Skip to main content

Role of Acyl Lipids in the Function of Photosynthetic Membranes in Higher Plants

  • Chapter
Lipids in Photosynthesis: Structure, Function and Genetics

Summary

The great diversity of thylakoid acyl lipids and their unique (physico)chemical characteristics as well as their peculiar topology in the membrane strongly suggest that specific functions and distinct domains of acyl lipids exist in the thylakoid membrane.

To investigate the functional significance of thylakoid lipid composition, several approaches have been adopted which are presented in this chapter. The functional alterations occurring in aged thylakoids and during leaf senescence can be attributed, at least in part, to a release of free fatty acids and/or to the loss or modification of the parent lipids which are essential for the functioning of the thylakoid membrane. The effects of aging are strikingly similar to those of exogenous free unsaturated fatty acids. Controlled lipolytic treatment of thylakoid membranes is another approach allowing the stepwise digestion of specific acyl lipids, first in the thylakoid outer monolayer, then in the inner one. These topological lipid depletions show that only certain lipid populations (e.g. located in one of the two membrane monolayers) are able to sustain photochemical reactions. The removal of thylakoid acyl lipids by cyclodextrins (cyclic oligosaccharides consisting of six to eight glucopyranose units linked by α(1–4)bonds) represents a potentially interesting depletion technique, since no detergents are used as in the preparation of subchloroplast particles and no free fatty acids and lysolipids are produced as in the enzymatic approach. The modulation of thylakoid membrane fluidity by homogenous catalytic hydrogenation in situ shows quite clearly the importance of the lipid unsaturation for optimal photochemical reactions. In addition, alteration in membrane fluidity may be the first signal in the perception of temperature changes in the plant environment. Another interesting approach is to use antibodies directed to specific membrane lipids and measure the photochemical reactions which are impaired in thylakoids. Lipids are also involved in the mode of action of herbicides by mediating the accessibility of these compounds to their binding site, for instance to the QB protein level. Finally, a number of Arabidopsis and Chlamydomonas mutants have been characterized as being deficient in desaturases or glycerol-3-phosphate acyltransferases. The availability of these mutants provides another tool in determining the physiological consequences of variations in lipid unsaturation, though information concerning photosynthetic activity is still rather scarce. All these approaches present advantages and drawbacks.

In spite of considerable effort, the structure/function relationship of acyl lipids in the thylakoid membrane remains ambiguous and elusive. This is due probably to the fact that, in contrast to proteins, lipids have by themselves no recognized catalytic properties. They allow the maintenance of an appropriate conformation and orientation of proteins which may express their function only in the presence of specific lipids. This function is expected to require only a few specific lipid molecules as it appears to be the case for phosphatidylglycerol containing trans-Δ3-hexadecenoic acid in the formation of the trimeric chlorophyll a/b light-harvesting protein of Photosystem II and the development of grana stacks. In the literature, there is no clear distinction between the role of these specific lipids and the general physicochemical properties of the membrane bulk lipids which are likely to be involved in structural aspects of the membrane such as the mode of herbicide action, chilling injury, photoinhibition and, in general, responses to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Anderson MM, McCarty RE and Zimmer EA (1974) The role of galactolipids in spinach chloroplast lamellar membranes. I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles. Plant Physiol 53: 699–704

    CAS  Google Scholar 

  • Andersson B, Sundby C, Åkerlund H-E and Albertsson P-A (1985) Inside-out thylakoid vesicles. An important tool for the characterization of the photosynthetic membrane. Physiol Plant 65: 322–330

    CAS  Google Scholar 

  • Andreasson E, Svensson P, Weibull C and Albertsson P-A (1988) Separation and characterization of stroma and grana membranes—evidence for heterogeneity in antenna size of both Photosystem I and Photosystem II. Biochim Biophys Acta 936: 339–350

    CAS  Google Scholar 

  • Ashton FM and Crafts AS (eds) (1981) Mode of Action of Herbicides, 2nd edition. Wiley-Interscience Publishers, New York

    Google Scholar 

  • Baker NR and Percival MP (eds) (1991) Herbicides. Topics in Photosynthesis, Vol 10. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Barber J and Gounaris K (1986) What role does sulpholipid play within the thylakoid membrane? Photosynth Res 9: 239–249

    Article  CAS  Google Scholar 

  • Bassi R (1985) Spectral properties and polypeptide composition of the chlorophyll-protein from thylakoids of granal and agranal chloroplasts of maize (Zea mays L.). Carlsberg Res Commun 50: 127–143

    CAS  Google Scholar 

  • Batzri S and Korm ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298: 1015–1019

    CAS  PubMed  Google Scholar 

  • Bekers O, Uijendaal EV, Beijnen JH, Bult A and Underberg WJM (1991) Cyclodextrins in the pharmaceutical field. Drug Development and Industrial Pharmacy 17: 1503–1549

    CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Bishop DG (1983) Functional role of plant membrane lipids. In: Thompson WW, Mudd JB and Gibbs M (eds) Biosynthesis and Function of Plant Lipids, pp 81-103. Am Soc Plant Physiol, Rockville

    Google Scholar 

  • Bowyer JR, Camilleri P and Vermaas WFJ (1991) Photosystem IIII and its interaction with herbicides. In: Baker NR and Percival MP (eds), Topics in Photosynthesis, Vol 10, Herbicides, pp 27–85. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Browse J, McCourt P and Somerville C (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    CAS  Google Scholar 

  • Browse J, McCourt P and Somerville C (1986) A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol 81: 859–864

    CAS  Google Scholar 

  • Browse J, Kunst L, Anderson S, Hugly S and Somerville C (1989) A mutant of Arabidopsis deficient in the chloroplast 16:1/18:1 desaturase. Plant Physiol 90: 522–529

    CAS  Google Scholar 

  • Burke JJ, Wilson RF and Swafford R (1982) Characterization of chloroplasts isolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L. Plant Physiol 70: 24–29

    CAS  Google Scholar 

  • Burns DD, Galliard T and Harwood JL (1977) Catabolism of sulpholipid by an enzyme from the leaves of Phaseolus multiflorus. Biochem Soc Trans 5: 1302–1304

    CAS  Google Scholar 

  • Chapman DJ, De Felice J and Barber J (1985) Characteristics of chloroplast thylakoid lipid composition associated with resistance to triazine herbicides. Planta 166: 280–285

    Article  CAS  Google Scholar 

  • Costes C, Bazier R and Lechevallier D (1972) Rôle structural des lipides dans les membranes des chloroplastes de Blé. Physiol Vég 10: 291–317

    CAS  Google Scholar 

  • Costes C, Bazier R, Baltscheffsky H and Hallberg C (1978) Mild extraction of lipids and pigments from Rhodospirillum rubrum chromatophores. Plant Sci Lett 12: 241–249

    CAS  Google Scholar 

  • Coughlan SJ and Hind G (1987) A protein kinase that phosphory lates light-harvesting complex is autophosphorylated and is associated with Photosystem II. Biochemistry 26:6515–6521

    Article  CAS  Google Scholar 

  • Demeter S, Goussias C, Bernat G, Kovacs L and Petrouleas V (1993) Participation of the g=1.9 and g=1.82 EPR forms of the semiquinone-iron complex, QA. Fe of Photosystem II in the generation of the Q and C thermoluminescence bands, respectively. FEBS Lett 336: 352–356

    Article  CAS  PubMed  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801–1818

    PubMed  Google Scholar 

  • Droppa M, Horváth G, Hideg E and Farkas T (1995) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of thylakoids with phospholipase C. Photosynth Res 46: 287–293

    Article  CAS  Google Scholar 

  • Dubacq JP and Trémolières A (1983) Occurrence and function of phosphatidylglycerol containing Δ3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Vég 21: 293–312

    CAS  Google Scholar 

  • Dubertret G, Mirshahi A, Mirshahi M, Gérard-Hirne C and Trémolières A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226: 473–482

    Article  CAS  PubMed  Google Scholar 

  • Duchêne S, Smutny J and Siegenthaler PA (1995) Transmembrane distribution of phospholipids in spinach thylakoid inside-out vesicles and involvement of outer and inner monolayer phospholipids in the photosynthetic electron flow activity. In: Lopez-Pérez MJ, Delgado C and Cebrian-Pérez JA (eds) 9th International Conference on Partitioning in Aqueous Two-Phase Systems. Advances in the Uses of Polymers in Cell Biology, Biotechnology and Environmental Sciences, Abstract Nr P23, University of Zaragoza, Spain

    Google Scholar 

  • Dunahay TG, Staehelin LA, Seibert M, Ogilvie PD and Berg SP (1984) Structural, biochemical and biophysical characterization of four oxygen-evolving Photosystem II preparations from spinach. Biochim Biophys Acta 764: 179–193

    CAS  Google Scholar 

  • Dupont J and Siegenthaler PA (1985) Alterations in the cytochrome composition of spinach thylakoid membranes induced by aging in vitro. J Plant Physiol 119: 347–357

    CAS  Google Scholar 

  • Dupont J and Siegenthaler P A (1986) A parallel study of pigment bleaching and cytochrome breakdown during aging of thylakoid membranes. Plant Cell Physiol 27: 473–484

    CAS  Google Scholar 

  • Duval JC, Trémolières A and Dubacq JP (1979) The possible role of transhexadecenoic acid and phosphatidylglycerol in light reactions of photosynthesis. FEBS Lett 106: 414–418

    Article  CAS  Google Scholar 

  • Eckert H-J, Toyoshima Y, Akabori K and Dismukes GC (1987) The involvement of lipids in light-induced charge separation in the reaction center of Photosystem II. Photosynth Res 14: 31–41

    Article  CAS  Google Scholar 

  • Fedke C (ed) (1982) Biochemistry and Physiology of Herbicide Action. Springer Verlag, Berlin

    Google Scholar 

  • Ford RC, Chapman DJ, Barber J, Pedersen JZ and Cox RP (1982) Fluorescence polarization and spin-label studies of the fluidity of stromal and granal chloroplast membranes. Biochim Biophys Acta 681: 145–151

    CAS  Google Scholar 

  • Fragata M, Strzalka K and Nénonéné EK (1991) MgCl2-induced reversal of oxygen evolution decay in Photosystem II particles incubated with phosphatidylglycerol vesicles at high lipid/Photosystem II ratio. J Photochem Photobiol 11: 329–342

    CAS  Google Scholar 

  • Fragata M, Menikh A and Nénonéné EK (1994) Functional and structural aspects of the thylakoid lipids in oxygen evolution in Photosystem II. Trends Photochem Photobiol 3:201–210

    CAS  Google Scholar 

  • Galliard T (1971) Enzymic deacylation of lipids in plants. The effects of free fatty acids on the hydrolysis of phospholipids by the lipolytic acyl hydrolase of potato tubers. Eur J Biochem 21: 90–98

    Article  CAS  PubMed  Google Scholar 

  • Galliard T (1980) Degradation of acyl lipids: Hydrolytic and oxidative enzymes. In: Stumpf PK and Conn EE (eds) The Biochemistry of Plants. Vol 4, pp 85–116. Academic Press, New York

    Google Scholar 

  • Gasquez J, Al Mourmar A and Darmency H (1985) Triazine herbicide resistance in Chenopodium album. Pestic Sci 16: 392–396

    CAS  Google Scholar 

  • Gepstein S (1988) Photosynthesis. In: Noodén LD and Leopold AC (eds) Senescence and Aging in Plants, pp 85-109. Academic Press Inc, New York

    Google Scholar 

  • Giroud C and Siegenthaler PA (1988) Development of oat prothylakoids into thylakoids during greening does not change transmembrane galactolipid asymmetry but preserves the thylakoid bilayer. Plant Physiol 88:412–417

    CAS  Google Scholar 

  • Golbeck JH, Martin IF and Fowler CF (1980) Mechanism of linolenic acid-induced inhibition of photosynthetic electron transport. Plant Physiol 65: 707–713

    CAS  Google Scholar 

  • Gombos Z and Murata N (1998) Genetically engineered modulation of the unsaturation of glycerolipids and its consequences in tolerance of photosynthesis to temperature stresses. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 249–262. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gombos Z, Barabas K, Joo F and Vigh L (1988) Lipid saturation induced microviscosity increase has no effect on the reducibility of flash-oxidized cytochrome f in pea thylakoids. Plant Physiol 86: 335–337

    CAS  Google Scholar 

  • Gombos Z, Wada H and Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance. Proc Natl Acad Sci USA 91: 8787–8791

    CAS  PubMed  Google Scholar 

  • Gounaris K, Barber J and Harwood JL (1986) The thylakoid membranes of higher plant chloroplasts. Biochem J 237:313–326

    CAS  PubMed  Google Scholar 

  • Gressel J (1982) Triazine herbicide interaction with a 32 000 Mr thylakoid protein—Alternative possibilities. Plant Sci Lett 25:99–106

    CAS  Google Scholar 

  • Guillot-Salomon T, Douce R and Signol M (1973) Rapport entre l’évolution ultrastructurale des feuilles de plantules étiolées de Maïs soumises à l’action de la lumière et la synthèse de nouvelles molecules de phosphatidylglycerol. Plant Sci Lett 1: 43–47

    Google Scholar 

  • Harwood JL (1991) Herbicides affecting chloroplast lipid synthesis. In: Baker NR and Percival MP (eds) Herbicides, pp 209–246. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Heinz E and Siefermann-Harms D (1981) Are galactolipids integral components of the chlorophyll-protein complexes in spinach thylakoids? FEBS Lett 124: 105–111

    Article  CAS  Google Scholar 

  • Helmsing PJ (1967) Hydrolysis of galactolipids by enzymes in spinach leaves. Biochim Biophys Acta 144:470–472

    CAS  PubMed  Google Scholar 

  • Helmsing PJ (1969) Purification and properties of galactolipase. Biochim Biophys Acta 178: 519–533

    CAS  PubMed  Google Scholar 

  • Henry LEA, Strasser RJ and Siegentnaler PA (1982) Alteration in the acyl lipid composition of thylakoids induced by aging and its effect on thylakoid structure. Plant Physiol 69:531–536

    CAS  Google Scholar 

  • Hideg E, Rozsa Z, Vaas I, Vigh L and Horváth G (1986) Effect of homogeneous catalytic hydrogenation of membrane lipids on luminescence characteristics of the Photosystem II electron transport. Photobiochem Photobiophys 12: 221–230

    CAS  Google Scholar 

  • Hirayama O and Matsui T (1976) Effects of lipolytic enzymes on the photochemical activities of spinach chloroplasts. Biochim Biophys Acta 423: 540–547

    CAS  PubMed  Google Scholar 

  • Hirayama O and Nomotobori JL (1978) Preparation and characterization of phospholipid-depleted chloroplasts. Biochim Biophys Acta 502: 11–16

    CAS  PubMed  Google Scholar 

  • Holloway PJ, Maclean DJ and Scott KJ (1983) Rate-limiting steps of electron transport in chloroplasts during ontogeny and senescence of barley. Plant Physiol 72: 795–801

    CAS  Google Scholar 

  • Horváth G, Droppa M, Szitó T, Mustárdy LA, Horváth LI and Vigh L (1986a) Homogeneous catalytic hydrogenation of lipids in the photosynthetic membrane: Effects on membrane structure and photosynthetic activity. Biochim Biophys Acta 849: 325–336

    Google Scholar 

  • Horváth G, Mansourian AR, Vigh L, Thomas PG, Joó F and Quinn PJ (1986b) Homogeneous catalytic hydrogenation of the polar lipids of pea chloroplasts in situ and the effects on lipid polymorphism. Chem Physics of Lipids 39: 251–264

    Google Scholar 

  • Horváth G, Melis A, Hideg E, Droppa M and Vigh L (1987) Role of lipids in the organization and function of Photosystem II studied by homogeneous catalytic hydrogenation of thylakoid membranes in situ. Biochim Biophys Acta 891: 68–74

    Google Scholar 

  • Horváth G, Droppa M, Hideg E and Rozsa Z (1989) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of chloroplasts with phospholipase A2-J Photochem Photobiol, B: Biology 3: 515–527

    Google Scholar 

  • Hoshina S (1979) Restoration of lysolecithin-induced inhibition of the Hill reaction in spinach chloroplasts by the addition of lecithin. Plant Cell Physiol 20:1107–1116

    CAS  Google Scholar 

  • Hoshina S and Nishida K (1975) Photoswelling and light-inactivation of isolated chloroplasts. II. Functional and structural changes in isolated chloroplasts under the influence of lysolecithin. Plant Cell Physiol 16:475–484

    CAS  Google Scholar 

  • Hugly S and Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202

    CAS  Google Scholar 

  • Hugly S, Kunst L, Browse J and Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90: 1134–1142

    CAS  Google Scholar 

  • Huner NPA, Krol M, Williams JP, Maissan E, Low PS, Roberts D and Thompson JE (1987) Low temperature development induces a specific decrease in trans-Δ3-hexadecenoic acid content which influences LHCII organization. Plant Physiol 84: 144–152

    Google Scholar 

  • Huner NPA, Williams JP, Maissan E, Mysscich EG, Krol A, Laroche E and Singh J (1989) Low temperature-induced decrease in trans-Δ3-hexadecenoic acid content is correlated with freezing tolerance in cereals. Plant Physiol 89: 144–152

    CAS  Google Scholar 

  • Ikeuchi M, Yuasa M and Inoue Y (1985) Simple and discrete isolation of an O2-evolving PS II reaction center complex retaining Mn and the extrinsic 33 kDa protein. FEBS Lett 185: 316–322

    Article  CAS  Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177

    CAS  PubMed  Google Scholar 

  • Jenkins GI and Woolhouse HW (1981) Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. II. The reactivity of Photosystems one and two and a note on the site of reduction of ferricyanide. J Exp Bot 32: 989–997

    CAS  Google Scholar 

  • Jordan BR, Chow WS and Baker AJ (1983) The role of phospholipids in the molecular organization of pea chloroplast membranes. Effect of phospholipid depletion on photosynthetic activities. Biochim Biophys Acta 725: 77–86

    CAS  Google Scholar 

  • Kanervo E, Aro EM and Murata N (1995) Low unsaturation level of thylakoid membrane lipids limits turnover of the D1 protein of Photosystem II at high irradiance. FEBS Lett 364: 239–242

    Article  CAS  PubMed  Google Scholar 

  • Krupa Z (1982) The action of lipases on chloroplast membranes. I. The release of plastocyanin from galactolipase-treated thylakoid membranes. Photosynth Res 3: 95–104

    Article  CAS  Google Scholar 

  • Krupa Z (1983) The action of lipase on chloroplast membranes. II. Polypeptide patterns of bean galactolipase-and phospholipase A2-treated thylakoid membranes. Photosynth Res 4: 229–239

    CAS  Google Scholar 

  • Krupa Z (1984) The action of lipases on chloroplast membranes. III. The effect of lipid hydrolysis on chlorophyll-protein complexes in thylakoid membranes. Photosynth Res 5: 177–184

    Article  CAS  Google Scholar 

  • Krupa Z and Baszynski T (1975) Requirement of galactolipids for Photosystem I activity in lyophilized spinach chloroplasts. Biochim Biophys Acta 408: 26–34

    CAS  PubMed  Google Scholar 

  • Krupa Z, Huner NPA, Williams JP and Maissan E (1987) Development at cold hardening temperatures. Plant Physiol 84: 19–24

    CAS  Google Scholar 

  • Kruse O and Schmid GH (1995) The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from Photosystem II-particles of the cyanobacterium Oscillatoria chalybea. Z Naturforsch 50c: 380–390

    Google Scholar 

  • Kruse O, Radunz A and Schmid GH (1994) Phosphatidylglycerol and β-carotene bound onto the D1-core peptide of Photosystem II in the filamentous cyanobacterium Oscillatoria chalybea. Z Naturforsch 49c: 115–124

    Google Scholar 

  • Ksenzenko VM, Zhukov EA, Romanenko VG and Molchanov MI (1994) Properties of Photosystem II pigment-lipid-protein complexes from bean chloroplast thylakoid membranes. Biochemistry 59: 271–276

    Google Scholar 

  • Kunst L, Browse J and Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85: 4143–4147

    CAS  Google Scholar 

  • Kunst L, Browse J and Somerville C (1989a) Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity. Plant Physiol 90: 846–853

    CAS  Google Scholar 

  • Kunst L, Browse J and Somerville C (1989b) Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. Plant Physiol 91: 401–408

    CAS  Google Scholar 

  • Laroche A, Beaumont G and Grenier G (1989) Analyse des lipides des chloroplastes isolés de Lemna minor en presence d’une concentration subléthale d’atrazine. Plant Physiol Biochem 27: 93–97

    CAS  Google Scholar 

  • Lee AG (1975) Segregation of chlorophyll a incorporated into lipid bilayers. Biochemistry 14: 4397–4402

    CAS  PubMed  Google Scholar 

  • Lehoczki E, Pölös E, Laskay G and Farkas T (1985) Chemical compositions and physical states of chloroplast lipids related to atrazine resistance in Conyza canadensis L. Plant Sci 42: 19–24

    Article  CAS  Google Scholar 

  • Lemoine Y, Dubacq JP and Zabulon G (1982) Changes in light-harvesting capacities and Δ3-trans-hexadecenoic acid in dark and light-grown Picea abies. Physiol Vég 20: 487–503

    CAS  Google Scholar 

  • Lemoine Y, Dubacq JP, Zabulon G and Ducruet JM (1986) Organization of the photosynthetic apparatus from triazine resistant and susceptible biotypes of several plant species. Can J Bot 64: 2999–3007

    CAS  Google Scholar 

  • Los D, Horváth I, Vigh L and Murata N (1993) The temperature-dependent expression of desaturase gene desA in Synecchocystis PCC 6803. FEBS Lett 318: 57–60

    Article  CAS  PubMed  Google Scholar 

  • Maresca B and Cossins AR (1993) Fatty feedback and fluidity. Nature 365: 606–607

    Article  CAS  PubMed  Google Scholar 

  • Matile P (1992) Chloroplast senescence. In: Barber N and Thomas H (eds) Crop Photosynthesis: Spatial and Temporal Determinants, pp 413–440. Elsevier, Amsterdam

    Google Scholar 

  • Mattoo AK and Edelman M (1987) Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-Kd herbicide-binding protein. Proc Natl Acad Sci USA 84:1497–1501

    CAS  PubMed  Google Scholar 

  • Mattoo AK, St John JB and Wergin WP (1984) Adaptative reorganization of protein and lipid components in chloroplast membranes associated with herbicide binding. J Cell Biochem 24: 163–175

    Article  CAS  PubMed  Google Scholar 

  • Mayor JP (1991) Rôle des lipides diacylés dans l’interaction des herbicides photosynthetiques avec les membranes thylacoïdales de Solarium nigrum L. et Spinacia oleracea L. Thesis, University of Neuchâtel, Switzerland

    Google Scholar 

  • McCourt P, Browse J, Watson J, Arntzen CJ and Somerville CR (1985) Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol 78: 853–858

    CAS  Google Scholar 

  • McCourt P, Kunst L, Browse J and Somerville CR (1987) The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol 84: 353–360

    CAS  Google Scholar 

  • Michalski WP and Kaniuga Z (1980) Photosynthetic apparatus in chilling-sensitive plants. VII. Comparison of the effect of galactolipase treatment of chloroplasts and cold-dark storage of leaves on photosynthetic electron flow. Biochim Biophys Acta 589: 84–99

    CAS  PubMed  Google Scholar 

  • Millner PA, Grouzis JP, Chapman DJ and Barber J (1983) Lipid enrichment of thylakoid membranes. I. Using soybean phospholipids. Biochim Biophys Acta 722: 331–340

    CAS  Google Scholar 

  • Moll BA, Eilmann M and Steinback KE (1987) Phosphorylation of thylakoid proteins of Oryza sativa. Characterization and effects of chilling temperature. Plant Physiol 83: 428–433

    CAS  Google Scholar 

  • Moon BY, Higashi SI, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    CAS  PubMed  Google Scholar 

  • Murata N and Nishida I (1990) Lipids in relation to chilling sensitivity of plants. In: Wang CY (ed) Chilling Injury of Horticultural Crops, pp 181–199. CRC Press, Boca Raton

    Google Scholar 

  • Murata N, Higashi S-I and Fujimura Y (1990) Glycerolipids in various preparations of Photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019:261–268

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizaki O, Higashi H, Tasaka Y and Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Murphy DJ (1982) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett 150: 19–26

    Article  CAS  Google Scholar 

  • Murphy D (1986a) The molecular organisation of the photosynthetic membranes of higher plants. Biochim Biophys Acta 864: 33–94

    CAS  Google Scholar 

  • Murphy D (1986b) Structural properties and molecular organization of the acyl lipids of photosynthetic membranes. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, New Series, Vol 19, Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems, pp 713–725. Springer-Verlag, Berlin

    Google Scholar 

  • Murphy D and Woodrow IE (1983) Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and its implications for the molecular organisation of photosynthetic membranes. Biochim Biophys Acta 725: 104–112

    CAS  Google Scholar 

  • Nénonéné EK. and Fragata M (1990) Effects of pH and freeze-thaw on photosynthetic oxygen evolution of Photosystem II particles incorporated into phosphatidylglycerol bilayers. J Plant Physiol 136:615–620

    Google Scholar 

  • Nishihara M, Yokota K and Kito M (1980) Lipid molecular species composition of thylakoid membranes. Biochim Biophys Acta 617: 12–19

    CAS  PubMed  Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    Article  CAS  PubMed  Google Scholar 

  • Percival MP and Baker NR (1991) Herbicidesandphotosynthesis. In: Baker NR and Percival MP (eds) Herbicides, Topics in Photosynthesis, Vol 10, pp 1–26. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Pfister K and Urbach W (1983) Effects of biocides and growth regulators: Physiological basis. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds) Encyclopedia of Plant Physiology, New Series, vol. 12D, pp 329–391. Springer Verlag, Berlin

    Google Scholar 

  • Pick U, Gounaris K., Admon A and Barber J (1984) Activation of the CF0-CF1, ATP synthase from spinach chloroplasts by chloroplast lipids. Biochim Biophys Acta 765: 12–20

    CAS  Google Scholar 

  • Pick U, Weiss M, Gounaris K and Barber J (1987) The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta 891:28–39

    CAS  Google Scholar 

  • Pillai P and St John JB (1981) Lipid composition of chloroplast membranes from weed biotypes differentially sensitive to triazine herbicides. Plant Physiol 68: 585–587

    CAS  Google Scholar 

  • Quinn PJ and Williams WP (1983) The structural role of lipids in photosynthetic membranes. Biochim Biophys Acta 737:223–266

    CAS  Google Scholar 

  • Quinn PJ, Joó F and Vigh L (1989) The role of unsaturated lipids in membrane structure and stability. Prog Biophys Molec Biol 53:71–103

    Article  CAS  Google Scholar 

  • Radunz A (1984) Serological investigations on the function of phospholipids in the thylakoid membrane. In: Sybesma C (ed), Advances in Photosynthesis Research, Vol III, pp 151–154. Martinus Nijhoff/Dr W Junk Publishers, The Hague

    Google Scholar 

  • Radunz A, Bader KP and Schmid GH (1984a) Serological investigations of the function of galactolipids in the thylakoid membrane. Z Pflanzenphysiol 114: 227–231

    CAS  Google Scholar 

  • Radunz A, Bader KP and Schmid GH (1984b) Influence of antisera to sulfoquinovosyl diglyceride and to β-sitosterol on the photosynthetic electron transport in chloroplasts from higher plants. In: Siegenthaler PA and Eichenberger W (eds) Structure, Function and Metabolism of Plant Lipids, pp 479–484. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Rawyler A and Siegenthaler PA (1981a) Transmembrane distribution of phospholipids and their involvement in electron transport, as revealed by phospholipase A 2 treatment of spinach thylakoids. Biochim Biophys Acta 635: 348–358

    CAS  PubMed  Google Scholar 

  • Rawyler A and Siegenthaler PA (1981b) Regulation of Photosystem I electron flow activity by phosphatidylglycerol in thylakoid membranes as revealed by phospholipase treatment. Biochim Biophys Acta 638: 30–39

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1985) Transversal localization of monogalactosyldiacylglycerol and digalactosyldiacylglycerol in spinach thylakoid membranes. Biochim Biophys Acta 815: 287–298

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1989) Change in the molecular organization of monogalactosyldiacylglycerol between resting and functioning thylakoid membranes. Involvement of the CF 0 -CF 1 -ATP synthetase. Biochim Biophys Acta 975: 283–292

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1996) Cyclodextrins: a new tool for the controlled lipid depletion of thylakoid membranes. Biochim Biophys Acta 1287: 89–97

    Google Scholar 

  • Rawyler A, Unitt MD, Giroud C, Davies H, Mayor JP, Harwood JL and Siegenthaler P A (1987) The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. Photosynth Res 11: 3–13

    Article  CAS  Google Scholar 

  • Rémy R, Trémolières A, Duval JC, Ambard-Bretteville F and Dubacq JP (1982) Study of the supramolecular organization of light-harvesting chlorophyll protein (LHCP). FEES Lett 137: 271–275

    Google Scholar 

  • Restall CJ, Williams WP, Percival MP, Quinn PJ and Chapman D (1979) The modulation of membrane fluidity by hydrogenation processes. III. The hydrogenation of biomembranes of spinach chloroplasts and a study of the effect of this on photosynthetic electron transport. Biochim Biophys Acta 555: 119–130

    CAS  PubMed  Google Scholar 

  • Rottenberg H, Grunwald T and Avron M (1972) Determination of ΔpH in chloroplasts. 1. Distribution of [14C]methylamine. Eur J Biochem 25: 54–63

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM and Browse J (1995) A role for membrane lipid trienoic fatty acids in photosynthesis at low temperatures. In: Matthis P (ed) Photosynthesis: From Light to Biosphere, Vol IV, pp 861–864. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sastry and Kates (1964) Hydrolysis of monogalactosyl and digalactosyl diglyceride by specific enzymes in runner-bean leaves. Biochemistry 3: 1280–1287

    CAS  Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M and Kawaguchi A (1995) Impaired Photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem 234: 16–23

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M and Kawaguchi A (1996) Photosynthetic characteristics of a mutant of Chlamydomonas reinhardtii impaired in fatty acid desaturation in chloroplasts. Biochim Biophys Acta 1274: 112–118

    Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 209–224. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Selstam E and Krol M (1995) Trimeric LHCII plants lacking 16:1t in phosphatidylglycerol. In: Mathis P (ed.) Photosynthesis: From Light to Biosphere, Vol 1, pp 95–98. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shaw AB, Anderson MM and McCarty RE (1976) Role of galactolipids in spinach chloroplastlamellarmembranes. Plant Physiol 57: 724–729

    Google Scholar 

  • Siefermans-Harms D, Ninnemann H and Yamamoto HY (1987) Reassembly of solubilized chlorophyll-protein complexes in proteolipid particles—comparison of monogalactosyldiacylglycerol and two phospholipids. Biochim Biophys Acta 892: 303–313

    Google Scholar 

  • Siegel CO, Jordan AE and Miller KR (1981) Addition of lipids to the photosynthetic membrane: Effects on membrane structure and energy transfer. J Cell Biol 91: 113–125

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1972) Aging of the photosynthetic apparatus. IV. Similarity between the effects of aging and unsaturated fatty acids on isolated spinach chloroplasts as expressed by volume changes. Biochim Biophys Acta 275: 182–191

    CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1973) Change in pH dependence and sequential inhibition of photosynthetic activity in chloroplasts by unsaturated fatty acids. Biochim Biophys Acta 305: 153–162

    CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1974) Inhibition of Photosystem II electron transport in chloroplasts by fatty acids and restoration of its activity by Mn2+. FEBS Lett 39: 337–340

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1998) Molecular organization of acyl lipids in photosynthetic membranes of higher plants. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 119–144. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siegenthaler PA and Depéry F (1976) Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to ΔpH, thylakoid internal pH and proton uptake. Eur J Biochem 61: 573–580

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler PA and Depéry F (1977) Aging of the photosynthetic apparatus. VI. Changes in pH dependence of ΔpH, thylakoid internal pH and proton uptake and relationships to electron transport. Plant Cell Physiol. 18: 1047–1055

    CAS  Google Scholar 

  • Siegenthaler PA and Mayor JP (1992) Changes in the binding and inhibitory properties of urea/triazine-type herbicides upon phospholipid and galactolipid depletion in the outer monolayer of thylakoid membranes. Photosynth Res 31: 57–68

    Article  CAS  Google Scholar 

  • Siegenthaler PA and Rawyler A (1977) Aging of the photosynthetic apparatus. V. Change in pH dependence of electron transport and relationships to endogenous free fatty acids. Plant Sci Lett 9: 265–273

    CAS  Google Scholar 

  • Siegenthaler PA and Rawyler A (1986) Acyl lipids in thylakoid membranes: distribution and involvement in photosynthetic functions. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, vol. 19, Photosynthesis III, pp 693–705. Springer Verlag, Berlin

    Google Scholar 

  • Siegenthaler PA and Vallino J (1995) Effect of a selective depletion of acyl lipids on the light and dark phosphorylation in spinach thylakoid membranes. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol III, pp 225–228. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siegenthaler PA, Rawyler A and Henry LEA (1981) A new type of correlation between changes in lipid composition and loss of electron transport activities during aging in vitro. In: Akoyunoglou G (ed) Photosynthesis II. Electron Transport and Photophosphorylation, pp 167–174. Balaban International Science Services, Philadelphia

    Google Scholar 

  • Siegenthaler PA, Smutny J and Rawyler A (1984) Involvement of hydrophilic and hydrophobic portions of phospholipid molecules in photosynthetic electron flow activities. In: Siegenthaler PA and Eichenberger W (eds) Structure, Function and Metabolism of Plant Lipids, pp 475–478. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Siegenthaler PA, Smutny J and Rawyler A (1987a) Involvement of distinct populations of phosphatidylglycerol and phosphatidylcholine molecules in photosynthetic electron-flow activities. Biochim Biophys Acta 891: 85–93

    CAS  Google Scholar 

  • Siegenthaler PA, Rawyler A and Giroud C (1987b) Spatial organization and functional roles of acyl lipids in thylakoid membranes. In: Stumpf PK, Mudd JB and Nes WD (eds) The Metabolism, Structure and Function of Plant Lipids, pp 161–168. Plenum Press, New York

    Google Scholar 

  • Siegenthaler PA, Rawyler A and Smutny J (1989a) The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim Biophys Acta 975:104–111

    CAS  Google Scholar 

  • Siegenthaler PA, Rawyler A and Mayor JP (1989b) Structural and functional aspects ofacyl lipids in thylakoid membranes from higher plants. In: Biacs PA, Gruiz K, and Kremer T (eds) Biological Role of Plant Lipids, pp 171–180. Akadémiai Kiado, Budapest and Plenum Publishing Corporation, New York

    Google Scholar 

  • Slusarenko AJ, Croft KP and Voisey CR (1991) Biochemical and molecular events in the hypersensitive response of bean to Pseudomonas syringae pv. phaseolicola. In: Smith CJ (ed) Proceedings of the Phytochemical Society of Europe. Biochemistry and Molecular Biology of Plant-Pathogen Interactions, pp 126–143. Clarendon Press, Oxford

    Google Scholar 

  • Smith AE (1972) Lipid influence on 2,4-D transport and accumulation. Weed Sci 20: 45–48

    Google Scholar 

  • Somerville C (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA 92: 6215–6218

    CAS  PubMed  Google Scholar 

  • Somerville C and Browse J (1991) Plant lipids: metabolism, mutants, and membranes. Science 252: 80–87

    CAS  Google Scholar 

  • Stidham MA, Siedow JN, McIntosh TJ, Porter NA and Moreland DE (1985) Effects of phenylamide herbicides on the physical properties of phosphatidylcholine membranes. Biochim Biophys Acta 812: 721–730

    CAS  PubMed  Google Scholar 

  • Szalontai B, Droppa M, Vigh L, Joó F and Horváth G (1986) Selectivity of homogeneous catalytic hydrogenation in saturation of double bonds of lipids in chloroplast lamellae. Photobiochem Photobiophys 10: 233–240

    CAS  Google Scholar 

  • Szejtli J (1990) The cyclodextrins and their applications in biotechnology. Carbohydrate Polymers 12: 375–392

    Article  CAS  Google Scholar 

  • Talbert DM and Camper ND (1983) Herbicide effects on liposome leakage. Weed Sci 31: 329–332

    CAS  Google Scholar 

  • Thomas H (1986) The role of polyunsaturated fatty acids in senescence. J Plant Physiol 123: 97–105

    CAS  Google Scholar 

  • Thomas PG, Brain APR, Quinn PJ and Williams WP (1985) Low pH and phospholipase A 2 treatment induce the phase-separation of non-bilayer lipids within pea chloroplast membranes. FEBS Lett 183: 161–166

    Article  CAS  Google Scholar 

  • Thomas PG, Quinn PJ and Williams WP (1986a) The origin of photosystem-I-mediated electron transport stimulation in heat-stressed chloroplasts. Planta 167:133–139

    Article  CAS  Google Scholar 

  • Thomas PG, Dominy PJ, Vigh L, Mansourian AR, Quinn PJ and Williams WP (1986b) Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim Biophys Acta 849:131–140

    CAS  Google Scholar 

  • Thompson JE (1988) The molecular basis for membrane deterioration during senescence. In: Nooden LD and Leopold AC (eds) Senescence and Aging in Plants, pp 51–83. Academic Press, New York

    Google Scholar 

  • Trémolières A and Siegenthaler PA (1998) Reconstitution of photosynthetic structures and activities with lipids. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 175–189. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Trémolières A, Darmecy H, Gasquez J, Dron M and Connan A (1988) Variation of trans-hexadecenoic content in two triazine resistant mutants of Chenopodium album and their susceptible progenitor. Plant Physiol 86: 967–970

    Google Scholar 

  • Tremoliéres A, Dainese P and Bassi R (1994) Heterogenous lipid distribution among chlorophyll-binding proteins of Photosystem II in maize mesophyll chloroplasts. Eur J Biochem 221:721–73

    PubMed  Google Scholar 

  • Tsvetkova NM, Brain APR and Quinn PJ (1994) Structural characteristics of thylakoid membranes of Arabidopsis mutants deficient in lipid fatty acid desaturation. Biochim Biophys Acta 1192: 263–271

    CAS  PubMed  Google Scholar 

  • Van Ginkel G and Fork DC (1981) The effect of ageing of spinach chloroplasts in vitro on the phase transition temperatures of thylakoid membranes. Photobiochem Photobiophys 2:239–243

    Google Scholar 

  • Vaughn KC and Duke SO (1984) Ultrastrucrural alterations to chloroplast in triazine-resistant weed biotypes. Physiol Plant 62:510–520

    Google Scholar 

  • Vigh L, Joo F, Droppa M, Horváth LI and Horváth G (1985) Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur J Biochem 147: 477–481

    CAS  PubMed  Google Scholar 

  • Vigh L, Gombos Z, Horváth I and Joo F (1989) Saturation of membrane lipids by hydrogenation induces thermal stability in chloroplast inhibiting the heat-dependent stimulatin of Photosystem I-mediated electron transport. Biochim Biophys Acta 979: 361–364

    CAS  Google Scholar 

  • Vigh L, Los DA, Horváth I and Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90: 9090–9094

    CAS  PubMed  Google Scholar 

  • Vijayan P, Routaboul JM and Browse J (1998) A genetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 263–285. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Voss R, Radunz A and Schmid GH (1992a) Glycolipids are prosthetic groups of polypeptides of the reaction center complex of Photosystem II. In: Argyroudi-Akoyunoglou JH (ed) Regulation of Chloroplast Biogenesis, pp 417–422. Plenum Press, New York

    Google Scholar 

  • Voss R, Radunz A and Schmid GH (1992b) Binding of lipids onto polypeptides of the thylakoid membrane. I. Galactolipids and sulpholipid as prosthetic groups of core peptides of the Photosystem II complex. Z Narurforsch 47c: 406–415

    Google Scholar 

  • Wada H and Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 65-81. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wada H, Gombos Z and Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  CAS  PubMed  Google Scholar 

  • Webb MS and Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060:138–158

    Google Scholar 

  • Williams WP (1994) The role of lipids in the structure and function of photosynthetic membranes. Prog Lipid Res 33: 119–127

    CAS  PubMed  Google Scholar 

  • Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 103–118. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wollenberger L, Stefansson H, Yu S-G and Albertsson P-A (1994) Isolation and characterization of vesicles originating from the chloroplast grana margins. Biochim Biophys Acta 1184:93–102

    CAS  Google Scholar 

  • Wu J and Browse J (1995) Elevated levels of high-melting-point phosphatidylglycerols do not induce chilling sensitivity in an Arabidopsis mutant. Plant Cell 7:17–27

    CAS  PubMed  Google Scholar 

  • Wu J, James DW Jr, Dooner HK and Browse J (1994) A mutant of Arabidopsis deficient in the elongation of palmitic acid. Plant Physiol 106:143–150

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lightner J, Warwick N and Browse J (1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2 °C. Plant Physiol 113: 347–356

    Article  CAS  PubMed  Google Scholar 

  • Xu YN and Siegenthaler PA (1996a) Phosphatidylglycerol molecular species of photosynthetic membranes analyzed by HPLC: theoretical considerations. Lipids 31: 223–229

    CAS  PubMed  Google Scholar 

  • Xu YN and Siegenthaler PA (1996b) Effect of non-chilling temperature and light intensity during growth of squash cotyledons on the composition of thylakoid membrane lipids and fatty acids. Plant Cell Physiol 37: 471–479

    CAS  Google Scholar 

  • Xu YN and Siegenthaler PA (1997) Low temperature treatments induce an increase in the relative content of both linolenic and Δ3-trans-hexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. Plant Cell Physiol 38:611–618

    CAS  Google Scholar 

  • Yamamoto Y, Ford RC and Barber J (1981) Relationship between thylakoid membrane fluidity and the functioning of pea chloroplasts. Effect of cholesterol hemisuccinate. Plant Physiol 67: 1069–1072

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Siegenthaler, PA., Trémolières, A. (1998). Role of Acyl Lipids in the Function of Photosynthetic Membranes in Higher Plants. In: Paul-André, S., Norio, M. (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-48087-5_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48087-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5173-3

  • Online ISBN: 978-0-306-48087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics