Skip to main content

Gene Regulation in Melanoma Metastasis

  • Chapter
Cancer Metastasis — Related Genes

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 3))

  • 175 Accesses

Abstract

The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP, metastatic phenotype) are not very well defined. We previously demonstrated that expression of the cell surface adhesion molecule MCAM/MUC18 correlates directly with the metastatic potential of human melanoma cells. In addition, the progression of human melanoma towards the metastatic phenotype is associated with loss of expression of the tyrosine-kinase receptor c-KIT. We found that both genes MCAM/MUC18 and c-KIT, are regulated by the transcription factor AP-2 and that metastatic melanoma cells do not express AP-2. Re-expression of AP-2 in highly metastatic cells decreased their tumorigenicity and inhibited their metastatic potential in nude mice, while expression of dominant-negative AP-2 gene (AP- 2B) augmented their tumor growth in vivo. The AP-2 transfected cells displayed down regulation of MCAM/MUC18 and MMP-2 and re-expression of the c-KIT receptor. Because AP-2 also regulates other genes that are involved in the progression of human melanoma, such as E-cadherin, p21/WAF-1, HER-2, Bc1-2, IGF-R1, FAS/APO-1 and the thrombin receptor (PAR-1), we propose that loss of AP-2 is a critical event in the development of malignant melanoma. The progression of human melanoma from RGF to VGP is also associated with over expression of the transcription factors CREB and ATF-1. We found that CREB/ATF-1 may act as survival factors for melanoma cells. In addition, some of the genes regulated by AP-2 such as MCAM/MUC18, MMP-2 and FAS/APO-1 are also regulated by CREB/ATF-1. It is therefore feasible that the balance between AP-2 and CREB/ATF-1 expression is among the factors determining the acquisition of the metastatic phenotype in human melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fountain JW, Bale SJ, Housman DE. Genetics of melanoma. Cancer Surv 1990; 645–71.

    Google Scholar 

  2. Ahmed I. Malignant melanoma: Prognostic indicators. Mayo Clin Proc 1997; 72:356–61.

    Article  PubMed  CAS  Google Scholar 

  3. Dooley T. Recent advances in cutaneous melanoma oncogenesis research. Oncol Res 1994; 6:1–9.

    PubMed  CAS  Google Scholar 

  4. Clark WH, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–1165.

    PubMed  Google Scholar 

  5. Bar-Eli M. Molecular mechanisms of melanoma metastasis. J Cell Physiol 1997; 173: 275–78.

    Article  PubMed  CAS  Google Scholar 

  6. Luca MR, Bar-Eli M. Molecular changes in human melanoma metastasis. Histol Histopath 1998; 13: 1225–1231.

    CAS  Google Scholar 

  7. Fidler IJ. Critical factors in the biology of human cancer metastasis. Cancer Res 1990; 50: 61.

    Google Scholar 

  8. Lassam N, Bickford S. Loss of c-KIT expression in cultured melanoma cells. Oncogene 1992;7:51–56.

    PubMed  CAS  Google Scholar 

  9. Natali PG, Nicotra MR, Winkler AB, Cavaliere R, Bigotti A Ullrich A. Progression of human cutaneous melanoma is associated with loss of expression of c-KIT protooncogene receptor. Int J Cancer 1992; 52: 197–201.

    PubMed  CAS  Google Scholar 

  10. Zakut R, Perlis R, Eliyau S, Yarden Y, Givol D, Lyman SD, Halaban R. KIT ligand (mast cell growth factor) inhibits the growth of KIT-expressing melanoma cells. Oncogene 1993; 8: 2221–2229.

    PubMed  CAS  Google Scholar 

  11. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Mumenitus S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A. A human proto-oncogene c-KIT: a new cell surface receptor tyrosine kinase for an identified ligand. EMBO J 1987; 6: 3342–3351.

    Google Scholar 

  12. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The protooncogene c-KIT encoding a trans-membrane tyrosine kinase receptor maps to the mouse W locus. Nature 1988; 335: 88–89.

    Article  PubMed  CAS  Google Scholar 

  13. Geisler EN, Ryan MA, Housman DE. The dominant white spotting (W) locus of the mouse encodes the c-KIT protooncogene. Cell 1988; 185–192.

    Google Scholar 

  14. Zsebo KM, Williams DA, Geissler, EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC, Jacobson FW, Langley KE, Smith KA, Takeishi T, Cattanach BM, Galli SJ, Snuggs, S. Stem cell factor is encoded at the SL locus of the mouse and is the ligand for the c-KIT tyrosine kinase receptor. Cell 1990; 63: 213–224.

    PubMed  CAS  Google Scholar 

  15. Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P. Expression of the c-KIT gene products in known cellular targets of W mutations in normal and W mutant mice: Evidence for impaired c-KIT kinase in mutant mice. Genes Dev 1989; 3: 816–826.

    PubMed  CAS  Google Scholar 

  16. Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson D, Cosman D, Bedell MA, Jenkins NA, Coopeland NG. Steel-Dickie mutation encodes a c-KIT ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 1991; 88: 4671–4674.

    PubMed  CAS  Google Scholar 

  17. Nishikawa S, Kusakabe M, Yoshingaga K, Ogawa M, Hayashi SI, Kunisada T, Era T, Sakakura T, Nishikawa SI. In vitro manipulation of coat color formation by a monoclonal anti-c-KIT antibody: two distinct waves of c-KIT dependency during melanocyte development. EMBO J 1991; 10: 2111–2118.

    PubMed  CAS  Google Scholar 

  18. Giebel LB, Spritz RA. Mutation of the KIT (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism. Proc Natl Acad Sci. USA 1991; 88; 8696–8699.

    PubMed  CAS  Google Scholar 

  19. Fleischman RA, Saltman KL, Stastny V, Zneimer S. Deletion of the c-KIT protooncogene in the human development defect piebald trait. Proc Natl Acad Sci USA 1991; 88: 10885–10889.

    PubMed  CAS  Google Scholar 

  20. Huang S, Luca M, Gutman M, McConkey DJ, Langley KE, Lyman SD, Bar-Eli M. Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene 1996;13; 2339–2347.

    PubMed  CAS  Google Scholar 

  21. Sers C, Kirsch K, Rothbacher U, Riethmuller G, Johnson JP. Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains. Proc Natl Acad Sci USA 1993; 90: 8514–8518.

    PubMed  CAS  Google Scholar 

  22. Xie S, Huang S, Luca M, Gutman M, Reich R, Johnson JP, Bar-Eli M. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res 1997; 57: 2295–2303.

    PubMed  CAS  Google Scholar 

  23. Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M. Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res 54; 2514–2520, 1995.

    Google Scholar 

  24. Johnson JP, Bar-Eli M, Jansen B, Markhuf E: Melanomaprogression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer 1997; 73: 769–774.

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 76,000. Cancer Res 1987; 47: 841–845.

    PubMed  CAS  Google Scholar 

  26. Holzmann B, Brocker EB, Lehmann JM, Rutter DJ, Sorg C, Riethmuller G, Johnson JP. Tumor progression in human melanoma: five stages defined by their antigenic phenotypes. Int J Cancer 1987; 39: 466–471.

    PubMed  CAS  Google Scholar 

  27. Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 1970; 172: 902–908.

    PubMed  CAS  Google Scholar 

  28. Luca M, Hunt B, Bucana CD, Johnson JP, Fidler IJ, Bar-Eli M. Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res 1993; 3: 35–41.

    PubMed  CAS  Google Scholar 

  29. Bani MR, Rak J, Adachi D, Wiltshire R, Trent JM, Kerbel RS, Ben-David Y. Multiple features of advancedmelanoma recapitulated in tumorigenic variants of early state (radial growth phase) human melanoma cell lines: evidence for a dominant phenotype. Cancer Res 1996; 56: 3075–3086.

    PubMed  CAS  Google Scholar 

  30. Bar-Eli M. Role of AP-2 in tumor growth and metastasis of human melanoma. Cancer Met Rev 1999; 18: 377–385.

    CAS  Google Scholar 

  31. Williams T, Admon A, Luscher B, Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 1988; 2: 1557–1569.

    PubMed  CAS  Google Scholar 

  32. Gaynor RB, Muchardt C, Xia YR, Klisak I, Mohandas T, Sparkes RS Lusis AJ. Localization of the gene for the DN A-binding protein AP-2 to human chromosome 6p 22.3 pter. Genomics 1991;10: 1100–1102.

    Article  PubMed  CAS  Google Scholar 

  33. Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991; 5:105–119.

    PubMed  CAS  Google Scholar 

  34. Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: Enhancer-binding protein AP-2 is inhibited by SV40 antigen. Cell 1987; 50: 847–861.

    Article  PubMed  CAS  Google Scholar 

  35. Williams T, Tjian R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 1991; 251: 1067–1071.

    PubMed  CAS  Google Scholar 

  36. Buettner R, Kannan P, Imhof A, Bauer R, Yim SO, Glackshuber R, van Dyke MW, Tainsky MA. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation of AP-2. Mol Cell Biol 1993; 13: 4174–4185.

    PubMed  CAS  Google Scholar 

  37. Luscher B, Mitchell PJ, Williams T, Tjian R. Regulation of transcriptional factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev 1989; 3: 1507–1517.

    PubMed  CAS  Google Scholar 

  38. Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 1996; 381: 235–238.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP, Flavell RA, Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 1996; 381: 238–241.

    Article  PubMed  CAS  Google Scholar 

  40. Yamamoto K, Tojo A, Aoki N, Shibuya A. Characterization of the promoter region of the human c-KIT protooncogene. Japan J Cancer Res 1993; 84: 1136–1144.

    CAS  Google Scholar 

  41. Huang S, Jean D, Luca M, Tainsky M, Bar-Eli M. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J 1998; 17: 4358–4369.

    PubMed  CAS  Google Scholar 

  42. Luca M, Xie S, Gutman M, Huang S, Bar-Eli M. Abnormalities in the CDKN2 (p16INK4/mts-I gene in human melanoma cells: Relevance to tumor growth and metastasis. Oncogene 1995; 11: 1399–1402.

    PubMed  CAS  Google Scholar 

  43. Jean D, Gershenwald JE, Huang S, Luca M, Hudson MJ, Tainsky AM, Bar-Eli M. Loss of AP-2 results in upregulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem 1988; 273: 16501–16508.

    Google Scholar 

  44. Gershenwald JE, Sumner W, Calderone T, Wang Z, Huang S, Bar-Eli. Dominantnegative transcription factor AP-2 augments melanoma tumor growth in vivo. (Submitted).

    Google Scholar 

  45. Liotta LA. Tumor invasion and metastases — role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 1986; 46: 1–7.

    PubMed  CAS  Google Scholar 

  46. Liotta LA, Stetler-Stevension Wg. Metalloproteinases and cancer invasion. Semin Cancer Biol 1990; 2: 99–106.

    Google Scholar 

  47. Blood CH, Zetter BR. Tumor interactions with the vaculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1990; 1032: 89–118.

    PubMed  CAS  Google Scholar 

  48. Karelina TV, Goldberg GI, Eisen AZ. Matrix metalloproteinases in blood vessel development in human fetal skin and in cutaneous tumors. J Invest Dermatol 1995; 105:411–417.

    Article  PubMed  CAS  Google Scholar 

  49. Frisch SM, Morisaki JH. Positive and negative transcriptional elements of the human type IV colleganase gene. Mol Cell Biol 1990; 12:6524–6532.

    Google Scholar 

  50. Hofmann, UB, Westphal JR, Waas ET, Zendman AJ, Cornelissen IM, Ruiter DJ, van Muijen GN. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 1999; 81: 774–782.

    Article  PubMed  CAS  Google Scholar 

  51. Vaisanen A, Kallioinen M, Taskinen PJ, Turpeenniemi-Hujanen T. Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma. J Pathol 1998; 186: 51–58.

    PubMed  CAS  Google Scholar 

  52. Vaisanen A, Killioinen M, von Dickhoff K, Laatikainen L, Hoyhtya M, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) immunoreactive protein-a new prognostic marker in uveal melanoma? J Pathol 1999; 188: 56–62.

    PubMed  CAS  Google Scholar 

  53. Qin H, Sun Y, Benveniste EN. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem 1999; 274: 29130–29137.

    PubMed  CAS  Google Scholar 

  54. Somassundaram K, Jayaraman G, Williams T, Moran E, Frisch S, Thimmapaya B. Repression of a matrix metalloproteinase gene by EIA correlates with its ability to bind to cell type-specific transcription factor AP-2. Proc Natl Acad Sci USA 1996; 93: 3088–3093.

    Google Scholar 

  55. Luca M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M. Expression of IL-8 by human melanoma cells upregulates MMP-2activity and increases tumor growth and metastasis. Am J Pathol 1997; 151: 1105–1113.

    PubMed  CAS  Google Scholar 

  56. Singh RK, Gutman M, Reich R, Bar-Eli. Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Res 1995; 55:3669–3674.

    PubMed  CAS  Google Scholar 

  57. Cowley GP, Smith ME. Cadherin expression in melanocytic naevi and malignant melanomas. Am J Pathol 1996; 197: 183–187.

    Google Scholar 

  58. Jiang H, Lin J, Su ZZ, Herlyn M, Kerbel RS, Weissman BE, Welch DR, Fisher PB. The melanoma differentiation-associated gene mda-6, which encodes the cyclindependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 1995; 10: 1855–1864.

    PubMed  CAS  Google Scholar 

  59. Vidal MJ, Loganzo F, Jr, de Oliveira AR, Hayward NK, Albino AP. Mutations and defective expression of the WAF-1 p21 tumor-suppressor gene in malignant melanomas. Melanoma Res 1995; 5: 243–250.

    PubMed  CAS  Google Scholar 

  60. Natali PG, Nicotra MR, Digiesi G, Cavaliere R, Bigotti A, Trizio D, Segatto O. Expression of gp 185 HER-2 in human cutaneous melanoma: Implications for experimental imunotherapeutics. Int J Cancer 1994; 56:341–346.

    PubMed  CAS  Google Scholar 

  61. Descheemaeker KA, Syns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP-1-like, AP-2-like and SP-1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem 1992; 267: 15086–15091.

    PubMed  CAS  Google Scholar 

  62. van den Oord JJ, Vandeghinste N, De Ley M, De Wolf-Peeters C. Bc1-2 expression in human melanocytes and melanocytic tumors. Am J Pathol 1994; 145: 294–300.

    PubMed  Google Scholar 

  63. Bosher JM, Williams T, Hurst HC. The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci USA 1995; 92: 744–747.

    PubMed  CAS  Google Scholar 

  64. Zeng YX, Somasundaran K, El-Deiry WS. AP-2 inhibits cancer cell growth and activates p21/WAF-1 expression. Nature Genet 1997; 15:78–82.

    Article  PubMed  CAS  Google Scholar 

  65. Karjalainen JM, Kellokoski JK, Eskelinen MJ, Alhava EM, Kosma V-M. Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol 1998; 16: 3584–3591.

    PubMed  CAS  Google Scholar 

  66. Halaban R, Pomerantz SH, Marshall S, Lambert DT, Lerner AB. Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol 1983; 97: 480–488.

    Article  PubMed  CAS  Google Scholar 

  67. Halaban R, Pomerantz SH, Marshall S, Lerner AB. Tyrosinase activity and abundance in Cloudman melanoma cells. Arch Biochem Biophys 1984; 230: 383–387.

    Article  PubMed  CAS  Google Scholar 

  68. Halaban R, Ghosh S, Baird A. bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev Biol 1987; 26: 47–52.

    Google Scholar 

  69. Meyer TE, Habener JF. Cyclic adenosine 3N,5N-monophosphate response element binding protein (CREB) and related transcrption-activating deoxyribonucleic acidbinding proteins. Endocr Rev 1993; 3: 269–290.

    Google Scholar 

  70. Lee KA, Masson N. Transcriptional regulation by CREB and its relatives. Biochim Biophys Act 1993; 3: 221–233.

    Google Scholar 

  71. Lemaigre FP, Ace CI, Green MR. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucl Acids Res 1993; 21: 2907–2911

    PubMed  CAS  Google Scholar 

  72. Hurst HC, Totty NF, Jones NC. Identification and functional characterization of the cellular activatingtranscription factor 43 (ATF-43) protein. Nucl Acids Res 1991; 19: 4601–4609.

    PubMed  CAS  Google Scholar 

  73. Rehfuss RP, Walton KM, Loriaux MM, Goodman RH. The cAMP-regulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase. J Biol Chem 1991; 266: 18431–18434.

    PubMed  CAS  Google Scholar 

  74. Ruthberg SE, Goldstein IM, Yang YM, Stackpole CW, Ronai Z. Expression and transcriptional activity of AP-1, CRE, and URE binding proteins in B16 mouse melanoma subclones. Mol Carcinog 1994; 10: 82–87.

    Google Scholar 

  75. Bohm M, Moellman G, Cheng E, Alvarez-Franco M, Wagner S, Sassone-Corsi P, Halaban R. Identification of p90RSK as the probable CREB-Ser 133 kinase in human melanocytes. Cell Growth Differ 1995; 6: 291–302.

    PubMed  CAS  Google Scholar 

  76. Walton KM, Rehfuss RP, Chriva JC, Lochner JE, Goodman RH. A dominant repressor of cyclic adenosine 3N,5N-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostain promoter in vivo. Mol Endocrinol 1992; 6: 647–655.

    Article  PubMed  CAS  Google Scholar 

  77. Woloshin PI, Walton KM, Rehfuss RP, Goodman RH, Cone RD. 3N,5N-Cyclic adenosine monophosphate-regulated enhancer binding (CREB)activity is required for normal growth and differentiated phenotype in the FRTL5 thyroid follicular cell line. Mol Endocrinol 1992; 6: 1725–1733.

    Article  PubMed  CAS  Google Scholar 

  78. Yang YM, Dolan LR, Ronai Z. Expression of dominant negative CREB reduces resistance to radiation of human melanoma cells. Oncogene 1996;12: 2223–2233.

    PubMed  CAS  Google Scholar 

  79. Xie S, Price JE, Luca M, Jean D, Ronai Z, Bar-Eli M. Doninant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997; 15: 2069–2075.

    PubMed  CAS  Google Scholar 

  80. Jean D, Bar-Eli M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factors family. Mol Cell Bioch 2000; 212: 19–28.

    CAS  Google Scholar 

  81. Huhtala P, Chow LT, Tryggvason K. Structure of human type IV collagenase gene. J Biol Chem 1990; 265: 11077–11082.

    PubMed  CAS  Google Scholar 

  82. Lehmann JM, Riethmuller G, Johnson JP. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Adad Sci USA 1989; 86: 9891–9895.

    CAS  Google Scholar 

  83. Ray JM, Stetler-Stevenson WG. Gelatinase A activity directly modulates melanoma cell adhesion spreading. EMBO J 1995; 14: 908–917.

    PubMed  CAS  Google Scholar 

  84. McConkey DJ, Nicotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytoslolic Ca2+ concentration. Arch Biochem Biophys 1996; 269: 365–370.

    Google Scholar 

  85. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. J Leukoc Biol 1996; 59:775–59.783.

    PubMed  CAS  Google Scholar 

  86. Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989; 59: 675–680.

    Article  PubMed  CAS  Google Scholar 

  87. Sheng M, Thompson MA, Greenberg ME. EB: A Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 1991; 252: 1427–1430.

    PubMed  CAS  Google Scholar 

  88. Thastrup O., Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca(2+) stores by specific inhibition of the endoplasmic reticulum Ca(2+)-ATPase. Proc Natl Acad Sci USA 1990; 87: 2466–2470.

    PubMed  CAS  Google Scholar 

  89. Muthukkumar S, Nair P, Sells SF, Maddiwar NG, Jacob RJ Rangnekar VM. Role of EGR-1 in thapsigargin-inducible apoptosis in the melanoma cell line A375-C6. Mol Cell Biol 1995; 15: 6262–6272.

    PubMed  CAS  Google Scholar 

  90. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 1998; 273: 24884–24890.

    PubMed  CAS  Google Scholar 

  91. Liu F, Thompson MA, Wagner S, Greenberg ME, Green MR. Activating transcription factor-1 can mediate Ca(2+) and cAMP-inducible transcriptional activation. J Biol Chem 1993; 268: 6714–6720.

    PubMed  CAS  Google Scholar 

  92. Raag R, Whitlow M. Single-chain Fvs, FASEB J 1995; 1: 73–80.

    Google Scholar 

  93. Winter G, Milstein C, Man-mad antibodies. Nature 1991; 349: 293–299.

    Article  PubMed  CAS  Google Scholar 

  94. Grim J, Deshane J, Feng M, Lieber A, Kay M, Curiel DT. erbB-2 knockout employing an intracellular single-chain antibody (sFv) accomplishes specific toxicity in erbB-2 expressing lung cancer cells. Am J Respir Cell Mol Biol 1996; 15: 348–354.

    PubMed  CAS  Google Scholar 

  95. Graus-Porta D, Beerli R, Hyns N. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 1995; 3: 1182–1191.

    Google Scholar 

  96. Richardson JH, Sodroski JG, Waldmann TA, Marasco WA. Phenotypic knockout of the high-affinity human interleukin 2 receptor by intracellular single-chain antibodies against the alpha subunit of the receptor. Proc Natl Acad Sci USA. 1995; 8:3137–3141.

    Google Scholar 

  97. Caron de Fronmentel C, Gruel N, Venot C, Debussche L, Conseiller E, Dureuil C, Teillaud JL, Tocque B, Bracco L. Restoration of transcriptional activity of p53 mutants in tumor cells by intracellular expression of anti-p53single chain Fv fragments. Oncogene 1999; 2: 551–557.

    Google Scholar 

  98. Orten DJ, Strawhecker JM, Sanderson SD, Huang D, Prytowsky MB Hinrichs SH. Differential effects of monoclonal antibodies on activating transcription factor-1 and cAMP response element binding protein interactions with DNA. J Biol Chem 1994; 51:32254–32263

    Google Scholar 

  99. Jean D, Tellez C, Huang S, Davis DW, Bruns CJ, McConkey DJ, Hinrichs SH, Bar-Eli M. Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene 2000; 19: 2721–2730.

    Article  PubMed  CAS  Google Scholar 

  100. Jean D, Bar-Eli M. Targeting the ATF-1/CREB transcription factors by single chain Fv fragment in human melanoma: potential modality for cancer therapy. Crit Reviews Immunol 2001 (in press).

    Google Scholar 

  101. Karlen S, Brathen LR. Role of the initiator element in the regulation of the melanoma cell adhesion molecule gene. J Invest Dermatol 2000; 668–673.

    Google Scholar 

  102. Newman SP, Bates NP, Vernimmen D, Parker MG, Hurst HC. Cofactor competition between the ligand-bound oestrogen recepteror and an intron 1 enhancerleads to oestrogen repression of ERBB2 expression in breast cancer. Oncogene 2000; 19: 490–497.

    Article  PubMed  CAS  Google Scholar 

  103. Wilson BE, Mochon E, Boxer LM. Induction of bc1-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16: 5546–5556.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bar-eli, M. (2002). Gene Regulation in Melanoma Metastasis. In: Welch, D.R. (eds) Cancer Metastasis — Related Genes. Cancer Metastasis — Biology and Treatment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47821-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47821-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0522-0

  • Online ISBN: 978-0-306-47821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics