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INVOLVEMENT OF PRO- AND ANTI-
INFLAMMATORY CYTOKINES IN
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The appearance of detectable pro- as well as anti-inflammatory cytokines in
the blood stream during sepsis is indicative of their exacerbated production.
The interaction of microorganisms and their derived products with host cells
rapidly leads to the production of many inflammatory mediators including
cytokines. Two major features characterize the production of these factors:
cascade and regulatory loops (Figure 1). This means that, once produced, a
given cytokine can induce the production of others which can further induce
cytokine release or on the contrary down-regulate the upper-stream synthesis.
Usually absent from the plasma at homeostasis, many cytokines are produced
in such large amount during sepsis that they can be detected in the circulation
of the patients.

While we will not focus our review on this aspect, it should be kept in
mind that the production of these inflammatory cytokines is an integral part
of the processes initiated by the innate immune response to fight infection.
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SEPSIS IS ASSOCIATED WITH AN EXACERBATED
PRODUCTION OF ANTI-INFLAMMATORY CYTOKINES
AND MEDIATORS

Interleukin-1

Involvement of IL-1 in Sepsis

The network of inflammatory events is mainly orchestrated by interleukin-1
(IL-1) and tumor necrosis factor (TNF). Injection of IL-1 into animals results
in hypotension, increased cardiac output and heart rate, leukopenia,
thrombocytopenia, hemorrhage, and pulmonary edema [1]. Cyclooxygenase
inhibitors greatly prevent these different effects. IL-1 receptor antagonist
(IL-lra), a natural IL-1 inhibitor, reduces mortality from endotoxic shock [2].

converting enzyme (ICE) or caspase-1 is the enzyme required for the
maturation of the 30 kDa biologically inactive precursor to the mature
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17 kDa active form of Survival to a lethal dose of endotoxin reaches
70% among ICE-deficient animals [3], while deficient mice are
normally sensitive to the lethal effect of LPS [4]. These results reflect that
caspase-1 is also involved in the maturation of IL-18.

Detection of IL-1 in Sepsis

has been regularly reported in plasma of sepsis patients whereas
has never been observed when investigated. was found in 0 to 90% of
septic patients depending on the studies, the nature of the sepsis and on the
nature of the technique used to assess its presence. The highest frequency of
detectable levels of  was observed among patients with meningococcal
sepsis [5,6] and high levels of correlate with the severity of
meningococcemia, the presence of shock, high APACHE II scores and rapid
fatal outcome [5,6,7,8]. Such correlations were not observed in other sepsis
patients [9]. In a few studies, survey was performed, and either high
levels at admission followed by a decrease, or sustained levels, were reported
[6,9,10].

Tumor Necrosis Factor (TNF)

Involvement of TNF in Sepsis

includes hemodynamic instability, fever, diarrhea, metabolic
acidosis, capillary leak syndrome, activation of coagulation, late
hypoglycemia, induction of a catabolic state, neurotoxicity, cachexia, and
renal and hematological disorders, all phenomena associated with sepsis
syndrome [11]. In addition, together with IL-1, TNF induces on endothelial
cells the expression of adhesion molecules involved in organ infiltration by
leukocytes. A lethal effect of TNF was synergistically enhanced by IL-1 [1],
interferon and lipopolysaccharide (LPS) itself [13]. Anti-TNF
treatments have been shown to be highly efficient in protecting animals
against endotoxic shock [14] and lethal bacteremia [15]. Such treatments also
protected against pulmonary microvascular injury after intestinal ischemia
injury which is associated with endotoxin translocation [16]. Studies with
mice rendered deficient for TNF or its receptors led to controversial results
which reflected the different models - use of D-galactosamine, injection of
bacteria, cecal ligation and puncture, injection of high dose LPS - and, as
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recently suggested by van der Meer's group in Nijmegen, differences in the
bacterial origin of the LPS itself [17].

Detection of TNF in sepsis

In 1986, TNF was the first cytokine to be described in the serum of patients
with septicemia [18], and later in patients with meningococcal sepsis [7,19].
While a correlation exists between poor outcome and high levels of measured
circulating TNF in the case of meningococcal sepsis [7,19], in other forms of
sepsis, some authors did observe such a correlation [10,20], while others did
not [9,21]. Different authors have followed up the kinetics of plasma TNF
and observed either an increase, a decrease, or sustained levels [9,10,20].
Indeed, as first shown by Baud et al. [21] and confirmed by Pinsky et al.
[22], it seems that it is the persistence of detectable TNF rather than its peak
level which is associated with the fatal outcome. When addressed, the TNF
levels were found to correlate with the severity of illness and APACHE II
scores [20,21]. It is worth noting that in intraperitoneal sepsis, on the
contrary, high levels of circulating TNF are associated with a good prognosis
while low levels correlated with fatal outcome [23,24]. Some authors
reported that the TNF levels were higher in Gram-negative than in Gram-
positive sepsis although this was not observed in all studies. In
meningococcal sepsis, levels of TNF are higher in cerebrospinal fluids than
in plasma [25] and not detected in the cerebrospinal fluid (CSF) of patients
with non-bacterial meningitis [26]. Injection of LPS in human volunteers and
in animal models leads to a plasma peak of TNF at 90 min, and its levels may
be up-regulated by administration of ibuprofen [27] or G-CSF [28] and
down-regulated by epinephrine [29].

is a rare cytokine which is produced by a limited number of
cells, essentially activated T-lymphocytes. It shares with the same
receptors and thus most of its activities. should be essentially expected
in Gram-positive sepsis since Gram-positive bacteria release various T-cell
activators known as superantigens. While the use of neutralizing antibodies
could suggest that Pseudomonas aeruginosa infusion led to the appearance
of and in the circulation of pigs [30], has never been
reported in human Gram negative sepsis [8]. On the contrary, in patients with
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streptococcal toxic shock syndrome, circulating was found to parallel
the levels of the circulating superantigen [31].

Interleukin-2 (IL-2)

IL-2 is another cytokine which reflects T cell activation. While rarely
reported in human sepsis [8,22], IL-2 was found in the circulation within two
hours following injection of bacterial superantigens in mice [32] and baboons
[33].

Interleukin-15 (IL-15)

IL-15 shares many functions with IL-2. The specific IL-15 receptor
is associated with the IL-2 receptor and While IL-2 is mainly
produced by T lymphocytes, IL-15 is produced by endothelial cells and by
monocytes/macrophages in response to exogenous stimuli such as bacteria
and LPS. Importantly, it is expressed on the cell surface as an active
molecule [34]. In vivo, it is induced by IL-12 [35]. In concert with other
monokines (e.g. IL-12), IL-15 stimulates production by natural killer
(NK) cells and is involved in the LPS-induced general Shwartzman reaction
[36]. However, inhibition by specific antibodies of endogenous IL-15
production during in vitro LPS activation of murine macrophages further
amplified               production [37]. The role of IL-15 during sepsis remains to
be fully characterized while its presence has been reported in the plasma of
septic patients [38].

Leukemia Inhibitory Factor (LIF), Oncostatin M (OSM),
Ciliary Neurotrophic Factor (CNTF)

Involvement of LIF and OSM in Sepsis

LIF, CNTF, and OSM belong to the IL-6 superfamily, sharing the gp130
chain of the receptor. However, while IL-6 and IL-11 possess certain anti-
inflammatory properties (see below), LIF and OSM can be considered as
pro-inflammatory cytokines. Indeed, LIF is involved in the pathogenesis of
inflammation and sepsis syndrome [39]. Induced by LPS and TNF, LIF can
induce the release of other cytokines including IL-1, IL-6, and IL-8 by
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various cell types. Passive immunization against LIF in mice challenged with
intraperitoneal administration of endotoxin protected them from the lethal
effects and blocked increases in serum levels of IL-1 and IL-6 [40].
Subcutaneous injection of OSM in mice caused an acute inflammatory
reaction [41]. OSM favored PMN adhesion to endothelial cells and
transmigration via its capacity to enhance the expression of P- and E-selectin,
intercellular adhesion molecule (ICAM)-l, and vascular cell adhesion
molecule (VCAM)-l. Furthermore, OSM induces the release of IL-6 and
ENA78  but not that of IL-8.

Detection of LIF, CNTF, and OSM in Sepsis

First reported in 1992, detectable levels of LIF were occasionally found in
plasma of 9 to 40% septic patients [39,42,43]. Levels of circulating LIF
correlate with shock, temperature, creatinine and IL-6 [42]. The correlation
of LIF with IL-6 has been confirmed in a baboon model of sepsis [44].
Levels of plasma CNTF and OSM are elevated in 60% and 100% septic
patients, respectively [43].

Interleukin-8 (IL-8) and Chemokines

Involvement of Chemokines in Sepsis

Sepsis and SIRS are often associated with organ dysfunction that reflects the
inflammatory process occurring in the tissues. One of the major features of
this phenomenon is the recruitment of inflammatory leukocytes. It implies
the adherence of circulating cells to the endothelium and their margination
towards the tissues in response to the locally produced chemokines.
Chemokines represent a family of more than 40 members. These chemokines
contribute to the inflammatory cell infiltrate that participates in the disruption
of tissue integrity. For example, neutralization of IL-8 profoundly inhibited
neutrophil recruitment in an endotoxin-induced rabbit model of pleurisy,
indicating that IL-8 is a major chemotactic factor in this model of acute
inflammation [45]. During sepsis a great amount of IL-8 is detectable within
the blood compartment, not only as a free cytokine [46] but also as a cell-
associated form [47]. This first encounter of neutrophils with IL-8 leads to
their desensitization to further signals delivered locally by IL-8. Thus, the
presence of IL-8 in the vascular space may well be a mechanism that limits
neutrophil accumulation at extracellular sites as illustrated by the defect in
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neutrophil migration capacity during sepsis or endotoxemia [48,49].
Similarly, while monocyte-chemoattractant protein-1 (MCP-1) contributes to
the recruitment of inflammatory macrophages within the tissues,
neutralization of MCP-1 by specific antibodies before LPS administration
resulted in a striking increase in mortality and the injection of MCP-1 was
protective [50]. In contrast, mice rendered deficient for the receptor of MCP-
1 (CCR4-/-) which also binds macrophage inflammatory protein
regulated on activation, normal T-cell-expressed and secreted (RANTES),
macrophage-derived chemokine (MDC) and thymus- and activation-
regulated chemokine (TARC), exhibited significantly decreased mortality on
administration of LPS [51]. These controversial results illustrate the
influence of the experimental models. Furthermore, one should keep in mind
that the recruitment of leukocytes by chemokines is a prerequisite to address
the infectious process as elegantly shown by the deleterious effect of
blocking MDC in the cecal ligation and puncture model of peritonitis in mice
[52].

Detection of Chemokines in Sepsis

As first reported in 1992, a great amount of IL-8 is detectable within the
blood compartment during sepsis [53,54] and in broncho-alveolar lavage
(BAL) and edema fluid of acute respiratory distress syndrome (ARDS)-
associated with sepsis [55]. In this study, patients with high levels of IL-8 in
BAL had a high mortality rate. Similarly, high levels of plasma IL-8 correlate
with the occurrence of shock [56], with the presence of infectious multiple
organ failure (MOF) [46] and with poor outcome [46,53,54]. No difference
in IL-8 plasma levels were found between Gram-negative and Gram positive
infection [54] while in bacteremic pneumonia the type of pathogen
influenced the measurable levels of IL-8 [57]. IL-8 levels also correlate with
various markers including IL-6 [5,46,54], C3a, lactate [54],
IL-10, IL-lra and soluble TNF receptors (sTNFR) [5]. Correlation with
plasma TNF led to controversial results [5,58]. More interestingly, local
levels of IL-8 often correlate with the number of recruited neutrophils [55]
and plasma levels are associated with granulocyte activation as evidenced by
massive release of elastase detectable in the circulation of bacteremic
baboons [59] and by correlation between elastase and IL-8 in human sepsis
[56].

In addition to IL-8, increased levels of various chemokines have been
found in plasma of septic patients or following LPS injection in human
volunteers. This is the case for MCP-1 and MCP-2 [60], and
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[61] and protein (IP-10) [62], MCP-1 levels being higher in
patients with the more severe forms of sepsis (i.e., those with shock or a
lethal outcome). In a preliminary study, we found that plasma levels of
RANTES were inversely correlated with APACHE II score, and lower levels
of this chemokine were found in non-surviving sepsis patients (J-M.
Cavaillon and D. Payen, unpublished observation).

Interleukin-12 (IL-12)

Involvement of IL-12 in Sepsis

IL-12 is a heterodimeric cytokine of p40 and p35 subunits. The measurement
of p70 heterodimer is correlated with IL-12 bioactivity. IL-12 is a potent
inducer of Its injection in chimpanzees induces an increase in plasma
concentrations of as well as IL-15, IL-18, and and
anti-inflammatory mediators [35]. Among the adverse effects of IL-12,
hepato- and splenomegaly, leukopenia, anemia, and myelodepression have
been reported [63]. These phenomena were largely since
they were not reported to occur in receptor deficient mice.
Hepatomegaly is associated with infiltration of activated macrophages and
NK cells, and single-cell necrosis. In contrast, pulmonary edema and
interstitial macrophage infiltration generated by IL-12 injection were shown
to be In a Mycobacterium bovis Bacille Calmette-Guerin
(BCG)-primed model of LPS-induced shock and lethality, anti-IL-12
antibodies were associated with decreased and were shown to protect
mice if injected before endotoxin [64]. In contrast, in a cecal ligation and
puncture model, IL-12 neutralization was deleterious [65]. The later
observation is in agreement with other reports which demonstrated the
beneficial effects of IL-12 in the infectious process [66]

Detection of IL-12 in Sepsis

Bioactive IL-12 was detected in mouse serum at 2 to 4 h after LPS injection
[67] and in baboons, surprisingly, higher levels of IL-12 were detectable in
plasma of animals injected with sublethal doses of E. coli than in animals
challenged with lethal doses [68]. In humans, an intravenous bolus injection
of E. coli LPS in volunteers did not lead to changes in the plasma levels of
IL-12 [69] and IL-12 could not be measured in most septic patients [70].



While higher levels of IL-12p40 were found in patients with severe
melioidosis (infection with Burkholderia pseudomallei) than in healthy
controls, IL-12p70, not detectable in controls, was only found in 10% of the
patients [38].

Interleukin-18 (IL-18)

Involvement of IL-18 in Sepsis

IL-18 is structurally related to the IL-1 family and its maturation is under the
control of caspase-1. Produced by activated macrophages and Kupffer cells,
IL-18 is a potent inducer of [71]. While IL-18 promotes resolution of
bacterial infection in mice [72], it accounts for both and Fas ligand-
mediated hepatotoxic pathways in endotoxin-induced liver injury in this
model [73]. Neutralization of IL-18 protects mice against lethal E. coli and S.
typhimurium endotoxemia [74] and IL-18 deficient mice showed decreased
sensitivity towards LPS-induced shock [75], although this might depend
upon the model since Propionibacterium acnes-primed IL-18-/- mice were
highly susceptible to LPS [76]. It is worth noting that, in contrast, IL-18-/-
mice and normal mice were similarly responsive to bacterial superantigen
[75].

Detection of IL-18 in Sepsis

Plasma IL-18 is found in healthy controls and its level was enhanced in
patients with melioidosis [38]; levels were higher in bacteremic patients and
correlated with APACHE II score, and there was a weak correlation with

levels (r = 0.48).

Involvement of  in Sepsis

is an efficient amplification cytokine produced by T-lymphocytes in
response either to IL-12 and/or IL-18 produced by monocytes/macrophages
activated by microbial products or by superantigens or viruses. Its synergy
with the detrimental activities of LPS has been clearly established:

Sepsis 167
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enhanced LPS-induced circulating as well as LPS- and TNF-induced
mortality [12,77] and antibodies protected against LPS- and E.
coli-induced mortality [77,78]. As a consequence, a clinically silent viral
infection may induce hypersensitivity to Gram-negative bacterial endotoxin
through T cell activation and subsequent production, leading to a
hyperproduction of [79]. Mice lacking receptor have been
shown to be resistant to LPS challenge after priming with BCG [80] or
treatment with D-galactosamine [81]. A mouse model of endotoxemia
revealed that was not involved in pulmonary edema [82]. Side-effects

Detection of             in Sepsis

The study of circulating in human sepsis led to contradictory results.

studies on sepsis and septic shock [10,22]. No detectable was reported
in meningococcal septic shock [8] and in human volunteers receiving
systemic endotoxin [69]. was recently detected in the plasma in 71%
of patients with melioidosis [38]. In a baboon septic shock model,
levels were threefold higher in lethally challenged animals than in those
receiving sublethal doses [68].

Interleukin-16 (IL-16) and IL-17

IL-16 and IL-17 are recently described cytokines with ill-defined physiologic
properties. Both were discovered as T-cell products, and IL-16 can also be
produced by eosinophils, mast cells, and epithelial cells. It is worth
mentioning that both can stimulate the production of pro-inflammatory

and IL-17 up-regulates the expression of IL-6, IL-12, PGE2
as well as IL-lra and IL-10 [84]. However, their involvement during sepsis
has not been addressed so far.

of  include tachychardia, myalgia, malaise, leukopenia, and weakness.

While in sepsis and purpura fulminans,            was found in patients with the
most severe disease [7], no correlation was reported with outcome in other

cytokines. IL-16 induces the secretion of IL-6, IL-15 and [83]
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Colony stimulating factors (CSF)

Involvement of CSFs in Sepsis

In addition to their well known action on hematopoiesis, CSFs favor the anti-
infectious process and may reduce the natural apoptosis of neutrophils.
However, among these cytokines, IL-3, previously called ‘multi-CSF’, and
granulocyte-macrophage CSF (GM-CSF) can amplify the production of IL-1
and and thus behave as pro-inflammatory cytokines. The deleterious
effect of GM-CSF is exemplified by the response of GM-CSF-deficient mice
to endotoxin: following LPS injection, hypothermia, loss in body weight,
levels of circulating and IL-6 were markedly reduced as
compared to normal mice. Furthermore, the survival to one LD100 of LPS
was 42% among GM-CSF-/- mice [85].

In contrast, numerous studies have reported that granulocyte-CSF (G-
CSF) possesses many beneficial properties. It has been demonstrated that G-
CSF reduces endotoxemia and improves survival during E. coli pneumonia
[86], reduces bacterial translocation due to burn wound sepsis [87], and
enhances the phagocytic function of neutrophils in septic animals [88].
Furthermore, in combination with antibiotics, G-CSF can prevent severe
infectious complication in a peritonitis model [89] and in combination with
IL-11 prevents the occurrence of lethality to a bacterial challenge in
neutropenic animals [90].

Detection of CSF in Sepsis

In humans, M-CSF is present at homeostasis in the circulation and its level is
increased in patients with sepsis and higher in patients with sepsis-associated
hemophagocytosis [91]. G-CSF is also increased in sepsis and reaches higher
levels in severe sepsis as compared to sepsis or bacteremia [92]. Enhanced
levels of circulating G-CSF have been particularly associated with infection
and sepsis in neonates [93]. In meningococcemia, plasma GM-CSF
concentrations were briefly present in subjects with life-threatening septic
shock and were strongly associated with fulminant disease [92]. GM-CSF
was also markedly elevated in septic preterm infants [94].
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Fas ligand (FasL)

Fas (CD95) is a member of the TNF receptor superfamily which contains a
cytoplasmic death domain. Its ligation with its ligand (FasL) results in the
induction of apoptosis. FasL exists as a membrane form or a soluble
molecule. While sepsis is associated with a delayed apoptosis of neutrophils,
an increased apoptosis in hematopoietic tissues such as thymus, Peyer's
patch, spleen and bone marrow has been regularly observed. Using FasL
deficient mice, it was established that the sepsis-associated apoptosis of
lymphoid cells was a FasL-dependent process [95]. mRNA for Fas and FasL
were highly up-regulated in BAL cells during the acute phase of human
ARDS following sepsis [96] Enhanced levels of soluble FasL were measured
in the BAL of these patients while soluble FasL was absent from BAL of
healthy controls.

Macrophage Migration Inhibitory Factor (MIF)

MIF was first discovered in 1966 as a T-cell product released during
delayed-type hypersensitivity [97] and rediscovered in 1993 as a pituitary-
derived cytokine that potentiates lethal endotoxemia [98]. MIF is now
recognized as a macrophage product [99] induced by the action of
glucocorticoids [100]. MIF is expressed constitutively in many tissues
including lung, liver, kidney, spleen, adrenal gland, and skin. MIF exists as a
preformed cytokine which is rapidly released following LPS injection [101].
Bernhagen et al. [98] reported that injection of MIF together with one LD40
of LPS greatly potentiated lethality and that anti-MIF antibodies fully
protected against one LD50 of LPS. Accordingly, MIF-deficient mice were
more resistant to LPS induced lethality [102]. This phenomenon was
associated with a reduced level of circulating TNF, an enhanced level of
nitric oxide (NO) and no effect on IL-6, IL-10 and IL-12 levels. Anti-MIF
antibodies also protected mice from lethal experimental peritonitis, even
when treatment was started up to 8h after induction of peritonitis. [103].
While MIF is present in the plasma of healthy controls, its levels are
significantly enhanced in septic patients [103].
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High Mobility Group-1 (HMG-1) Protein

HMG-1 is a highly conserved nuclear protein that binds cruciform DNA. It
exists as a membrane form and as an extracellular form which interacts with
plasminogen and tissue type plasminogen activator (t-PA). It is produced by
macrophages in response to LPS and by pituitary cell stimulated by IL-1 or
TNF [104]. HMG-1 was reported to be a late mediator involved in endotoxin
lethality in mice. HMG-1 has been found in plasma of septic patients, with
significantly higher levels in non-survivors than in survivors [104].

Cellular Signaling Induced by Pro-inflammatory Cytokines

During the inflammatory processes the inducible transcription factor
plays a major role in the intracellular signaling. Indeed, this is one of the
main nuclear factors that regulates the transcription of numerous genes
including cytokines, especially pro-inflammatory cytokines such as

IL-6 and IL-8, cytokine receptors, acute phase proteins and leukocyte
adhesion molecules. These components are important for the recruitment of
circulating cells towards the inflammatory focus [105,106]. The
family is composed of various members, p50 p52 p65
(RelA), RelB and c-Rel, which can form homo- and heterodimers [107].
Numerous studies have shown that the transactivator form of is the
p65 unit while the p50 unit showed no or minimal activation capacities
[108,109,110]. The transactivator form of is the p65p50 heterodimer
in mammalian cells, although some reports show transactivatory activities of
p50p50 in cell-free in vitro transcription systems [111,112] or in yeast [113].
Fujita et al. [112] found that p50p50 could behave as a gene activator when
complexed to the Bcl-3 protein, but another report shows that Bcl-3
facilitates the transactivation by removing the inhibitory p50p50 from
the   [114].          is regulated by a cytoplasmic inhibitor:             This
protein is also a member of a large family that includes

and Bcl-3. All possess multiple regions of homology known as the
ankyrin-repeat motifs, also present in the precursors of p50 and p52 (p105
and p100 respectively) which also behave as inhibitors.

Among cytokines, TNF and IL-1 are potent activators of but this
transcription factor is also inducible by other extracellular signals such as

The Nuclear Factor-kappa B and the Mitogen-activated Protein
Kinase (MAPK) Pathways
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reactive oxygen species and complement fragments. Furthermore, endotoxin
is a potent activator of              During the past few years, many insights have
been reached about the LPS signaling. These include the characterization of
Toll-like receptor 4 (TLR4), the co-receptor of CD14, responsible of the
signal transduction [115] and that of the MD-2 molecule which is associated
to TLR4 at the cell surface [116]. In unstimulated cells, is retained in
the cytoplasm by as an inactive complex. As shown in Figure 2, the
binding of TNF, IL-1 or LPS to their receptors recruits adaptor molecules
which leads to the activation of an kinase (NIK) [117]. NIK
seems to be the convergent point of the TNF and IL-1-mediated
activation, since mutant forms of NIK block the signaling from the receptors
of both cytokines [117]. The final step of the kinase cascade leads to the
activation of protein kinases that phosphorylate These kinases
(IKK) are associated to a high-molecular weight cytoplasmic complex [118].
In addition to NIK, MEKK-1 (a kinase implicated in the c-jun N-terminal
kinase [JNK] pathway of MAPK) has been shown to phosphorylate and
activate and Recently, a new component of the IL-1RI
pathway and a new intermediate in the signal transduction pathway of IL-1
and Toll have been characterized: the first molecule, called Tollip, allows the
death domain of MyD88 and IL-1-receptor associated kinase (IRAK) to
interact [120]; the second molecule, an adapter protein named evolutionary
conserved signaling intermediate in Toll pathway (ECSIT), makes the link
between TNF-receptor-associated factor (TRAF)-6 and MEKK-1 [121]. In
addition, the characterization of ECSIT also supports the existence of a

after the degradation of the dimer can translocate into the
nucleus, bind to DNA and activate the transcription of target genes.

The MAPK cascades are another intracellular signaling pathway activated
during the inflammatory process and they also lead to the activation of
numerous transcription factors. Three MAPK cascades have been described
to date, the extracellular signal-regulated kinases (ERK), the JNK/stress-
activated protein kinase (SAPK) and the p38 pathways. The activation of
extracellular signal-related kinase (ERK)-1 and -2, also known as p44 and
p42, is triggered by mitogens and growth factors, while the two other
cascades are activated by IL-1, TNF, LPS and cell stress [122,123]. c-jun is a
component of the activator protein (AP)-l transcription factor and the JNK
cascade leads to its phosphorylation and an enhancement of its capacity to
activate transcription.

MEKK-1 -mediated activation of    After the activation of the IKK,
is phosphorylated on serines 32 and 36, leading to its subsequent
ubiquitination and its degradation by the 26S proteasome pathway. Finally,
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The p38 kinase is implicated in the activation of various transcription
factors and some evidence indicates that it can play a role in the activation of

Indeed, it has been shown that the specific inhibitor of p38
(SB203580) prevented the expression of a reporter gene under the control of

[124]. However, this was not due to an inhibition of the binding of
to DNA. Thus, p38 does not seem to regulate phosphorylation,

but it most probably modulates the transactivation capacity of via
MAPK activated protein kinases (MAPKAP) that in turn phosphorylate the
p65 subunit. TNF and IL-1 contribute to the activation of JNK and p38
MAPK.
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For TNF, it has been shown that TNF receptor-associated death domain
(TRADD), TRAF2 and receptor interacting protein (RIP) are implicated in
the signaling leading to JNK and p38 activation [125,126]. Furthermore,
another kinase, the germinal center kinase (GCK), has been shown to interact
with TRAF2 and MEKK-1 and thus could be the link between the events
taking place at the receptor level and the MAPK kinase kinase (MAPKKK)
[126]. For IL-1, MyD88 and IRAK are also needed for the signaling. IRAK-
deficient mice showed reduced IL-1-mediated JNK and p38 activation [127].
Similarly, overexpression of MyD88 induced the activation of both JNK and

while mutant forms of MyD88 inhibited their activation [128].

in Sepsis: A New Target for Therapy ?

has been studied in various in vitro and in vivo models of sepsis, yet
less is known about the status of this transcription factor in humans.
Enhanced activation has been reported in alveolar macrophages of
patients with ARDS [129] and in the lungs and the liver of mice after
experimental peritonitis [130,131]. Similarly, after hemorrhage or LPS, NF-

was activated in lung neutrophils while it was not in circulating
neutrophils [132]. The measurement of inflammatory mediators (cytokines,
iNOS) also suggests that the consequence of systemic inflammation may
differ in the blood and the other tissues and favors the concept of a
compartmentalization of inflammation. Indeed, iNOS activity was found to
be restricted to the nidus of infection in patients undergoing septic shock
after cellulitis [133]. Similarly, after chest trauma, significantly higher levels

later. Indeed, the analysis of performed with cells derived from the
tissues stands in contrast with the experiments performed with peripheral
blood mononuclear cells (PBMC). The first reported analysis in septic
patients, showed a higher ex vivo nuclear expression of   in the PBMC
of the non-survivors [137]. We performed a similar study and confirmed that
total content is higher in the nucleus of PBMC from non-survivors as
compared to survivors of severe sepsis. However, we found that the nuclear
p65p50, the active form of was significantly reduced in all patients
with severe sepsis as compared to controls and demonstrated that in the non-
survivors, was mostly composed of the inactive form p50p50 [138].

of and IL-8 were found in BAL fluid. In contrast, anti-inflammatory
mediators (sTNFRI and II, IL-lra) were present both locally and
systemically [134]. Furthermore, an exacerbated production of cytokines has
often been demonstrated in non-hematopoietic compartments [135,136], in
contrast with the hyporeactivity of circulating cells which will be discussed
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This down regulation of in circulating mononuclear cells was also
found when the systemic inflammation was not of infectious origin (major
trauma).

Because of its fundamental role in acute inflammation, has been
chosen by several investigators as a target for the treatment of sepsis.
Inhibitors of such as dithiocarbamate (PDTC) or N-acetyl-leucinyl-
leucinyl-norleucinal (a potent inhibitor of the proteasome pathway) were
tested in animal models of endotoxin shock, encouraged by the inhibiting
effect of dithiocarbamate on human immunodeficiency virus (HIV)
progression in patients [139]. Treatment with these inhibitors of
decreased NO synthase (NOS) expression within the tissues [140] and TNF
and IL-6 levels in the serum [141], and reduced microvascular injury and
disseminated intravascular coagulation (DIC) [142,143]. The limit of these
studies is that in all but one [143], the inhibitors had to be administered
before the LPS challenge in order to be effective. Furthermore, at high doses,
PDTC is toxic and has non-specific effects: it can activate AP-1 another
transcription factor that induces pro-inflammatory cytokines. Finally, even if

is the major transcription factor involved in the pro-inflammatory
cascade, its blockade may not be sufficient as other transcription factors,
such as AP-1, NF-IL6 or cAMP responsive element binding protein (CREB)
can also take part in the induction of inflammatory mediators. Our
observation of a dysregulation of translocation in PBMC of patients
with severe sepsis and the low presence of cytoplasmic suggest that
despite the successful use of drugs in animal models of sepsis, the inhibition
of activation may not be appropriate to treat septic patients. This
approach may prove to be useful if it can be delivered at the onset of
inflammation or within defined compartments.

SEPSIS IS ASSOCIATED WITH AN EXACERBATED
PRODUCTION OF ANTI-INFLAMMATORY CYTOKINES
AND MEDIATORS

Interleukin-6 (IL-6)

Involvement of IL-6 in Sepsis

Although IL-6 is often considered as an inflammatory cytokine, most of its
activities are probably associated with a negative control of inflammation
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thanks to its potent capacity to induce the production of acute phase proteins
by the liver as well as the release of IL-lra and sTNFR [144].

Detection of IL-6 in Sepsis

The presence of IL-6 in the plasma of sepsis patients was first reported in
1989 [8, 145]. Plasma IL-6 has been observed in 64% to 100% of studied
patients. Most investigators have demonstrated that levels of circulating IL-6
correlate with severity of sepsis and may predict outcome [8,9,145,146] as
illustrated by the correlation between IL-6 levels and APACHE II scores
[6,147]. Numerous correlations between IL-6 levels and other markers have
been reported including C3a, lactate [145], circulating endotoxin [5,148], C-
reactive protein (CRP) [147] and TNF [5,8,146]. IL-6 levels are similar in
Gram-positive or Gram-negative sepsis [9]. Injection of endotoxin in human
volunteers revealed that the peak IL-6 level was reached 2h after injection
[149,150]

Interleukin-11 (IL-11)

IL-11 belongs to the IL-6 superfamily. Although IL-11 stimulated the
production of several major acute phase proteins by hepatoma cells,
circulating IL-11 did not significantly participate in the production of acute-
phase proteins by the liver [151]. One of the major beneficial effects of IL-11
which has been described is related to its healing activity on the intestinal
tract. For example, chemotherapy and radiation both damage the small
intestinal mucosa barrier and lead to the entry of gastrointestinal flora into
the blood. In this lethal model, IL-11 was able to protect 80% of the animals
[152]. Beneficial properties of IL-11 have also been demonstrated in a rat
neonatal infectious model with group B streptococci. Prophylactic use of IL-
11 enhanced the survival in this model in association with an increased
number of platelets [153]. Divergent reports concern IL-11 which was
detected in 67% of patients with disseminated intravascular coagulation
complicated by sepsis [154] but not in patients suffering from septic shock
[43].
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IL-1 receptor Antagonist (IL-1ra)

Involvement of IL-1ra in Sepsis

IL-lra is a natural IL-1 inhibitor. Produced by many cell types, including
monocytes/macrophages, it is also produced by the liver as an acute phase
protein [155]. Early treatment with IL-1ra reduced mortality from endotoxic
shock [2], prevented Staphylococcus epidermidis-induced hypotension [156],
and improved survival and hemodynamic performance in E. coli septic shock
[157]. Depending on the dose of IL-1ra, it either reduced or enhanced
lethality in a model of Klebsiella pneumoniae infection of new born rats
[158]. In agreement with these observations, IL-1ra-deficient mice were
more susceptible than controls to lethal endotoxemia [159].

Detection of IL-1ra in Sepsis

IL-1ra is present in plasma in healthy persons. Enhanced levels of IL-1ra
have been regularly reported in critically ill patients, septic adults, and new
born patients [6,160,161]. It may correlate with APACHE II score [6]. As an
antagonist, its concentration has to be at least 100 fold higher than that of IL-
1 to efficiently block the effects of this cytokine. Indeed 2,000 fold higher
concentration have been noted in patients with septic shock [6]. In two
patients who died within 3 h to 8 h after admission with a Streptococcus
group A or Neisseria meningitidis septicemia we found a 3,400 and 61,000
fold higher concentration of IL-1ra than respectively [162,163]. These
observations suggest that the balance between pro- and anti-inflammatory
cytokines seems adequate to limit the effects of pro-inflammatory cytokines.

Soluble IL-1 Receptors (sIL-1R)

Both IL-1 receptors can be shed by the cells and bind to However, the
soluble form of IL-1R type I has no discernable anti-inflammatory property
following endotoxin administration in human volunteers [164]. This may
reflect the fact that sIL-lRI has a similar affinity for than for
IL-1ra [165]. In contrast, the soluble form ofthe type II receptor, also known
as the decoy receptor, binds with higher affinity than IL-1ra and
inhibits IL-1 activity. Plasma levels of sIL-1RII in patients with sepsis
syndrome were higher than those of sIL-1RI [166].
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Soluble TNF Receptors (sTNFR)

The soluble forms of the TNF receptors (sTNFRI and sTNFRII) are natural
inhibitors capable of limiting TNF bioactivity. Injection into animal models
of sepsis was also shown to be essentially protective [167,168]. Sepsis is
associated with an enhanced plasma level of soluble TNF receptors. In
children with severe meningococcemia, high levels of sTNFRI and II
correlates with a poor outcome [169]. In meningococcemia as well as in
sepsis, high levels of sTNFRI and II correlate with levels [170,171].
Increased levels of sTNFR can be induced by an injection of  LPS [170,171]
or following injections of IL-1 [172] or TNF [173].

Interleukin-10

Involvement of IL-10 in Sepsis

IL-10 is a well known cytokine which exerts its anti-inflammatory properties
particularly on monocytes/macrophages, neutrophils and T-lymphocytes. IL-
10 is capable of preventing lethality in experimental endotoxemia [174] and
IL-10 deficient mice were far more sensitive to LPS-induced lethality than
wild-type animals [175]. In addition, neutralization of IL-10 in endotoxemia
and during experimental septic peritonitis illustrated that endogenously
produced IL-10 was instrumental in down-regulating the overzealous
production of pro-inflammatory cytokines [176,177]. In this context, it is
interesting to recall the observation by Donnelly et al. [178] that a poor
prognosis in patients with ARDS was significantly associated with the lowest
levels of IL-10 and IL-1ra.

Detection of IL-10 in Sepsis

Significant amounts of IL-10 are detected in the circulation of septic patients
[179,180]. The highest plasma levels of this regulatory molecule are detected
in the most severe cases (with shock or with poor prognosis) [178,181]. The
ratio of IL-10 to is also associated with poor outcome [181]. These
observations illustrate that sepsis is not associated with a deficient anti-
inflammatory response. In contrast, the exacerbated production of anti-
inflammatory cytokines in sepsis cautions against a widespread use of
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therapeutical approaches only targeting the pro-inflammatory mediators.
Indeed, the overproduction of anti-inflammatory cytokines and mediators led
to the concept of the "compensatory anti-inflammatory response syndrome"
(CARS) [182]. This is further suggested by the work of P. Brantzaeg et al.
[183] who showed that plasma IL-10 was in part responsible for the
monocyte deactivation noticed in sepsis (see below).

Interleukin-4 and Interleukin-13

In addition to IL-10, IL-4, IL-13, transforming growth factor and
also possess strong anti-inflammatory activities and a potent capacity

to inhibit the synthesis of the pro-inflammatory cytokines. Each individual
anti-inflammatory cytokine has been demonstrated to be capable of reducing
mortality in various endotoxic or septic shock models. IL-4 prevented
mortality from acute but not from chronic murine peritonitis [184]. All mice
pre-treated with IL-4 survived an i.p. injection of live E. coli and
Bacteroides fragilis which killed 90% of the control animals. Using IL-4
deficient mice it was established that IL-4 can protect against TNF-mediated
cachexia and death during parasitic infection [185]. However, pre-treatment
with IL-4 before the induction of sepsis was protective whereas an increased
mortality was reported when IL-4 was given at the time of infection [186].
This illustrates the importance of the timing and reconfirms the idea that one
should be very cautious when referring to a too simplistic dichotomy
between pro- and anti-inflammatory cytokines [187].

IL-13, which shares many activities with IL-4, fully protected mice from a
LD90 i.p. injection of LPS [188,189]. IL-13 blockade with anti-IL-13
antibodies significantly decreased the survival rate of mice after experimental
peritonitis and enhanced tissue injury which was associated with an increased
expression of many chemokines [190]. This latter result suggests that, despite
the absence of detectable circulating IL-4 or IL-13 in human sepsis [69,191],
these cytokines may well be involved in the control of the exacerbated
release of pro-inflammatory cytokines.

Interleukin-9

IL-9 is a T-cell derived cytokine, originally described as a growth factor for
T cells and mast cells. Prophylactic injections of IL-9 conferred resistance of
mice challenged with a lethal concentration of Pseudomonas aeruginosa
[192]. The protective effect was correlated with a marked decrease of serum
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levels of IL-12 and as well as an increase of circulating IL-10
and IL-10 mRNA expression in the spleen. Interestingly, a shorter and lesser
expression of IL-9 mRNA was observed in the spleen of mice after a lethal
challenge than in mice after a sublethal bacterial challenge. To our
knowledge, IL-9 has not yet been investigated in human sepsis.

Transforming Growth

Injection of in mice before, or even together with, high doses of LPS
was associated with a reduced mortality [193]. In a rat model of
endotoxemia, markedly reduced inducible NOS mRNA and protein
levels in organs, arrested LPS-induced hypotension and decreased mortality
[194]. Measurements of circulating are controversial, most probably
because of the difficulty to measure it and the fact that a latent and an active
form already exist in normal plasma. Furthermore, since platelets are an
important source of measurements in plasma, platelet-poor plasma
or sera may explain the discrepancies in the literature. Karres et al. [195] and
Astiz et al [196] reported a reduced level in sera from septic patients. The
mean levels of serum in healthy controls were in the range of ng/ml
in one study and pg/ml in the other, illustrating the difficulty linked to its
measurement. On the other hand, we found enhanced levels in plasma and
platelet-poor plasma in patients with sepsis [197]. We found a correlation (r
= 0.87, p = 0.01) between levels of in pleural effusion and in BAL
fluid from septic patients whereas there was no correlation with plasma
levels [198]. In a baboon septic model, Junger et al. [199] reported that active

levels increased while total decreased. In a rat model of
sepsis, circulating levels of were found to be increased and to
contribute to the depressed T-cell functions [200].

prevented LPS-induced mortality in mice and reduced TNF mRNA
expression in the spleen and liver [201]. The most fascinating observation
was the capacity of to be effective even when administered long after
LPS. This contrasts with many reports in which the protective cytokine or
drug had to be administrated before or simultaneously with LPS.
Surprisingly, very few other studies have addressed the role of in
sepsis
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EX VIVO CYTOKINE PRODUCTION TO MONITOR
SEPSIS-ASSOCIATED IMMUNE DEPRESSION

Sepsis syndrome is associated with an exacerbated in vivo production of pro-
and anti-inflammatory cytokines as assessed by their increased levels in the
blood stream. Paradoxically, a reduced capacity of circulating leukocytes
from septic patients to produce cytokines as compared to cells from healthy
controls has been regularly reported. The very first observation on the
hyporeactivity of circulating cells in septic patients was demonstrated with
peripheral blood lymphocytes. In the initial study, Wood et al. [202] reported
a decreased IL-2 production upon phytohemaglutinin (PHA) stimulation.
More recently, production was also reported to be affected in sepsis as
well as in patients with severe injury [203]. While it is often suggested that
the depressed response mainly affects the production of the Th1 cytokines
(IL-2, we demonstrated that the production of Th2 cytokines (IL-5,
IL-10) could also be altered and that the nature of the triggering agent itself
influences the observation [204]. Monocyte reactivity to LPS stimulation has
been particularly studied in isolated monocytes and in whole-blood assays.
Monocytes from septic patients had a diminished capacity to release

IL-6, IL-10 and IL-12 [203,205,206,207,208] whereas this was
not the case for IL-1ra [206]. Reduced cytokine production has also been
observed with other stimuli such as silica, staphylococcal enterotoxin B,
killed Streptococcus and Staphylococcus [196,203,209,210]. Similar
hyporeactivity has been reported for the production of   IL-1ra and IL-8
by LPS-activated neutrophils from septic patients [211,212,213].

Although the anergy of the cells observed in septic patients has been
associated with endotoxin tolerance [211], this phenomenon is neither
specific for endotoxin [214] nor for septic patients. Indeed, in many stressful
conditions including trauma, thermal injury, hemorrhage, and severe surgery,
hyporesponsiveness of circulating leukocytes and low cytokine production
have been regularly reported and associated with immune depression
observed in these patients.

Thus, during systemic inflammation, systemic inflammatory response
syndrome (SIRS) and CARS seem to be present simultaneously; SIRS
predominating within the inflamed tissues while in the blood, leukocytes
show hyporeactivity (Figure 3).
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WHICH CYTOKINE MEASUREMENTS ?

We will not discuss in detail the technical aspects linked to cytokine
measurements as these have been addressed elsewhere [215]. We will just
discuss the fact that cytokines assessed in any biological fluids represent the
tip of the iceberg [216]. Indeed, once the specific mRNA has been translated,
cytokines can be found within the cellular compartments associated with
protein synthesis, and some cytokines such as IL-10,
and IL-15 can be found as a constitutive compound of the cell membrane.
Present in the cellular environment, cytokines can be trapped by surrounding
cells which possess specific receptors; finally, once bound to the receptors,
cytokines are usually internalized within the cells (Figure 4). Thus, we
showed that and could be found associated to
monocytes of septic patients [9]. Interestingly, at the end of patient follow
up, while most survivors did not have any more detectable circulating TNF, a
majority still had detectable cell-associated TNF; recent studies suggest that
this could be a membrane form of TNF. Indeed in patients with systemic
injuries, enhanced expression of membrane TNF was reported whereas no
intracellular TNF could be detected [217]. Similarly an increased expression
of functionally active membrane-associated TNF has also been demonstrated
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on alveolar macrophages from patients with ARDS [218]. Flow cytometry
analysis confirmed the presence of positive cells among circulating
leukocytes of intensive care unit patients [219]. More recently we
investigated cell-associated IL-8, and found that tremendous amounts of IL-8
could be found associated to circulating neutrophils and mononuclear cells
[47]. Lower, but significant amounts of IL-8 were also associated with red
blood cells via their Duffy antigen. In ARDS patients, the identification of
numerous IL-8 positive alveolar macrophages by immunocytochemistry has
confirmed the putative detrimental role of IL-8 in the development of that
syndrome [220].
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