CLIMATE CHANGE: AN INTEGRATED PERSPECTIVE

ADVANCES IN GLOBAL CHANGE RESEARCH

VOLUME 1

Editor-in-Chief

Martin Beniston, Institute of Geography, University of Fribourg, Perolles, Switzerland

Editorial Advisory Board

- B. Allen-Diaz, Department ESPM-Ecosystem Sciences, University of California, Berkeley, CA, U.S.A.
- R.S. Bradley, Department of Geosciences, University of Massachusetts, Amherst, MA, U.S.A.
- W. Cramer, Department of Global Change and Natural Systems, Potsdam Institute for Climate Impact Research, Potsdam, Germany.
- H.F. Diaz, NOAA/ERL/CDC, Boulder, CO, U.S.A.
- S. Erkman, Institute for Communication and Analysis of Science and Technology ICAST, Geneva, Switzerland.
- M. Lal, Centre for Atmospheric Sciences, Indian Institute of Technology, New Delhi, India.
- M.M. Verstraete, Space Applications Institute, EC Joint Research Centre, Ispra (VA), Italy.

CLIMATE CHANGE: AN INTEGRATED PERSPECTIVE

Edited by

Pim Martens

International Centre for Integrative Studies (ICIS),
Maastricht University,
Maastricht. The Netherlands

and

Jan Rotmans

International Centre for Integrative Studies (ICIS),
Maastricht University,
Maastricht. The Netherlands

Co-editors:

Darco Jansen Koos Vrieze

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-90-481-5331-2 DOI 10.1007/978-0-306-47982-3 ISBN 978-0-306-47982-3 (eBook)

Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 1999 Kluwer Academic Publishers
Softcover reprint of the hardcover 1st edition 1999

No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

CONTENTS

Contributors	xiii
Preface	xv
Chapter 1: Climate change: an integrated perspective	1
(P. Martens, J. Rotmans)	
1.1 Introduction	1
1.2 Climate change in perspective	2
1.3 This book	5
Chapter 2: The climate system	11
(D. Jansen)	
2.1 Introduction	11
2.2 Radiation budget	12
2.2.1 The greenhouse effect	13
2.2.2 Greenhouse gases	14
2.2.3 The enhanced greenhouse effect	18
2.3 Circulation of energy	19
2.3.1 Atmospheric circulation	23
2.3.2 Oceanic circulation	26
2.4 Changing climate	33
2.4.1 Solar radiation and Milankovich	33
2.4.2 Albedo and albedo-temperature feedback	36
2.4.3 Greenhouse gases and the water vapour-temperature	
feedback	38
2.4.4 Crucial role of aerosols and clouds	38
2.5 Changing climate interacting with the different spheres	41
2.5.1 Cryosphere	42
2.5.2 Biosphere and biogeochemical feedbacks	45
2.5.3 Geosphere	48
2.6 Discussion	49
References	50

Chapter 3: Modelling of the climate system	51
(J. Shukla, J.L. Kinter, E.K. Schneider, D.M. Straus)	
3.1 Introduction	
3.2 Simple climate modelling	52
3.2.1 Energy balance climate models	52
3.2.2 Radiative-convective models	55
3.3 General circulation models (GCMs)	56
3.3.1 Introduction	56
3.3.2 Basic characteristics	58
3.3.3 Climate sensitivity	60
3.3.4 Atmospheric modelling	61
3.3.5 Ocean modelling	66
3.3.6 Modelling other subsystems	68
3.3.7 Choices in the philosophy and design of GCMs	70
3.3.8 Equilibrium experiments	72
3.3.9 Transient experiments	75
3.4 Model calibration	79
3.5 Model validation	82
3.5.1 Comparison with observational datasets	83
3.5.2 Inter-model comparison	87
3.6 Climate predictions	90
3.6.1 Prediction of seasonal to inter-annual variations	92
3.6.2 Prediction of decadal variations	95
3.6.3 Prediction of changes in variability due to climate	
change	96
3.7 Limitations in present climate modelling	97
3.7.1 The different subsystems	98
3.7.2 The complex interaction	100
3.8 Discussion	101
References	102
Chapter 4: Global biogeochemical cycles	105
(J. Rotmans, M. den Elzen)	
4.1 Introduction	105
4.2 The global carbon cycle	106
4.2.1 Introduction	106
4.2.2 The present global carbon cycle	108
4.2.3 Anthropogenic perturbation of the global carbon cycle	110
4.2.4 Conclusions	112
4.3 The global nitrogen cycle	112
4.3.1 Introduction	112

4.3.2 The present nitrogen cycle	112
4.3.3 Anthropogenic disturbance of the global nitrogen cycle	118
4.3.4 Conclusions	122
4.4 The global phosphorus cycle	122
4.4.1 Introduction	122
4.4.2 The present phosphorus cycle	123
4.4.3 Anthropogenic perturbation of the global phosphorus	
cycle	126
4.4.4 Conclusions	127
4.5 The global sulphur cycle	127
4.5.1 Introduction	127
4.5.2 The present sulphur cycle	128
4.5.3 Anthropogenic perturbation of the global sulphur cycle	131
4.5.4 Conclusions	132
4.6 Interaction between the global element cycles and climate change	132
4.7 Discussion	136
References	137
Chapter 5: Causes of greenhouse gas emissions	143
(K. Chatterjee)	
5.1 Introduction	143
5.2 Industry	148
5.2.1 Main developments in developed countries	148
5.2.2 Main developments in developing countries	149
5.2.3 Chemical industry	150
5.2.4 Non-chemical industrial sectors	151
5.2.5 Future projections	154
5.3 Energy resources	154
	155
6,	158
63	165
	166
•	167
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	167
	168
	169
	170
	171
	171
	180
	180
5.6 Agriculture	182

5.6.1 Agricultural activities	182
5.6.2 International trade	185
5.7 Transport	187
5.7.1 Road transport	188
5.7.2 Air transport	191
5.7.3 Rail transport	192
5.7.4 Marine transport	194
5.8 Discussion	195
5.9 Conclusions	196
References	198
Chapter 6: Impacts of climate change	201
(M.L. Parry, P. Martens)	
6.1 Introduction	201
6.2 Methodology of impact assessment	201
6.2.1 Approaches to the assessment of impacts	202
6.2.2 The selection of methods for impact assessment	204
6.3 Assessments of impacts in different systems and sectors	210
6.3.1 Sea-level rise, coastal zones and small islands	210
6.3.2 Impacts on food and fibre production	213
6.3.3 Impacts on water supply and use	220
6.3.4 Impacts on terrestrial and aquatic ecosystems	223
6.3.5 Human health	227
6.4 Adapting to climate change	233
6.5 Discussion	234
References	235
Chapter 7: Integrated Assessment modelling	239
(J. Rotmans, M. van Asselt)	
7.1 Introduction	239
7.2 Methods for integrated assessment	241
7.3 IA modelling	244
7.3.1 History	244
7.3.2 Model typology	244
7.3.3 IA-cycle	253
7.4 Critical methodological issues in IA modelling	255
7.4.1 Aggregation versus disaggregation	255
7.4.2 Treatment of uncertainty	257
7.4.3 Blending qualitative and quantitative knowledge	259
7.5 Challenges	259
7.5.1 IA modelling of population and health	263

7.5.2 IA modelling of consumption behaviour	264
7.5.3 Multi-agent modelling	266
7.5.4 Regional IA modelling	266
7.6 The next generations of IA models	269
References	271
Chapter 8: Perspectives and the subjective dimension in	1
modelling	277
(M. van Asselt, J. Rotmans)	
8.1 Introduction	277
8.2 From subjectivity to plurality	280
8.3 Framework of perspectives	283
8.4 Methodology of multiple model routes	295
8.5 Application of multiple model routes	303
8.6 Conclusions	311
References	313
Chapter 9: Global decision making: climate change poli	itics
(J. Gupta)	319
9.1 Introduction	319
9.2 From scientific description to problem definition	320
9.2.1 Scientific uncertainty and controversy	320
9.2.2 Types of science and problems	321
9.2.3 The use of science by policy makers	325
9.2.4 From scientific issue to political agenda item	328
9.2.5 An integrated science-policy model	329
9.3 The technocratic stage – I	332
9.3.1 Regime formation: a brief history	332
9.3.2 Different country positions	334
9.3.3 The North-South angle	336
9.3.4 The consensus in the climate convention	337
9.3.5 Information sufficient for euphoric negotiation	338
9.4 The adhocracy stage – II	339
9.4.1 Underlying North-South conflicts: problem definition,	
science, values and solutions	339
9.4.2 Underlying domestic conflicts: environment versus	
growth	344
9.4.3 A stage of slow-down?	345
9.5 Beyond adhocracy: stage III and IV	346
9.5.1 Resolving domestic issues: the stakeholder model (III)	346
9.5.2 International issues: beyond the stakeholder	

approach (IV)	348
9.6 Conclusion	349
References	350
Chapter 10: Epilogue: scientific advice in the world of p	owe
politics	357
(S. Boehmer-Christiansen)	
10.1 Introduction	357
10.2 The role of scientific advice and the climate treaty	362
10.2.1 Moving towards implementation?	362
10.2.2 Early doubts: scientific uncertainty and interests	364
10.2.3 Believing scientific advice on climate change	365
10.2.4 The need for transparency	367
10.2.5 Nightmares of policy-makers	368
10.3 Eleven uses of science in politics	370
10.3.1 Concepts and definitions: what is politics?	370
10.3.2 Politics as purposeful activity involving the use of	
power by institutions	370
10.3.3 The allocation of public resources and the research	
enterprise	372
10.3.4 The functions of science in politics	373
10.3.5 The gap between policy models and policy	
implementation	377
10.3.6 The ultimate irrelevance of the natural sciences?	380
10.4 The origin of scientific advice on climate change and its linkage	
to energy policy	380
10.4.1 From weather modification to a New Ice Age and the	
limits of growth	380
10.4.2 Aggressive expansion of climate research	382
10.4.3 The Advisory Group on Greenhouse Gases:	
'independent science' warns	384
10.4.4 A call for a global convention and policy advocacy	
turn against fossil fuels	385
10.4.5 From non-governmental to intergovernmental science:	
ambiguity prevails	386
10.5 The research enterprise attracts powerful allies	388
10.5.1 The United Nations seek an environmental role	388
10.5.2 Energy lobbies seek opportunities	389
10.5.3 Threatened national bureaucracies also seek	
sustainability	390
10.6 Conclusions: the environment in global politics	392

Λ	.1

10.7 Questions for further thought and discussion References	395 397
Index	405

CONTRIBUTORS

M. van Asselt International Centre for Integrative Studies (ICIS) Maastricht University Maastricht, The Netherlands

S. Boehmer-Christiansen Department of Geography, Faculty of Science and the Environment, University of Hull, Hull, UK

K. Chatterjee Development Alternatives Global Environment Systems Branch New Delhi, India

M. den Elzen Dutch National Institute of Health and the Environment Bilthoven, The Netherlands J. Gupta
Institute for Environmental
Studies
Free University
Amsterdam, The Netherlands

D. Jansen
Faculty of Natural Sciences
Department of Environmental
Science and Engeneering
Open University
Heerlen, The Netherlands

J. Kinter Center for Ocean-Land-Atmosphere Studies Calverton, USA

P. Martens
International Centre for
Integrative Studies (ICIS)
Maastricht University
Maastricht, The Netherlands

M. Parry Jackson Environment Institute School of Environmental Sciences University of East Anglia Norwich, UK

J. Rotmans
International Centre for
Integrative Studies (ICIS)
Maastricht University
Maastricht, The Netherlands

E. Schneider Center for Ocean-Land-Atmosphere Studies Calverton, USA J. Shukla Center for Ocean-Land-Atmosphere Studies Calverton, USA

D. Straus Center for Ocean-Land-Atmosphere Studies Calverton, USA

K. Vrieze Department of Mathematics Maastricht University Maastricht, The Netherlands

PREFACE

Several years ago the Open University in Heerlen and Maastricht University decided to launch a course on 'Climate and the Environment', with a diverse team of authors. Both natural and social scientists, from several regions of the world, contributed to this book. Initially, the book was intended as a textbook within this course for students of Environmental Sciences programmes at the Open University and Maastricht University. As the book developed it became clear that it would be an excellent source to anyone professionally engaged in the wide area of the enhance greenhouse effect.

This notion and new developments at the Open University at the time when the first draft was finished, caused a change of plan: the book should not only be written at the student-level, but should also reach the diverse group of policy-makers and scientists. Also the title of the book changed into 'Climate Change: An Integrative Perspective'. It then took another few years before we could complete the manuscript as it lies in front of you.

This book aims to give you, the reader, a clear understanding of the nature of global climate change. It also makes clear what is known about the problem, and what is unknown or uncertain. It furthermore advocates the need for an integrative perspective to analyse and understand the complexity of the climate phenomenon. We are convinced that an integrated perspective can provide a useful guide to the problem of global climate change, and complement detailed analyses that cover only some parts of this complex problem.

Given the long history, many people contributed directly or indirectly to this book. First of all, we would like to thank the authors, for continuously updating their chapters as the book developed, and for their patience all throughout. Furthermore, we would like to thank all colleagues at the Open University and at the International Centre for Integrative Studies (ICIS) at Maastricht University for their help in finalising this book. Special thanks to Debby Jochems and Janneke Hogervorst for their efforts in proof-reading the final version of this book.

Pim Martens & Jan Rotmans

Maastricht, June 1999