Skip to main content

Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 1))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Cundall and R. E. Dale (eds.), Time Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum, New York (1983).

    Google Scholar 

  2. J. N. Demas, Excited State Lifetime Measurements, Academic Press, New York (1983).

    Google Scholar 

  3. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London (1984).

    Google Scholar 

  4. A. J. W. G. Visser (ed.), Time-resolved fluorescence spectroscopy, Anal. Instrum. 14, 193–565 (1985).

    Google Scholar 

  5. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London (1970).

    Google Scholar 

  6. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York (1983).

    Google Scholar 

  7. J. R. Alcala, E. Gratton, and D. M. Jameson, A multifrequency phase fluorometer using the harmonic content of a mode-locked laser, Anal. Instrum. 14, 225–250 (1985).

    CAS  Google Scholar 

  8. E. Gratton, D. M. Jameson, N. Rosato, and G. Weber, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sci. Instrum. 55, 486–494 (1984).

    Article  CAS  Google Scholar 

  9. J. R. Lakowicz, G. Laczko, and I. Gryczynski, 2-GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57, 2499–2506 (1986).

    Article  CAS  Google Scholar 

  10. J. Hedstrom, S. Sedarous, and F. G. Prendergast, Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer, Biochemistry 27, 6203–6208 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. D. J. Desilets, P. T. Kissinger, and F. E. Lytle, Measurement of fluorescence lifetimes during liquid chromatography, Anal. Chem. 59, 1830–1834 (1987).

    CAS  PubMed  Google Scholar 

  12. J. Howard, N. J. Everall, R. W. Jackson, and K. Hutchinson, Fluorescence rejection in Raman spectroscopy using a synchronously pumped, cavity dumped dye laser and gated photon counting, J. Phys. E: Sci Instrum. 19, 934–943 (1986).

    Article  CAS  Google Scholar 

  13. W. A. Wyatt, G. E. Poirier, F. V. Bright, and G. M. Hieftje, Fluorescence spectra and lifetimes of several fluorophores immobilized on nonionic resins for use in fibre optic sensors, Anal. Chem. 59, 572–576 (1987).

    CAS  Google Scholar 

  14. W. A. Wyatt, F. V. Bright, and G. M. Hieftje, Characterization and comparison of three fibre-optic sensors for iodide determination based on dynamic fluorescence quenching of rhodamine 6G, Anal. Chem. 59, 2272–2276 (1987).

    CAS  Google Scholar 

  15. O. S. Wolfbeiss and S. Sharma, Fibre-optic fluorosensor for sulphur dioxide, Anal. Chim. Acta. 208, 53–58 (1988).

    Google Scholar 

  16. G. H. Vickers, R. M. Miller, and G. M. Hieftje, Time-resolved fluorescence with an optical fibre probe, Anal. Chim. Acta 192, 145–153 (1987).

    Article  CAS  Google Scholar 

  17. F. V. Bright, Remote sensing with a multifrequency phase-modulation fluorometer, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SP1E 909, 23–28 (1988).

    Google Scholar 

  18. R. A. Malstrom and T. Hirschfeld, in: Analytical Spectroscopy (W. S. Lyon, ed.), pp. 25–30, Elsevier, Amsterdam (1983).

    Google Scholar 

  19. B. A. Bushaw, in: Analytical Spectrosocpy (W. S. Lyon, ed.), pp. 57–62, Elsevier, Amsterdam (1983).

    Google Scholar 

  20. H. Pal, D. Palit, T. Mukherjee, and J. P. Mittal, The fluorescence lifetimes of isomeric tyrosines, Chem. Phys. Lett. 151, 75–78 (1988).

    Article  CAS  Google Scholar 

  21. A. E. W. Knight and B. K. Selinger, Single photon decay spectroscopy, Austr. J. Chem. 26, 1–27 (1972).

    Google Scholar 

  22. J. Yguerabide, Methods Enzymol. 26C, 498–578 (1972).

    Google Scholar 

  23. T. H. Binkert, H. P. Tschanz, and P. E. Zinsli, The measurement of fluorescence decay curves with the single-photon counting method and the evaluation of rate parameters. J. Lumin. 5, 187–217 (1972).

    Google Scholar 

  24. J. B. Birks and I. H. Munro, in: Progress in Reaction Kinetics, Vol. 4, pp. 239–303, Pergamon Press, Oxford (1967).

    Google Scholar 

  25. W. R. Ware, in: Creaton and Detection of the Excited Stale (A. A. Lamola, ed.), Vol. 1A, pp. 213–302, Marcel-Dekker, New York (1971).

    Google Scholar 

  26. L M. Bollinger and G. E. Thomas, Measurement of the time-dependence of scintillation intensity by a delayed coincidence method, Rev. Sci. Instrum. 32, 1044–1052 (1961).

    CAS  Google Scholar 

  27. P. B. Coates, The correction for photon “pile-up” in the measurement of radiative lifetimes, J. Phys. E: Sci. Instrum. 1, 878–879 (1968).

    Google Scholar 

  28. C. C. Davis and T. A. King, Correction methods for photon pile-up in lifetime determination by single-photon counting, J. Phys. A. 3, 101–109 (1970).

    Article  Google Scholar 

  29. D. E. Donohue and R. C. Stern, Correction of single photon or particle timing measurements for multiparticle events, Rev. Sci. Instrum. 43, 791–796 (1972).

    Article  Google Scholar 

  30. Proceedings of the Conference on Deconvolution and Reconvolution of Analytical Signals (M. Bouchy, ed.), pp. 411–423, printed by ENSIC-INPL, Nancy (1982).

    Google Scholar 

  31. Philips Data Handbook, Philips Publications, pp. 75–78 (1987).

    Google Scholar 

  32. S. Kinoshita and T. Kushida, High performance, time-correlated single photon counting apparatus using a side-on type photomultiplier, Rev. Sci. Instrum. 53, 469–472 (1982).

    Article  CAS  Google Scholar 

  33. D. J. S. Birch and R. E. Imhof, The origin of fluorescence from trans-trans diphenylbutadiene, Chem. Phys. Lett. 88, 243–247 (1982).

    Article  CAS  Google Scholar 

  34. H. Leismann, H.-D. Scharf, W. Strassburger, and A. Wollmer, Determination of subnano-second fluorescence decays of chlorobenzene, tryptophan and the benzene-triethylamine exciplex using a nanosecond flashlamp, J. Photochem. 21, 275–280 (1983).

    Article  CAS  Google Scholar 

  35. D. J. S. Birch and R. E. Imhof, Kinetic interpretation of fluorescence decays, Anal. Instrum. 14, 293–329 (1985).

    CAS  Google Scholar 

  36. A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the method of least squares, Anal. Biochem. 59, 583–598 (1974).

    Article  CAS  PubMed  Google Scholar 

  37. S. W. Provencher, A Fourier method for the analysis of exponential decay curves, Biophys. J. 16, 27–41 (1976).

    CAS  PubMed  Google Scholar 

  38. J. C. Andre, C. M. Vincent, D. V. O’Connor, and W. R. Ware, Applications of fast Fourier transform to deconvolution in single photon counting, J. Phys. Chem. 83, 2285–2294 (1979).

    Article  CAS  Google Scholar 

  39. A. Gafni, R. L. Modlin, and L. Brand, Analysis of fluorescence decay curves by means of the Laplace transformation, Biophys. J. 15, 263–279 (1975).

    CAS  PubMed  Google Scholar 

  40. B. Valeur, Analysis of time-dependent fluorescence experiments by the method of modulating functions with special attention to pulse fluorometry, Chem. Phys. 30, 85–93 (1978).

    Article  CAS  Google Scholar 

  41. I. Isenberg and R. D. Dyson, The analysis of fluorescence decay by a method of moments, Biophys. J. 9, 1339–1350 (1969).

    Google Scholar 

  42. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York (1969).

    Google Scholar 

  43. J. R. Lakowicz, in: Applications of Fluorescence in the Biomedical Sciences (D. L. Taylor, A. S. Waggoner, R. F. Murphy, F. Lanni, and R. R. Birge, eds.), pp. 29–67, Alan R. Liss, New York (1986).

    Google Scholar 

  44. E. Gardini, S. Dellonte, L. Flamigni, and F. Barigelletti, The reliability of iterative re-convolution in fitting two exponential fluorescence decay curves, Gazz. Chim. Ital. 110, 533–537 (1980).

    CAS  Google Scholar 

  45. J. R. Knutson, J. M. Beecham, and L. Brand, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102, 501–507 (1983).

    Article  CAS  Google Scholar 

  46. J. B. Ross, W. R. Laws, J. C. Sutherland, A. Buku, P. G. Katsoyannis, I. L. Schwartz, and H. R. Wyssbrod, Linked-function analysis of fluorescence decay kinetics: Resolution of side-chain rotamer populations of a single aromatic amino acid in small polypeptides, Photochem. Photobiol. 44, 365–370 (1986).

    CAS  PubMed  Google Scholar 

  47. S. R. Flom and J. H. Fendler, Global analysis of fluorescence depolarization experiments, J. Phys. Chem. 92, 5908–5913 (1988).

    Article  CAS  Google Scholar 

  48. P. Wahl, Analysis of fluorescence anisotropy decays by a least-squares method, Biophys. Chem. 10, 91–104 (1979).

    Article  CAS  Google Scholar 

  49. C. K. Chan, Synchronously Pumped Dye Lasers, Spectra-Physics Laser Technical Bulletin No. 8 (February 1978).

    Google Scholar 

  50. G. R. Fleming, Subpicosecond spectroscopy, Annu. Rev. Phys. Chem. 37, 81–104 (1986).

    Article  CAS  Google Scholar 

  51. T. Imasaka, A. Yoshitake, K. Hirata, Y. Kawabata, and N. Ishibashi, Pulsed semiconductor laser fluorometry for lifetime measurements, Anal. Chem. 57, 947–949 (1985).

    CAS  Google Scholar 

  52. R. Lopez-Delgado, A. Tramer, and I. H. Munro, A new pulsed light source for lifetime studies and time-resolved spectroscopy: The synchrotron radiation from an electron storage ring, Chem. Phys. 5, 72–83 (1974).

    Article  CAS  Google Scholar 

  53. W. R. Laws and J. C. Sutherland, The time-resolved photon-counting fluorometer at the national synchrotron light source, Photochem. Photobiol. 44, 343–348 (1986).

    CAS  PubMed  Google Scholar 

  54. R. Rigler, O. Kristensen, J. Roslund, P. Thyberg, K. Oba, and M. Eriksson, Molecular structures and dynamics: Beamline for time-resolved spectroscopy at the MAX Synchrotron in Lund, Phys. Scr. T17, 204–208 (1987).

    CAS  Google Scholar 

  55. Y. Sakai and S. Hirayama, A fast deconvolution method to analyse fluorescence decays when the excitation pulse repetition period is less than the decay times, J. Lumin. 39, 145–151 (1988).

    CAS  Google Scholar 

  56. R. J. Donovan, G. Gilbert, M. MacDonald, I. Munro, D. Shaw, and G. R. Mant, Determination of absolute quenching rates and fluorescence lifetime for IBr(D) using synchrotron radiation, Chem. Phys. Lett. 109, 379–382 (1984).

    Article  CAS  Google Scholar 

  57. W. R. Ware and R. L. Lyke, Fluorescence lifetimes of saturated hydrocarbons, Chem. Phys. Lett. 24, 195–198 (1974).

    Article  CAS  Google Scholar 

  58. R. L. Lyke and W. R. Ware, Instrument for vacuum ultraviolet lifetime measurements, Rev. Sci. Instrum. 48, 320–326 (1976).

    CAS  Google Scholar 

  59. J. H. Malmberg, Millicrosecond duration light source, Rev. Sci. Instrum. 28, 1027–1029 (1957).

    Article  Google Scholar 

  60. S. S. Brody, Instrument to measure fluorescence lifetimes in the millimicrosecond region, Rev. Sci. Instrum. 28, 1021–1026 (1957).

    Article  CAS  Google Scholar 

  61. G. F. W. Searle, A. van Hoek, and T. J. Schaafsma, in: Picosecond Chemistry and Biology (T. A. M. Doust and M. A. West, eds.), pp. 35–67, Science Reviews Ltd., London (1983).

    Google Scholar 

  62. A. van Hoek and A. J. W. G. Visser, Artifact and distortion sources in time-correlated single-photon counting, Anal. Instrum. 14, 359–378 (1985).

    Google Scholar 

  63. D. J. S. Birch and R. E. Imhof, A single photon counting fluorescence decay-time spectrometer, J. Phys. E: Sci. Instrum. 10, 1044–1049 (1977).

    Article  CAS  Google Scholar 

  64. D. J. S. Birch and R. E. Imhof, Coaxial nanosecond flashlamp, Rev. Sci. Instrum. 52, 1026–1212 (1981).

    Article  Google Scholar 

  65. C. Lewis, W. R. Ware, L. J. Doemeny, and T. L. Nemzek, The measurement of short lived fluorescence decay using the single photon counting method, Rev. Sci. Instrum. 44, 107–114 (1973).

    CAS  Google Scholar 

  66. H. Hess, On the theory of the spark plasma in nanosecond light sources and fast-gap switches, J. Phys. D: Appl. Phys. 8, 685–689 (1975).

    Google Scholar 

  67. S. Cova, R. Ripamonti, and A. Lacaita, Avalanche semiconductor detector for single optical photons with a time resolution of 60ps, Nucl. Instrum. Methods Phys. Res. A253, 482–487 (1987).

    CAS  Google Scholar 

  68. D. J. S. Birch, G. Hungerford, B. Nadolski, R. E. Imhof, and A. Dutch, Time-correlated single-photon counting fluorescence decay studies at 930nm using spark source excitation, J. Phys. E: Sci. Instrum. 21, 857–862 (1988).

    CAS  Google Scholar 

  69. R. E. Imhof and D. J. S. Birch, Distortion of Gaussian pulses by a diffraction grating, Opt. Commun. 42, 83–86 (1982).

    Article  Google Scholar 

  70. W. H. Schiller and R. R. Alfano, Picosecond characteristics of a spectograph measured by a streak camera/video readout system, Opt. Commun. 35, 451–454 (1980).

    Article  Google Scholar 

  71. A. Dutch, D. J. S. Birch, and R. E. Imhof, Retro-diffracted light in fluorescence spectrometers, Chem. Phys. Lett. 125, 57–63 (1986).

    Article  Google Scholar 

  72. A. Andreoni, C. A. Sacchi, S. Cova, G. Bottiroli, and G. Prenna, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 413–424, Elsevier, Amsterdam (1975).

    Google Scholar 

  73. G. Bottiroli, G. Prenna, A. Andreoni, C. A. Sacchi, and O. Svelto, Fluorescence of complexes and quinacrine mustard with DNA. Influence of the DNA base composition on the decay time in bacteria, Photochem. Photobiol. 29, 23–28 (1979).

    CAS  Google Scholar 

  74. M. A. J. Rodgers and P. A. Firey, Instrumentation for fluorescence microscopy with picosecond time-resolution, Photochem. Photobiol. 42, 613–616 (1985).

    CAS  PubMed  Google Scholar 

  75. T. Minami, M. Kawahigashi, Y. Sakai, K. Shimamoto, and S. Hirayama, Fluorescence lifetime measurements under a microscope by the time-correlated single-photon counting technique, J. Lumin. 35, 247–253 (1986).

    CAS  Google Scholar 

  76. A. H. Kalanter, Isotropic rotational relaxation of photoselected emitters and systematic errors in emission decay times, J. Phys. Chem. 72, 2801–2805 (1968).

    Google Scholar 

  77. M. L. Meade, Instrumentation aspects of photon counting applied to photometry, J. Phys. E: Sci. Instrum. 14, 909–918 (1981).

    Article  CAS  Google Scholar 

  78. B. Candy, Photomultiplier characteristics and practice relevant to photon counting, Rev. Sci. Instrum. 56, 183–193 (1985).

    CAS  Google Scholar 

  79. D. Bebelaar, Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47ps FWHM, Rev. Sci. Instrum. 57, 1116–1125 (1986).

    CAS  Google Scholar 

  80. F. Calligaris, P. Ciuti, I. Gobrielli, R. Giacomich, and R. Mosetti, Wavelength dependence of timing properties of the XP2020 photomultiplicr, Nucl. Instrum. Methods 157, 611–613 (1978).

    Article  CAS  Google Scholar 

  81. P. Wahl, J. C. Auchet, and B. Donzel, The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method, Rev. Sci. Instrum. 45, 28–32 (1974).

    Article  CAS  Google Scholar 

  82. D. J. S. Birch and R. E. Imhof, Fluorescence lifetimes and relative quantum yields of 9,10-diphenylanthracenc in dilute solutions of cyclohexane and benzene, Chem. Phys. Lett. 32, 56–58 (1975).

    Article  CAS  Google Scholar 

  83. D. M. Rayncr, A. E. McKinnon, A. G. Szabo, and P. A. Hackett, Confidence in fluorescence lifetime determination: A ratio correction for the photomultiplier time response variation with wavelength, Can. J. Chem. 54, 3246–3259 (1976).

    Google Scholar 

  84. D. R. James, D. R. M. Dernmer, R. E. Verrall, and R. P. Steer, Excitation pulse-shape mimic technique for improving picosecond-laser-excited time-correlated single-photon counting deconvolutions, Rev. Sci. Instrum. 54, 1121–1130 (1983).

    Article  CAS  Google Scholar 

  85. L. J. Libertini and E. W. Small, F/F deconvolution of fluorescence decay data, Anal. Biochem. 138, 314–318 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, Delta function convolution method (DFCM) for fluorescence decay experiments, Rev. Sci. Instrum. 56, 14–22 (1985).

    Article  CAS  Google Scholar 

  87. R. J. Robbins, G. R. Fleming, G. S. Beddard, G. W. Robinson, P. J. Thistlethwaite, and G. J. Woolfe, Photophysics of aqueous tryptophan: pH and temperature effects, J. Am. Chem. Soc. 102, 6271–6279 (1980).

    Article  CAS  Google Scholar 

  88. S. S. Stevens and J. W. Longworth, Late output pulses from fast photomultipliers, IEEE Trans. Nucl. Sci. NS-19, 356–359 (1972).

    Google Scholar 

  89. P. B. Coates, The origins of afterpulses in photomultipliers, J. Phys. D: Appl. Phys. 6 1159–1166 (1973).

    CAS  Google Scholar 

  90. S. Torre, T. Antonioli. and P. Benetti, Study of afterpulse effects in photomultipliers, Rev. Sci. Instrum. 54, 1777–1780 (1983).

    Article  CAS  Google Scholar 

  91. D. J. S. Birch, R. E. Imhof, and A. Dutch, Pulse fluorometry using simultaneous acquisition of fluorescence and excitation, Rev. Sci. Instrum. 55, 1255–1264 (1984).

    Article  CAS  Google Scholar 

  92. W. R. Ware, M. Pratinidhi, and R. K. Bauer, Performance characteristics of a small side-window photomultiplier in laser single-photon fluorescence decay measurements, Rev. Sci. Instrum. 54, 1148–1156 (1983).

    CAS  Google Scholar 

  93. S. Canonica, J. Forrer, and U. P. Wild, Improved timing resolution using small side-on photomultipliers in single photon counting, Rev. Sci. Instrum. 56, 1754–1758 (1985).

    Article  CAS  Google Scholar 

  94. I. E. Meister, U. P. Wild, P. Klein-Bolting, and A. Holzwarth, Time response of small side-on photomultiplier tubes in time-correlated single photon counting, Rev. Sci. Instrum. 59, 499–501 (1988).

    Article  CAS  Google Scholar 

  95. G. Pietri, Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time, IEEE Trans. Nucl. Sci. NS-24, 228–232 (1977).

    Google Scholar 

  96. I. Yamazaki, N. Tamai, H. Kume, H. Tsuchiya, and K. Oba, Microchannel-plate photomultiplier applicability to the time-correlated photon-counting method, Rev. Sci. Instrum. 56, 1187–1194 (1985).

    Article  CAS  Google Scholar 

  97. W. Fichtner and W. Hacker, Time resolution of Ge avalanche photodiodes operating as photon counters in delayed coincidence, Rev. Sci. Instrum. 47, 374–377 (1976).

    Article  CAS  Google Scholar 

  98. S. Cova, A. Longoni, A. Andreoni, and R. Cubeddu, A semiconductor detector for measuring ultraweak fluorescence decays with 70ps FWHM resolution, IEEE J. Quantum Electron. QE-19, 630–634 (1983).

    CAS  Google Scholar 

  99. M. D. Petroff, M. G. Stapelbroek, and W. A. Kleinhaus, Detection of individual 0.4-28 µm wavelength photons via impurity-impact ionization in a solid state photomultiplier, Appl. Phys. Lett. 51, 406–408 (1987).

    Article  CAS  Google Scholar 

  100. A. Hallam and R. E. Imhof, Performance tests of a time-to-amplitude converter at high conversion rates, J. Phys. E: Sci. Instrum. 13, 520–521 (1980).

    Article  Google Scholar 

  101. P. R. Hartig, K. Sauer, C. C. Lo, and B. Leskovar, Measurement of very short fluorescence lifetimes by single-photon counting, Rev. Sci. Instrum. 47, 1122–1129 (1976).

    Article  CAS  PubMed  Google Scholar 

  102. E. W. Small, L. J. Libertini, and I. Isenberg, Construction of a monophoton decay fluorometer with high resolution capabilities, Rev. Sci. Instrum. 55, 879–885 (1984).

    CAS  Google Scholar 

  103. A. J. W. G. Visser, T. Kulinski, and A. van Hoek, Fluorescence lifetime measurements of pseudoazuleues using picosecond resolved single photon counting, J. Mol. Struct. 175, 111–116 (1988).

    Article  CAS  Google Scholar 

  104. H. Kume, K. Koyama, K. Nakatsugawa, S. Suzuki, and D. Fatlowitz, Ultrafast microchannel plate photomultipliers, Appl. Opt. 27, 1170–1178 (1988).

    CAS  Google Scholar 

  105. R. A. Lampert, L. A. Chewter, D. Phillips, D. V. O’Connor, A. J. Roberts, and S. R. Meech, Standards for nanosecond fluorescence decay time measurements, Anal. Chem. 55, 68–73 (1983).

    CAS  Google Scholar 

  106. R. A. Velapoldi, in: Advances in Standards and Methodology in Spectrophotometry (C. Burgess and K. D. Mielenz, eds.), pp. 175–193, Elsevier, Amsterdam (1987).

    Google Scholar 

  107. D. J. S. Birch, A. D. Dutch, R. E. Imhof, and B. Nadolski, The effect of transient quenching on the excimer kinetics of 2,5-diphenyloxazole, J. Photochem. 38, 239–254 (1987).

    Article  CAS  Google Scholar 

  108. A. R. Holzwarth, Fluorescence lifetimes in photosynthetic systems, Photochem. Photobiol. 43, 707–725 (1986).

    CAS  Google Scholar 

  109. D. Phillips, Time-resolved fluorescence of excimer-forming polymers in solution, Br. Polym. J. 19, 135–149 (1987).

    CAS  Google Scholar 

  110. D. Phillips, in: Photophysics of Polymers (C. E. Hoyle and J. M. Torkelson, eds.), pp. 308–322, American Chemical Society, Washington, D.C. (1987).

    Google Scholar 

  111. D. J. S. Birch, A. S. Holmes, R. E. Imhof, and J. Cooper, PPO excimers in lipid bilayers studied using single-photon timing array detection, Chem. Phys. Lett. 148, 435–444 (1988).

    Article  CAS  Google Scholar 

  112. D. R. James and W. R. Ware, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120, 455–459 (1985).

    CAS  Google Scholar 

  113. A. R. Holzwarth, J. Wendler, K. Schaffner, V. Sundstrom, and T. Gillbro, in: Picosecond Chemistry and Biology (T. A. M. Doust and M. W. West, eds.), pp. 82–107, Science Reviews, Ltd., London (1983).

    Google Scholar 

  114. A. Itaya, H. Sakai, and H. Masuhara, Excimer dynamics of poly(N-vinylcarbazole) films revealed by time-correlated single photon counting measurements, Chem. Phys. Lett. 138, 231–236 (1987).

    Article  CAS  Google Scholar 

  115. P. A. Anfinud, D. E. Hart, J. F. Hedstrom, and W. S. Straine, Fluorescence depolarization of rhodamine 6G in glycerol: A photon-counting test of three-dimensional excitation transport theory, J. Phys. Chem. 90, 2374–2379 (1986).

    Google Scholar 

  116. N. Tamai, T. Yamazaki, and I. Yamazaki, Two-dimensional excitation energy transfer between chromophoric carbazole and anthracene in Langmuir-Blodgett monolayer films, J. Phys. Chem. 91, 841–845 (1987).

    CAS  Google Scholar 

  117. N. Tamai, T. Yamazaki, I. Yamazaki, A. Mzuma, and N. Matoga, Excitation energy transfer between dye molecules absorbed on a vesicle surface, J. Phys. Chem. 91, 3503–3508 (1987).

    CAS  Google Scholar 

  118. T. L. Nemzek and W. R. Ware, Kinetics of diffusion controlled reactions: Transient effects in fluorescence quenching, J. Phys. Chem. 15, 477–489 (1975).

    Google Scholar 

  119. M. H. Hui and W. R. Ware, Exciplex photophysics IV. Effect of diffusion-controlled quenching on exciplex photokinetics, J. Am. Chem. Soc. 98, 4712–4717 (1976).

    Google Scholar 

  120. R. W. Wijnaendts van Resandt, Picosecond transient effect in the fluorescence quenching of tryptophan, Chem. Phys. Lett. 95, 205–208 (1983).

    Article  CAS  Google Scholar 

  121. D. Daems, M. Van den Zegel, N. Boens, and F. C. De Schryver, Fluorescence decay of pyrene in small and large unilamellar L,α-dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature, Eur. Biophys. J. 12, 97–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  122. G. Duportail and P. Lianas, Fractal modelling of pyrene excimer quenching in phospholipid vesicles, Chem. Phys. Lett. 149, 73–78 (1988).

    Article  CAS  Google Scholar 

  123. M. F. Blackwell, K. Gouranis, and J. Barber, Evidence thai pyrene excimer formation in membranes is not diffusion-controlled, Biochim. Biophys. Acta 858, 221–234 (1986).

    CAS  PubMed  Google Scholar 

  124. M. Almgren and J. E. Lofroth, Determination of micelle aggregation numbers and micelle fluidities from time-resolved fluorescence quenching studies, J. Colloid Interface Sci. 84, 486–499 (1981).

    Google Scholar 

  125. N. J. Bridge and P. D. I. Fletcher, Time-resolved studies of fluorescence quenching in water-in-oil microemulsion, J. Chem. Soc., Faraday Trans. I 79, 2161–2169 (1983).

    Article  CAS  Google Scholar 

  126. D. M. Jameson, G. Weber, R. D. Spencer, and G. Mitchell, Fluorescence polarization: Measurements with a photon-counting photometer, Rev. Sci. Instrum. 49, 510–514 (1978).

    Article  CAS  Google Scholar 

  127. M. D. Barkley, A. Kowalczyk, and L. Brand, Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75, 3581–3593 (1981).

    Article  CAS  Google Scholar 

  128. R. L. Christensen, R. C. Drake, and D. Phillips, Time-resolved fluorescence anisotropy of perylene, J. Phys. Chem. 90, 5960–5967 (1986).

    CAS  Google Scholar 

  129. L. X.-Q. Chen, R. A. Engh, and G. R. Fleming, Reorientation of tryptophan and simple peptides: Onset of internal flexibility, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 223–230 (1988).

    Google Scholar 

  130. K. Kinosita, S. Kawato, and A. Ikegami, A theory of fluorescence polarisation decay in membranes, Biophys. J. 20, 289–305 (1977).

    CAS  PubMed  Google Scholar 

  131. K.. Kinosita, A. Ikegami, and S. Kawato, On the wobbling-in-cone analysis of fluorescence anisotropy decay, Biophys. J. 37, 461–464 (1982).

    CAS  PubMed  Google Scholar 

  132. M. P. Heyn, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108, 359–364 (1979).

    Article  CAS  PubMed  Google Scholar 

  133. D. J. S. Birch, A. S. Holmes, J. R. Gilchrist, R. E. Imhof, S. M. AI-Alawi, and B. Nadolski, A multiplexed single-photon instrument for routine measurement of time-resolved fluorescence anisotropy, J. Phys. E.: Sci. Instrum. 20, 471–473 (1987).

    CAS  Google Scholar 

  134. D. J. S. Birch, A. S. Holmes, R. E. Imhof, B. Z. Nadolski, and J. C. Cooper, Multiplexed time-correlated single photon counting, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 8–14 (1988).

    Google Scholar 

  135. K. Hildenbrand and C. Nicolau, Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553, 365–377 (1979).

    CAS  PubMed  Google Scholar 

  136. Lin X. Q. Chen, J. W. Petrich, G. R. Fleming, and A. Perico, Picosecond fluorescence studies of polypeptide dynamics: Fluorescence anisotropies and lifetimes, Chem. Phys. Lett. 139, 55–61 (1987).

    Article  CAS  Google Scholar 

  137. W. R. Ware, P. Chow, and S. K. Lee, Time-resolved nanosecond emission spectroscopy: Spectral shifts due to solvent-solute relaxation, Chem. Phys. Lett. 2, 356–358 (1968).

    Article  CAS  Google Scholar 

  138. S. R. Meech, D. V. O’Connor, A. J. Roberts, and D. Phillips, On the construction of nanosecond time-resolved emission spectra, Photochem. Photobiol. 33, 159–172 (1981).

    CAS  Google Scholar 

  139. W. R. Ware, S. K. Lee, G. J. Brant, and P. P. Chow, Nanosecond time-resolved emission spectroscopy: Spectral shifts due to solvent-excited solute relaxation, J. Chem. Phys. 54, 4729–4737 (1971).

    Article  CAS  Google Scholar 

  140. S. Canonica and U. P. Wild, Single photon counting with synchronously pumped dye laser excitation, Anal. Instrum. 14, 331–357 (1985).

    CAS  Google Scholar 

  141. G. Hazan, A. Grinvald, M. Maytal, and I. Z. Steinberg, An improvement of nanosecond fluorimeters to overcome drift problems, Rev. Sci. Instrum. 45, 1602–1604 (1974).

    Article  CAS  Google Scholar 

  142. R. W. Wijnaendts van Resandt, R. H. Vogel, and S. W. Provencher, Double beam fluorescence lifetime spectrometer with subnanosecond resolution: Application to aqueous tryptophan, Rev. Sci. Instrum. 53, 1392–1397 (1982).

    CAS  Google Scholar 

  143. K. Hara, Measuring apparatus of light emission of life of sample, Japanese Patent Appl. No. 57-183244 (1984).

    Google Scholar 

  144. D. J. S. Birch, R. E. Imhof, and A. Dutch, Differential pulse fluorometry using matched photomultipliers-a new method of measuring fluorescence lifetimes, J. Phys. E: Sci. Instrum. 17, 417–418 (1984).

    Article  CAS  Google Scholar 

  145. D. J. S. Birch, R. E. Imhof, and C. Guo, Fluorescence decay studies using multiplexed time-correlated single-photon counting: Application to aminotetraphenylporphyrins, J. Photochem. Photobiol. A: Chem. 42, 223–231 (1988).

    Article  CAS  Google Scholar 

  146. R. Schuyler and I. Isenberg, A monophoton fluorometer with energy discrimination, Rev. Sci. Instrum. 42, 813–817 (1971).

    Article  CAS  Google Scholar 

  147. S. C. Harvey and H. C. Cheung, Fluorescence depolarization studies on the flexibility of myosin rod, Biochemistry 16, 5181–5187 (1977).

    Article  CAS  PubMed  Google Scholar 

  148. R. W. Wijnaendts van Resandt and L. De Maeyer, Picosecond rotational diffusion by differential single-photon fluorescence spectroscopy, Chem. Phys. Lett. 78, 219–229 (1981).

    CAS  Google Scholar 

  149. D. J. S. Birch, A. S. Holmes, R. E. Imhof, B. Z. Nadolski, and K Suhling, Multiplexed array fluorometry, J. Phys. E: Sci. Instrum. 21, 415–417 (1988).

    CAS  Google Scholar 

  150. D. J. S. Birch, K, Suhling, A. S. Holmes, A. D. Dutch, and R. E. Imhof, Array fluorometry: the theory of the statistical multiplexing of single photon timing, in: Time-Resolved Laser Spectroscopy in Biochemistry II (J. R. Lakowicz, ed.), Proc. SPIE 1204, 26–34 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Birch, D.J.S., Imhof, R.E. (2002). Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-47057-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47057-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43874-5

  • Online ISBN: 978-0-306-47057-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics