, S. and Poljakoff-Mayber, A. (1966) Comparison of the osmotic volume changes in chloroplasts isolated from different plants. Plant and Cell Physiol. 7, 357–362.

    CAS  Google Scholar 

  • Blumenthal-Goldschmidt, S. and Poljakoff-Mayber, A. (1968) Effect of salinity on growth and submicroscopic structure of leaf cells of Atriplex halimus L. Australian J. Botany 16, 469–478 (1968).

    CAS  Google Scholar 

  • Chang, P.F.L., Damsz, B., Kononowicz, A.K., Reuveni, M., Chen, Z.T., Xu, Y., Hedges, K., Tseng, C.C., Singh, N.K., Binzel, M.L., Narasimhan, M.L., Hasegawa, P.M. and Bressan, R.A. (1996) Alterations in some membrane structure and expression of a membrane-associated protein after adaptation to osmotic stress. Physiologia Plantarum 98, 505–516.

    Article  CAS  Google Scholar 

  • Clarkson, D.T., Robards, A.W., Stephens, J.E. and Stark, M. (1987) Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers. Plant, Cell and Environment 10, 83–93.

    Google Scholar 

  • Colmer, T.D., Fan, T.W.M., Higashi, R.M. and Läuchli, A. (1994) Interactions of Ca2+ and NaCl stress on the relations and intracellular pH of Sorghum bicolor root tips. An in vivo32P-NMR study. J. Exp. Bot. 45, 1037–1044.

    CAS  Google Scholar 

  • Critchley, C. (1982) Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations Nature 298, 483–485.

    Article  CAS  Google Scholar 

  • Currier, H.B. (1957) Callose substance in plant cells. Amer. J. Bot. 44, 478–488.

    Google Scholar 

  • Drew, M. (1998) Stress Physiology, in L. Taiz and E. Zeiger (eds.) Plant Physiology 2nd edition, Sinauer Associates, Sunderland, Massachusetts, pp. 725–757.

    Google Scholar 

  • Dunstone, R.L. and Evans, L.T. (1974) Role of changes in cell size in the evolution of wheat. Aust. J. Plant Physiol. 1, 157–165.

    Google Scholar 

  • Flowers, T.J., Hajibagheri, M.A. and Clipson, N.J.W. (1986) Halophytes, in the Quarterly Review of Biology, Stony Brook Foundation, pp. 313–337.

    Google Scholar 

  • Frederick, S.E. and Newcomb, E.H. (1969) Cytochemical localization of peroxidatic activity of catalase in leaf microbodies (peroxisomes). J. Cell Biol. 43, 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Gadallah, M.A.A. and Ramadan, T. (1997) Effects of zinc and salinity on growth and anatomical structure of Carthamus tinctorius L. Biologia Plantarum 39, 411–418.

    Article  CAS  Google Scholar 

  • Greenway H. and Munns, R. (1980) Mechanism of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31, 149–190.

    Article  CAS  Google Scholar 

  • Hain, B. (1995) Speicherphysiologie und Wasserhaushalt der Zuckerrübe unter dem Einfluß von Kalium und Natrium. Thesis, University of Hannover, Germany.

    Google Scholar 

  • Hajibagheri, M.A., Hall, J.A. and Flowers, T.J. (1983) The structure of the cuticle in relation to cuticular transpiration in leaves of the halophyte Suaeda maritima (L.) Dum.. New Phytol. 94, 125–131.

    Google Scholar 

  • Hajibagheri, M.A., Harvey, D.M.R. and Flowers, T.J. (1984) Photosynthetic oxygen evolution in relation to ion contents in the chloroplasts of Suaeda maritima. Plant Science Letters 34, 353–362.

    Article  CAS  Google Scholar 

  • Hajibagheri, M.A. and Flowers, T.J. (1985) Salt tolerance in the halophyte Suaeda maritima (L.) Dum. The influence of the salinity of the culture solution on leaf starch and phosphate content. Plant, Cell and Environment 8, 261–267.

    Google Scholar 

  • Hajibagheri, M.A., Flowers, T.J. and Hall, J.L. (1985) Cytometric aspects of the leaves of the halophyte Suaeda maritima. Physiol. Plant. 64, 365–370.

    Google Scholar 

  • Hajibagheri, M.A, Yeo, A.R., Flowers, T.J. and Collins, J.C. (1989) Salinity resistance in Zea mays: Fluxes of potassium, sodium, and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell and Environment 12, 753–757.

    CAS  Google Scholar 

  • Hecht-Buchholz, Ch. (1983) Light and electron microscopic investigations of the reactions of various genotypes to nutritional disorders. Plant and Soil 72, 151–165.

    Article  Google Scholar 

  • Hecht-Buchholz, Ch. and Marschner, H. (1970) Veränderungen der Feinstruktur von Zellen der Maiswurzelspitze bei Entzug von Kalium. Z. Pflanzenphysiol. 63, 416–427.

    CAS  Google Scholar 

  • Hecht-Buchholz, Ch., Marschner, H. and Pflüger, R. (1971) Einfluß von Natriumchlorid auf Mitochondrienzahl und Atmung von Maiswurzelspitzen. Z. Pflanzenphysiol. 65, 410–417.

    CAS  Google Scholar 

  • Hecht-Buchholz, Ch., Mix, G. and Marschner, H. (1974) Effect of NaCl on mineral content and fine structure of cells in plant species with different salt tolerance. Proc. Of the 7th Internal. Coll. on Plant Analysis, Hannover 147–156.

    Google Scholar 

  • Hernandez, J.A., Corpas, F.J., Gomez, M., del Rio, L.A. and Sevilla, F. (1993) Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89, 103–110.

    Article  CAS  Google Scholar 

  • Huang, C.X. and Van Steveninck, R.F.M. (1990) Salinity induced structural changes in meristematic cells of barley roots. New Phytologist 115, 17–22.

    Google Scholar 

  • Huiskes, A.H.L. (1995) Saline Crops. A contribution to the diservification of the reproduction of vegetable crops by research on the cultivation methods and selection of halophytes. AIR, Annual Report, 303p.

    Google Scholar 

  • Hwang, Y.H. and Chen, S.C. (1997) Effect of tonicity and additives to the fixative on ultrastructure of mesophyllous cells in Kandelia candel (L.) Druce (Rhizophoraceae). Botanical Bulletin of Academia Sinica 38, 21–28.

    CAS  Google Scholar 

  • Jennings, D.H. (1976) The effects of sodium chloride on higher plants. Biological Reviews 51, 453–486.

    CAS  Google Scholar 

  • Keiper, F.J., Chen, D.M. and DeFilippis, L.F. (1998) Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J. Plant Physiology 152, 564–573.

    CAS  Google Scholar 

  • Khavari-Nejad, R.A. and Mostofi, Y. (1998) Effects of NaCl on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35, 151–154.

    CAS  Google Scholar 

  • Kinzel, H. (1982) Pflanzenökologie und Mineralstoffwechsel. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Klink, R., Haschke, H.P., Kramer, D. and Lüttge, U. (1990) Membrane particles, proteins and ATPase activity of tonoplast vesicles of Mesembryanthemum crystallinum in the C-3 and CAM state. Botanica Acta 103, 24–31.

    CAS  Google Scholar 

  • Koyro, H.-W. (1989) Physiologische und feinstrukturelle Grundlagen ökologischer Anpassungen an Salzstandorte. Thesis, University of Hannover.

    Google Scholar 

  • Koyro, H.-W. (1997) Ultrastructural and physiological changes in root cells of Sorghum plants (Sorghum bicolor × S. sudanensis cv. Sweet Sioux) induced by NaCl. J. Exp. Bot. 48, 693–706.

    CAS  Google Scholar 

  • Koyro, H.-W. and Stelzer, R. (1989) Ion concentrations in the cytoplasm and vacuoles of rhizodermis cells from NaCl treated Sorghum, Spartina and Puccinellia plants. J. Plant Physiol. 133, 441–446.

    Google Scholar 

  • Koyro, H.-W., Stelzer, R. and Huchzermeyer, B. (1993) ATPase activities and membrane fine structure of rhizodermal cells from Sorghum and Spartina roots grown under mild NaCl stress. Botanica Acta 106, 110–119.

    CAS  Google Scholar 

  • Koyro, H.W. and Huchzermeyer, B. (1999) Influence of high NaCl-salinity on growth, water and osmotic relations of the halophyte Beta vulgaris ssp. maritima. Development of a quick check in H. Lieth, A. Hamdy and H.-W. Koyro (eds) Progress in Biometeorology. Contributions to halophyte uses in different climates. Issue I Ecological Research. Backhuys Publishers, The Netherlands, (in press) 87–101.

    Google Scholar 

  • Kramer, D. (1983) Genetically determined adaptations in roots to nutritional stress: correlation of structure and function. Plant and Soil 72, 167–173.

    Article  CAS  Google Scholar 

  • Kramer, D., Läuchli, A., Yeo, A.R. and Gullasch, J. (1977) Transfer cells in roots of Phaseolus vulgaris. Ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot. 41, 1031–1040.

    CAS  Google Scholar 

  • Kramer, D., Anderson, W.P. and Preston J. (1978) Transfer cells in the root epidermis of Atriplex hastata L. as response to salinity: a comparative cytological and X-ray microprobe investigation. Aust. J. Plant Physiol. 5, 739–747.

    CAS  Google Scholar 

  • Landsberg, E.C. (1982) Transfer cell formation in the root epidermis: A prerequisite for Fe-efficiency. J. Plant Nutr. 5, 415–432.

    CAS  Google Scholar 

  • Läuchli, A., Spurr, A.R. and Epstein, E. (1971) Lateral transport of ions into the xylem of corn roots. II. Evaluation of a stelar pump. Plant Physiol. 48, 118–124.

    Google Scholar 

  • Läuchli, A., Kramer, D., Pitman, M.G. and Lüttge, U. (1974) Ultrastructure of the xylem parenchyma cells of barley in relation to ion transport to the xylem. Planta 119, 85–99.

    Article  Google Scholar 

  • Li, X.P. and Ong. B.L. (1997) Ultrastructural changes in gametophytes of Acrostichum aureum L. cultured in different sodium chloride concentrations. Biologia Plantarum 39, 607–614.

    Article  CAS  Google Scholar 

  • Lieth, H. and Al Masoom, A.A. (1993) Towards the rational use of high salinity tolerant plants. Vol. 1: Deliberations about high salinity tolerant plants and ecosystems, Kluwer Academic Publisher, Dordrecht, 521p.

    Google Scholar 

  • Lüttge, U., Kluge, M. and Bauer, G.(1999) Botanik. 3rd ed. Weinheim, VGH Verlagsgesellschaft.

    Google Scholar 

  • Maas, E.V. (1993) Salinity and citriculture. Tree Physiology 12, 195–216.

    PubMed  CAS  Google Scholar 

  • Markovska, Y.K., Tutekova, A.A. and Kimenov, G.P. (1995) Ultrastructure of chloroplasts of poikilohydric plants Haberlea rhodopensis Friv. and Ramonda serbica Panc. during recovery from desiccation. Photosynthetica 31, 613–620.

    Google Scholar 

  • Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press Limited, London.

    Google Scholar 

  • Monaghan, P., N. Perusinghe and M. Muller (1998) High-pressure freezing for immunocytochemistry. Journal of Microscopy 192, 248–258.

    PubMed  Google Scholar 

  • Motsan, Z., Lerner, H.R. and Reinhold, L. (1988) Dependence of chlorophyll synthesis on NaCl or osmotic stress in NaCl-adapted tobacco cells. Plant Physiol. Biochem. 26, 29–34.

    CAS  Google Scholar 

  • Munns, R. (1993) Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment 16, 15–24.

    CAS  Google Scholar 

  • Munns, R., Greenway, H., Setter, T.L. and Kuo, J. (1983) Turgor pressure, volumetric elastic modulus, osmotic volume and ultrastructure of Chlorella emersonii grown at high and low external NaCl. J. Exp. Bot. 34, 144–155.

    Google Scholar 

  • Munns, R., Fisher, D.B. and Tonnet, M.L. (1986) Na+ and Cl2212 transport in the phloem from leaves of NaCl-treated barley. Aust. J. Plant Physiol. 13, 757–766.

    CAS  Google Scholar 

  • Munns, R.; Tonnet, M.L., Sherman, C. and Gardner, P.A. (1988) Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plant, Cell and Environment 11, 291–300.

    CAS  Google Scholar 

  • Munoz, G.E., Barlow, P.W. and Palma, B. (1996) Effects of sea water on roots of Prosopis alba (Leguminoseae) seedlings. J. Exp. Bot. 59, 55–63.

    Google Scholar 

  • Nir, J., Klein, S. and Poljakoff-Mayber (1966) Effect of moisture stress on submicroscopic structure of maize roots. Aust. J. Biol. Sci. 22, 17–33.

    Google Scholar 

  • Nishizawa, N. and Mori, S. (1984) Desiccation-tolerance heterophagy in corn root callus. J. Electron Microsc. 33, 230–235.

    Google Scholar 

  • Öpik, H. (1965) Respiration rate, mitochondrial activity and mitochondrial structure in the cotyledons of Phaseolus vulgaris L. during germination. J. Exp. Bot. 16, 667–682.

    Google Scholar 

  • Öpik, H. (1966) Changes in the cell fine structure in the cotyledons of Phaseolus vulgaris L. during germination. J. Exp. Bot. 17, 429–436.

    Google Scholar 

  • Pate, J.S. and Gunning, B.E.S. (1972) Transfer cells. Annu. Rev. Plant Physiol. 23, 173–196.

    Article  Google Scholar 

  • Pei, Z.M.A and Zhang, C. (1995) Effect of salt stress on ion channel selective permeability of plasmalemma in Sorghum roots. Acta Botanica Sinica 37, 41–47.

    CAS  Google Scholar 

  • Perumalla, C.J., Peterson, C.A. and Enstone, D.E. (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot. J. Linn. Soc. 103, 93–112.

    Google Scholar 

  • Peterson, C.A. (1988) Exodermal Casparian bands: Their significance for ion uptake by roots. Physiol. Plant. 72, 204–208.

    CAS  Google Scholar 

  • Peterson, C.A. and Perumalla, C.J. (1984) Development of the hypodermal Casparian band in com and onion roots. J. Exp. Bot. 35, 51–57.

    Google Scholar 

  • Polak, J.M. and Van Noorden, S. (1988) An introduction to immuno-cytochemistry: Current techniques and problems. Royal Microscopy Society Microscopy Handbooks Volume 11. Oxford University Press.

    Google Scholar 

  • Poljakoff-Mayber, A. (1975) Morphological and anatomical changes in plants as a response to salinity stress in Poljakoff-Mayber, A. and Gale, J. (eds) Plants in Saline Environments, Springer Verlag, New York, pp 97–117.

    Google Scholar 

  • Pritchard, J., Wyn Jones, R.G. and Tomos, A.D. (1991) Turgor, growth and rheological gradients of wheat following osmotic stress. J. Exp. Bot. 42, 1043–1049.

    Google Scholar 

  • Richards, L.A. (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Handbook 60.

    Google Scholar 

  • Robards, A.W. and Clarkson, D.T. (1984) Effects of chilling temperatures on root membranes as viewed by freeze fracture electron microscopy. Protoplasma 122, 75–85.

    Article  Google Scholar 

  • Roth, D. und Bergmann, H. (1988) Trockenstreß und seine Auswirkungen auf die Ertäge landwirtschaftlicher Fruchtarten sowie Möglichkeiten zur ertragswirksamen Verbesserung der Trockenresistenz. Archiv für Acker-und Pflanzenbau und Bodenkunde 32, 459–471.

    Google Scholar 

  • Schnepf, E. and Reinhard, C. (1997) Brachycytes in Funaria protonemata: Induction by abscisic acid and fine structure. J. Plant Physiol. 151, 166–175.

    CAS  Google Scholar 

  • Schubert, S. and Läuchli, A (1990) Sodium exclusion mechanisms at the root surface of two maize cultivars. Plant Soil 123, 205–209.

    Article  CAS  Google Scholar 

  • Schwab, D.W., Simmons, E. and Scala, J. (1969) Fine structure changes during function of the digestive gland of venus-fly-trap. Amer. J. Bot. 56, 88–100.

    Google Scholar 

  • Schwarz, M. and Gale, J: (1981) Maintenance respiration and carbon balance of plants at low levels of sodium chloride salinity. J. Exp. Bot. 32, 933–941.

    CAS  Google Scholar 

  • Siew, D. and Klein, B. (1968) The effect of sodium chloride on some metabolic and fine structural changes during the greening of etiolated leaves. J. Cell Biol. 37, 590–596.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.M., Hodson, M.J., Opik, H. and Wainwright, S.J. (1982) Salt-induced ultrastructural damage to mitochondria in root tips of a salt-sensitive ecotype of Agrostis stolonifera. J. Exp. Bot. 33, 886–895.

    CAS  Google Scholar 

  • Strogonov, P., Kabanov, V.V., Shevjakova, N.I., Lapina, L.P., Komizierko, E.I., Popov, B.A., Dostanova, R.K.H. and Prykhodďko, L.S. (1970) Struktura i Funktziya Kletok rastenii pri Zasolenii (Structure and function of plant cells under salinity). Nauka publ., Moskow.

    Google Scholar 

  • Tazawa, M., Shimada, K. and Kikuyama, M. (1995) Cyloplasmic hydration triggers a transient increase in cytoplasmic Ca2+ concentration in Nitellaflexilis. Plant and Cell Physiology 36, 335–340.

    CAS  Google Scholar 

  • Utrillas, M.J. and Alegre, L. (1997) Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers under natural conditions. International Journal of Plant Sciences 158, 313–324.

    Article  Google Scholar 

  • Van Bel, A.J.E. (1989) The challenge of the symplasmic phloem loading. Botanica Acta 102, 183–185.

    Google Scholar 

  • Van Bel, A.J.E. and Gamalei, W.V. (1991) Multiprogrammed phloem loading in Bonnemain, J.L., Delrot, S., Lucas, W.J. and Dainty, J. (eds.) Recent advances in phloem tranport and assimilate compartmentation. Quest editions, Nantes, France, pp 128–139.

    Google Scholar 

  • Waisel, Y. (1972) Ecological notes on some terrestrial halophytes in Kozlowski, T.T. (ed.) Biology of halophytes Academic Press, New York, London, 290–311.

    Google Scholar 

  • Walker, K.E. and Taiz, L. (1988) Characterization of the vacuolar proton pumps of the cortex, stele and tip of maize roots. Botanica Acta 101, 182–186.

    CAS  Google Scholar 

  • Wattendorf, F. and Holloway, P.J. (1980) Studies on the ultrastructure and histochemistry of plant cuticle. Annals of Botany 46, 13–28.

    Google Scholar 

  • Weimberg, R., Lerner, H.R. and Poljakoff-Mayber, A. (1982) A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolor. Physiol. Plant. 55, 5–10.

    CAS  Google Scholar 

  • Weimberg, R., Lerner, H.R. and Poljakoff-Mayber, A. (1984) Changes in growth and water-soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium salts. Physiol. Plant. 62 472–480.

    CAS  Google Scholar 

  • Wilson, A.J. and Robards, A.W. (1978) The ultrastructural development of mechanically impeded barley roots. Effects on the endodermis and pericycle. Protoplasma 95, 255–265.

    Article  Google Scholar 

  • Winter, E. (1988) Salt-induced hypodermal transfer cells in roots of Prosopis farcta and ion distribution within young plants. Botanica Acta 101, 174–181.

    CAS  Google Scholar 

  • Wolfe, J. (1979) Some physical properties of membranes in the phase separation region and their relation to chilling damage in plants, in Lyons, L.M., Graham, D. and Raison, J.K. (eds.) Low temperature stress in crop plants: The role of the membrane. Academic Press, New York, pp.327–335.

    Google Scholar 

  • Wolfe, J. (1987) Lateral stresses in membranes at low water potential. Aust. J. Plant Physiol. 14, 11–18.

    Google Scholar 

  • Yeo, A.R. (1983) Salinity resistance: Physiology and prices. Physiol. Plant. 58, 214–222.

    CAS  Google Scholar 

  • Zhong, H. and Läuchli, A. (1994) Spatial distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: Effects of NaCl and CaCl2, Planta 194, 34–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Koyro, HW. (2002). Ultrastructural Effects of Salinity in Higher Plants. In: Läuchli, A., Lüttge, U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48155-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0492-6

  • Online ISBN: 978-0-306-48155-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics