Skip to main content

The Production and Use of Reactive Oxidants by Phagocytes

  • Chapter
Reactive Oxygen Species in Biological Systems
  • 397 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo. A., Boyhan, A., West, I., Thrasher, A. J., and Segal, A. W., 1992, Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J. Biol. Chem. 267:16767–16770.

    CAS  PubMed  Google Scholar 

  • Akard, L. P., English, D., and Gabig, T. G., 1988, Rapid deactivation of NADPH oxidaxe in neutmphils: Continuous replacement by newly activated enzymesustains the respiratory burst, Blood 72: 322–327.

    CAS  PubMed  Google Scholar 

  • Albina, J. E., 1995, On the expression of nitric oxide synthase by human macrophages. Why no NO, J. Leukocyte Biol. 58:643–649.

    CAS  PubMed  Google Scholar 

  • Albrich, J. M., and Hurst, J. K., 1982, Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reactive sites, FEBS Lett. 144:157–161.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, B., Denicola, A., and Radi, R., 1995, Reaction between peroxynitrite and hydrogen peroxide: Formation of oxygen and slowing of peroxynitrite decomposition, Chem. Res. Toxicol. 8:859–864.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, P. C., and Krinsky, N.I., 1981, The reductive cleavage of myeloperoxidase inhalf, producing enzymically active hemi-myeloperoxidase, J. Biol. Chem. 256:4211–4218.

    CAS  PubMed  Google Scholar 

  • Assreuy, J., Cunha, F. Q., Epperlein, M., Noronha-Dutra, A., O’Donnell, C. A., Liew, F. Y., and Moncada, S., 1994, Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major, Eur. J. Immunol. 24:672–676.

    CAS  PubMed  Google Scholar 

  • Babcock, G. T., Ingle, R. T., Oertling, W. A., Davis, J. C., Averill, B. A., Hulse, C. L., Stufkens, D. J., Bolscher, B. G. J. M., and Wever, R., 1985, Raman characterization of human leukocyte myeloperoxidase and bovine spleen green haemoprotem. Insight into chromophore structure and evidence that the chromophores of myeloperoxidase are equivalent, Biochim. Biophys. Acta 828:58–66.

    CAS  PubMed  Google Scholar 

  • Babior, B.M., Kipnes, R.S., and Curnutte. J.T., 1973, Biologicaldefense mechanisms: The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741–744.

    CAS  PubMed  Google Scholar 

  • Badwey, J.A., Curnutte, J. T, Robinson, J. M., Berde, C.B., Karnovsky, M. J. and Karnovsky, M.L., 1984, Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils: Reversibility by albumin, J. Biol. Chem. 259:7870–7877.

    CAS  PubMed  Google Scholar 

  • Baek, K.J., Thiel, B.A., Lucas, S., and Stuehr, D.J., 1993, Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme, J. Biol. Chem. 268:21120–21129.

    CAS  PubMed  Google Scholar 

  • Beckmann, J. S., Ye, Y. Z., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., and White, C. R., 1994, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry, Biol. Chem. Hoppe Seyler 375:81–88.

    CAS  PubMed  Google Scholar 

  • Berlett, B. S., Friguet, B., Yim, M. B., Chock, P. B., and Stadtman, E. R., 1996, Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: Relevance to signal transduction, Proc. Natl. Acad. Sci. USA 93:1776–1780.

    Article  CAS  PubMed  Google Scholar 

  • Bermudez, L. E., 1993, Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide, Clin. Exp. Immunol. 91:277–281.

    CAS  PubMed  Google Scholar 

  • Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., 1983, Subcellular localization of the b-cylochrome component of the human neutrophil microbicidal oxidase: Translocation during activation, J. Cell. Biol. 97:52–61.

    Article  CAS  PubMed  Google Scholar 

  • Bromberg, Y., and Pick, E., 1984, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages, Cell. Immunol. 88:213–221.

    Article  CAS  PubMed  Google Scholar 

  • Brown, O. R., Smyk-Randall, E., Draczynska-Lusiak, B., and Fee, J. A., 1995, Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli: Effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch. Biochem. Biophys. 319:10–22.

    CAS  PubMed  Google Scholar 

  • Brunelli, L., Crow, J. P., and Beckman, J. S., 1995, The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch. Biochem. Biophys. 316:327–334.

    Article  CAS  PubMed  Google Scholar 

  • Buettner, G. R., and Hall, R. D., 1987, Superoxide hydrogen peroxide and singlet oxygen in hematoporphyrin derivative-cysteine,-NADH and-light systems, Biochim. Biophys. Acta 923:501–507.

    CAS  PubMed  Google Scholar 

  • Cassina, A., and Radi, R., 1996, Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport, Arch. Biochem. Biophys. 328:309–316.

    Article  CAS  PubMed  Google Scholar 

  • Catz, S. D., Carreras, M. C., and Poderoso, J. J., 1995, Nitric oxide synthase inhibitors decrease human polymorphonuclear leukocyte luminol-dependent chemiluminescence, Free Radical Biol. Med. 19:741–748.

    Article  CAS  Google Scholar 

  • Chanock, S. J., El Benna, J., Smith, R. M., and Babior, B. M., 1994, The respiratory burst oxidase, J. Biol. Chem. 269:24519–24522.

    CAS  PubMed  Google Scholar 

  • Cho, H. J., Xie, Q., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., and Nathan, C., 1992, Calmodulin is a subunit of nitric oxide synthase from macrophages, J. Exp. Med. 176:599–604.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R. A., Volpp, B. D., Leidal, K. G., and Nauseef, W. M., 1990, Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cellactivation, J. Clin. Invest. 85:714–721.

    CAS  PubMed  Google Scholar 

  • Colton, C., Wilt, S., Gilbert, D., Chernyshev, O., Snell, J., and Dubois-Dalcq, M., 1996, Species differences in the generation of reactive oxygen species by microglia, Mol. Chem. Neuropathol. 28:15–20.

    CAS  PubMed  Google Scholar 

  • Condino-Neto, A., Muscarβ, M. N., Bellinati-Pires, R., Carneiro-Sampaio, M. M. S., Brandao, A. C., Grumach, A. S., and De Nucci, G., 1996, Effect of therapy with recombinant human interferon-gamma on the release of Nitric oxide by neutrophils and mononuclear cells from patients with chronic granulomatous disease, J. Interferon Cytokine Res. 16:357–364.

    CAS  Google Scholar 

  • Corey, E. J., and Taylor, W. C., 1964, A study of the peroxidation of organic compounds by externally generated singlet oxygen molecules, J. Am. Chem. Soc. 86:3881–3882.

    CAS  Google Scholar 

  • Cross, A. R., Higson, F. R., Jones, O. T. G., Harper, A. M., and Segal, A. W., 1982, The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils, Biochem. J. 204:479–485.

    CAS  PubMed  Google Scholar 

  • Cross, A. R., Parkinson, J. F., and Jones, O. T. G., 1985, Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochrome b-245 by NADPH, Biochem. J. 226:881–884.

    CAS  PubMed  Google Scholar 

  • Crow, J. P., and Beckman, J. S., 1995, The role of peroxynitrite in nitric oxide-mediated toxicity, Curr. Top. Microbiol. Immunol. 196:57–73.

    CAS  PubMed  Google Scholar 

  • Crow, J. P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C. D., Radi, R., Koppenol, W. H., and Beckman, J. S., 1994, On the pH-dependent yield of hydroxyl radical products from peroxynitrite, Free Radical Biol. Med. 16:331–338.

    Article  CAS  Google Scholar 

  • Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979, Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process, J. Clin. Invest. 63:637–647.

    CAS  PubMed  Google Scholar 

  • Denicola, A., Rubbo, H., Rodriguez, D., and Radi, R., 1993, Peroxynitrite-mediated cytotoxicity to Trypanosoma cruzi, Arch. Biochem. Biophys. 304:279–286.

    Article  CAS  PubMed  Google Scholar 

  • Denicola, A., Freeman, B. A., Trujillo, M., and Radi, R., 1996, Peroxynitrite reaction with carbon dioxide/bi-carbonate: Kinetics and influence on peroxynitrite-mediated oxidations, Arch. Biochem. Biophys. 333:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Dias-Da-Motta, P., Arruda, V. R., Muscara, M. N., Saad, S. T, De Nucci, G., and Costa, F. F., 1996, The release of nitric oxide and superoxide anion by neutrophils and mononuclear cells from patients with sickle cell anaemia, Br. J. Haematol. 93:333–340.

    Article  CAS  PubMed  Google Scholar 

  • DiMascio, P., Bechara, E. J., Medeiros, M. H., Briviba, K., and Sies, H., 1994, Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide, FEBS Lett. 355:287–289.

    CAS  Google Scholar 

  • Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J., and Parkos, C. A., 1987, The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex, Nature 327:717–720.

    Article  CAS  PubMed  Google Scholar 

  • Driever, W., and Fishman, M. C., 1996, The zebrafish: Heritable disorders in transparent embryos, J. Clin. Invest. 97:1788–1794.

    CAS  PubMed  Google Scholar 

  • Eiserich, J. P., Cross, C. E., Jones, A. D., Halliwell, B., and van der Vliet, A., 1996, Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification, J. Biol. Chem. 271:19199–19208.

    CAS  PubMed  Google Scholar 

  • El Benna, J., Faust, L. P., and Babior, B. M., 1994a, The phosphorylation of the respiratory burst oxidase component p47plox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-direeted kinases, J. Biol. Chem. 269:23431–23436.

    PubMed  Google Scholar 

  • El Benna, J., Ruedi, J. M., and Babior, B.M., 1994b, Cytosolic guanine nucleotide-binding protein Rac2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47plox and p67phox to the submembranous actin cytoskeleton during oxidase activation, J. Biol. Chem. 269:6729–6734.

    PubMed  Google Scholar 

  • El Benna, J., Faust, L. P., Johnson, J. L., and Babior, B. M., 1996, Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by 2-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A and a mitogen-activated protein kinase (MAP-kinase). J. Biol. Chem. 271:6374–6378.

    PubMed  Google Scholar 

  • Epe, B., 1991, Genotoxieity of singlet oxygen, Chem. Biol. Interact. 80:239–260.

    CAS  PubMed  Google Scholar 

  • Fenna, R., Zeng, J., and Davey, C., 1995, Structure of the green heme in myeloperoxidase, Arch. Biochem. Biophys. 316:653–656.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, A., Segal, A. W., Seger, R., and Weening, R. S., 1993, The management of chronic granulomatous disease, Eur. J. Pediatr. 152:896–899.

    Article  CAS  PubMed  Google Scholar 

  • Fornier de Violet, P., Veyret, B., Vincendeau, P., and Caristan, A., 1984, Chemiluminescence induced by oxidation of tryplophan by singlet oxygen and by hypochlorous acid. Implications in the luminescence emitted in phagocytosis, Photochem. Photobiol. 39:707–712.

    CAS  PubMed  Google Scholar 

  • Foroozan, R., Ruedi, J. M., and Babior, B. M., 1992, The reduction of cytochrome b558 and the activity of the respiratory burst oxidase from human neutrophils, J. Biol. Chem. 267:24400–24407.

    CAS  PubMed  Google Scholar 

  • Francis, S. H., and Corbin, J. D., 1994, Structure and function of cyclic nucleotide-dependent protein kinases, Annu. Rev. Physiol. 56:237–272.

    Article  CAS  PubMed  Google Scholar 

  • Fridovich, I., 1986, Superoxide dismutases, Adv. Enzymol. 58:61–97.

    CAS  PubMed  Google Scholar 

  • Fridovich, I., 1995, Superoxide radical and superoxide dismutases, Annu. Rev. Biochem. 64:97–112.

    Article  CAS  PubMed  Google Scholar 

  • Gabig, T. G., Schervish, E. W., and Santinga, J. T., 1982, Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils, J. Biol. Chem. 257:4114–4119.

    CAS  PubMed  Google Scholar 

  • Gaetani, G. E., Ferraris, A. M., Rolfo, M., Mangerini, R., Arena, S., and Kirkman, H. N., 1996, Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes, Blood 87:1595–1599.

    CAS  PubMed  Google Scholar 

  • Galli, C., MacArthur, R., Abu-Soud, H. M., Clark, P., Steuhr, D. J., and Brudvig, G. W., 1996, EPR spectroscopic characterization of neuronal NO synthase, Biochemistry 35:2804–2810.

    CAS  PubMed  Google Scholar 

  • Gardner, P. R., Rainer, I., Epstein, L. B., and White, C. W., 1995, Superoxide radical and iron modulate aconitase activity in mammalian cells, J. Biol. Chem. 270:13399–13405.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, D. L., and Ehrenstein, G., 1984, Membrane surface charge, Curr. Top. Membr. Transp. 22:407–421.

    Google Scholar 

  • Giulivi, C., Boveris, A., and Cadenas, E., 1995, Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA, Arch. Biochem. Biophys. 316:909–916.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, S., and Czapski, G., 1996, Mechanism of the nitrosation of thiols and amines by oxygenated ·NO solutions: The nature of the nitrosating intermediates, J. Am. Chem. Soc. 118:3419–3425.

    CAS  Google Scholar 

  • Green, T. R., Fellrnan, J. H., Eicher, A. L., and Pratt, K. L., 1991, Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils, Biochim. Biophys. Acta Gen. Subj. 1073:91–97.

    CAS  Google Scholar 

  • Haddad, I. Y., Pataki, G., Calliani, C., Beckman, J. S., and Matalon, S., l994, Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury, J. Clin. Invest. 94:2407–2413.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1986, Iron and free radical reactions: Two aspects of antioxidant protection, Trends Biochem. Sci. 11:372–375.

    Article  CAS  Google Scholar 

  • Harris, L. R., Cake, M. H., and Macey, D. J., 1994, Iron release from ferritin and its sensitivity to superoxide ions differs among vertebrates, Biochem. J. 301:385–389.

    CAS  PubMed  Google Scholar 

  • Harrison, J. E., and Schultz, J., 1978, Myeloperoxidase: Confirmation and nature of heme-binding inequiva-lence. Resolution of a carbonyl-substituted heme, Biochim. Biophys. Acta 536:341–349.

    CAS  PubMed  Google Scholar 

  • Harrison, J E., Araiso, T., Palic, M. M., and Dunford, H. B., 1980, Compound I of myeloperoxidase, Biochem. Biophys. Res. Commun. 94:34–40.

    Article  CAS  PubMed  Google Scholar 

  • Hartman, P. E., Hartman, Z., and Ault, K. T, 1990, Scavenging of singlet molecular oxygen by imidazole compounds: High and sustained activities of carboxy terminal histidine dipeptides and exceptional activity of imidazole-4-acetic acid, Photochem. Photobiol. 51:59–66.

    CAS  PubMed  Google Scholar 

  • Hausladen, A., Fridovich, I., Castro, L., Rodriguez, M., and Radi, R., 1994, Superoxide and peroxynitrile inactivate aconitases, but nitric oxide does not. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide, J. Biol. Chem. 269:29405–29408, 29409–29415.

    CAS  PubMed  Google Scholar 

  • Hayakawa, T., Suzuki, K., Suzuki, S., Andrews, P. C., and Babior, B. M., 1986, A possible role for protein phospliorylation in the activation of the respiratory burst in human neutrophils, J. Biol. Chem. 261:9109–9115.

    CAS  PubMed  Google Scholar 

  • Hevel, J. M., and Marletta, M. A., 1992, Macrophage nitric oxide synthase: Relationship between enzyme-bound telrahydrobiopterin and synthase activity. Biochemistry 31:7160–7165.

    Article  CAS  PubMed  Google Scholar 

  • Hevel, J. M., White, K. A., and Marletta, M. A., 1991, Purification of the inducible murine macrophage nitric oxide synthase, J. Biol. Chem. 266:22789–22791.

    CAS  PubMed  Google Scholar 

  • Higson, F. K., Kohen, R., and Chevion, M., 1988, Iron enhancement of ascorbate toxicity. Free Radical Res. Commun. 5:107–115.

    CAS  Google Scholar 

  • Hogg, N., Singh, R. J., and Kalyanaraman, B., 1996, The role of glutathione in the transport and catabolism of nitric oxide, FEBS Lett. 382:223–228.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Saito, M., Argade, P. V., and Rousseau, D. I., 1985, Resonance Raman evidence of chloride binding to the heme iron in myeloperoxidase, FEBS Lett. 184:52–55.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, S., and Kawanishi, S., 1995, Oxidative DNA damage induced by simultaneous generation ofnitric oxide and superoxide, FEBS Lett. 371:86–88.

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos, H., and Al-Mehdi, A. B., 1995, Peroxynitrite-mediated oxidative protein modifications, FEBS Lett. 364:279–282.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar, R., Stuehr, D. J., and Marletta, M. A., 1987, Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: Precursors and role of the respiratory burst, Proc. Natl. Acad. Sci. USA 84:6369–6373.

    CAS  PubMed  Google Scholar 

  • Jennings, G., and Elia, M., 1996, Automated assay of plasma bromide after a single deproteinization step, Clin. Chem. 42:1210–1213.

    CAS  PubMed  Google Scholar 

  • Johnson, D., and Travis, J., 1979, The oxidative activation of human α-l-proteinase inhibitor. More evidence for methionine at the reactive center, J. Biol. Chem. 254:4022–4026.

    CAS  PubMed  Google Scholar 

  • Johnson, J. L., Park, J.-W., El Benna, J., Inanami, O., and Babior, B. M., 1996, Phosphorylation-dependent activation of the respiratory burst oxidase, Blood 88:622a.

    Google Scholar 

  • Kanofsky, J. R., Wright, J., Miles-Richardson, G. E., and Tauber, A. I., 1984, Biochemical requirements for singlet oxygen production by purified human myeloperoxidase, J. Clin. Invest. 74:1489–1495.

    CAS  PubMed  Google Scholar 

  • Kanofsky, J. R., Hoogland, H., Wever, R., and Weiss, S. J., 1988, Singlet oxygen production by human eosinophils, J. Biol. Chem. 263:9692–9696.

    CAS  PubMed  Google Scholar 

  • Karki, S. B., and Dinnocenzo, J. P., 1995, On the mechanism of amine oxidations by P450, Xenobiotica 35:711–724.

    Google Scholar 

  • Karoui, H., Hogg, N., Frejaville, C., Tordo, P., and Kalyanaraman, B., 1996, Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. ESR-spin trapping and oxygen uptake studies, J. Biol. Chem. 271:6000–6009.

    CAS  PubMed  Google Scholar 

  • Kaufman, S., 1987, Enzymology of the phenylalanine-hydroxylating system, Enzyme 38:286–295.

    CAS  PubMed  Google Scholar 

  • Kawanishi, S., Inoue, S., Sano, S., and Aiba, H., 1986, Photodynamic guanine modification by hematoporphyrin is specific for single-stranded DNA with singlet oxygen as a mediator, J. Biol. Chem. 261:6090–6095.

    CAS  PubMed  Google Scholar 

  • Kettle, A. J., and Winterbourn, C. C., 1988, The mechanism of myeloperoxidase-dependent chlorination of monochlorodimedon, Biochim. Biophys. Acta 957:185–191.

    CAS  PubMed  Google Scholar 

  • Kettle, A. J., and Winterbourn, C. C., 1994, Superoxide-dependent hydroxylation by myeloperoxidase, J. Biol. Chem. 269:17146–17151.

    CAS  PubMed  Google Scholar 

  • Khan, A. U., and Kasha, M., 1994, Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: Application to studies on the deleterious health effects of chlorinated drinking water, Proc. Natl. Acad. Sci. USA 91:12362–12364.

    CAS  PubMed  Google Scholar 

  • Kharitonov, V. G., Sundquist, A. R., and Sharma, V. S., 1995, Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen, J. Biol. Chem. 270:28158–28164.

    CAS  PubMed  Google Scholar 

  • Klatt, P., Pfeiffer, S., List, B. M., Lehner, D., Glatter, O., Bachinger, H. P., Werner, E. R., Schmidt, K., and Mayer, B., 1996, Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin, J. Biol. Chem. 271:7336–7342.

    CAS  PubMed  Google Scholar 

  • Klebanoff, S. J., and Clark, R. A., 1975, Hemolysis and iodination of erythrocyte components by a myeloperoxidase-mediated system, Blood 45:699–707.

    CAS  PubMed  Google Scholar 

  • Knaus, U. G., Heyworth, P. G., Kinsella, B. T, Curnutte, J. T, and Bokoch, G. M., 1992, Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase, J. Biol. Chem. 267:23575–23582.

    CAS  PubMed  Google Scholar 

  • Kong, S.-K., Yim, M. B., Stadtman, E. R., and Chock, P. B., 1996, Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc 2(6–20)NH2 peptide. Proc. Natl. Acad. Sci. USA 93:3377–3382.

    Article  CAS  PubMed  Google Scholar 

  • Korytowski, W., Bachowski, G. J., and Girotti, A. W., 1992, Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: Comparison of the 5α-and 6β-hydropcroxides as indicators of singlet oxygen intermediacy, Photochem. Photobiol. 56:1–8.

    CAS  PubMed  Google Scholar 

  • Krieger, M., and Herz, J., 1994, Structures and functions of multiligand lipoprotein receptors: Macrophage scavenger receptors and LDL receptor-related protein (LRP), Annu. Rev. Biochem. 63:601–637.

    CAS  PubMed  Google Scholar 

  • Larfars, G., and Gyllenhammar, H., 1995, Measurement of methemoglobin formation from oxyhemoglobin. A real-time, continuous assay of nitric oxide release by human polymorphonuclear leukocytes, J. Immunol. Methods 184:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. C, Booth, K. S., Caughey, W. S., and Ikeda-Saito, M., 1991, Interaction of halides with the cyanide complex of myeloperoxidase: A model for substrate binding to compound I, Biochim. Biophys. Acta 1076:317–320.

    CAS  PubMed  Google Scholar 

  • Lemercier, J.-N., Squadrito, G. L., and Pryor, W. A., 1995, Spin trap studies on the decomposition of peroxynitrite, Arch. Biochem. Biophys. 321:31–39.

    Article  CAS  PubMed  Google Scholar 

  • Leto, T. L., Lomax, K. J., Volpp, B. D., Nunoi, H., Sechler, J. M. G., Nauseef, W. M., Clark, R. A., Gallin, J. I., and Malech, H. L., 1990, Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src, Science 248:727–730.

    CAS  PubMed  Google Scholar 

  • Lomax, K. J., Leto, T. L., Nunoi, H., Gallin, J. I., and Malech, H. L., 1989, Recombinant 47kD cytosol factor restores NADPH oxidase in chronic granulomatous disease [published erratum appears in Science 246:987 (1989)], Science 245:409–412.

    CAS  PubMed  Google Scholar 

  • Lymar, S. V, Jiang, Q., and Hurst, J. K., 1996, Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35:7855–7861.

    Article  CAS  PubMed  Google Scholar 

  • Maly, F. E., Quilliam, L. A., Dorseuil, O., Der, C. J., and Bokoch, G. M., 1994, Activated or dominant inhibitory mutants of Rap IA decrease the oxidative burst of Epstein-Barr virus-transformed human B lymphocytes, J. Biol. Chem. 269:18743–18746.

    CAS  PubMed  Google Scholar 

  • Marletta, M. A., 1993, Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268:12231–12234.

    CAS  PubMed  Google Scholar 

  • Marquez, L. A., Huang, J. T., and Dunford, H. B., 1994, Spectral and kinetic studies on the formation of myeloperoxidase compounds 1 and II: Roles of hydrogen peroxide and superoxide, Biochemistry 33:1447–1454.

    Article  CAS  PubMed  Google Scholar 

  • Masters, B. S., McMillan. K., Sketa, K. A., Nishimura, J. S., Roman, L. J., and Martasek, P., 1996, Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: Structure studies of a cysteine thiolate-liganded heme protein that hydroxylates I.-arginine to produce NO as a cellular signal, FASEB J. 10:552–558.

    CAS  PubMed  Google Scholar 

  • Mateo, R. B., Reichner, J. S., and Albina, J. E., 1996, NO is not sufficient to explain maximal cytotoxicity of tumoricidal macrophages against an NO-sensitive cell line, J. Leukocyte Biol. 60:245–252.

    CAS  PubMed  Google Scholar 

  • McCall, T. B., Boughton-Smith, N. K., Palmer, R. M., Whittle, B. J., and Moncada, S., 1989, Synthesis of nitric oxide from l-arginine by neutrophils. Release and interaction with superoxide anion, Biochem. J. 261:293–296.

    CAS  PubMed  Google Scholar 

  • McMillan, K., and Masters, B. S., 1995, Prokaryotic expression of the heme-and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: Identification of the heme-binding proximal thilate ligand as cysteine-415, Biochemistry 34:3686–3693.

    Article  CAS  PubMed  Google Scholar 

  • McMillan, K., Bredt, D. S., Hirsch, D. J., Snyder, S. H., Clark, J. E., and Masters, B. S., 1992, Cloned, expressed rat cerebellar nitric oxidesynthase contains stoichiometric amounts of heme,which binds carbon monoxide, Proc. Natl. Acad. Sci. USA 89:11141–11145.

    CAS  PubMed  Google Scholar 

  • Michiels, C., Raes, M., Toussaint, O., and Remacle, J., 1994, Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress, Free Radical Biol. Med. 17:235–248.

    Article  CAS  Google Scholar 

  • Midi, T., Yu, L., and Yu, C. A., 1991, Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: Selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone, Biochemistry 30:230–238.

    Google Scholar 

  • Murad, F., 1994, Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system, Adv. Pharmacol. 26:19–33.

    CAS  PubMed  Google Scholar 

  • Nathan, C. F, 1987, Secretory products of macrophages, J. Clin. Invest. 79:319–326.

    CAS  PubMed  Google Scholar 

  • Nauseef, W. M., 1988, Myeloperoxidase deficiency, in Hematology/Oncology Clinics of North America (J. T. Curnutte, ed.), pp. 135–158, Saunders, Philadelphia.

    Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.-W., Ma, M., Ruedi, J. M., Smith, R. M., and Babior, B. M., 1992, The cytosolic components of the respiratory burst oxidase exist as a Mr 240,000 complex that acquires a membrane-binding site during activation of the oxidase in a cell-free system, J. Biol. Chem. 267:17327–17332.

    CAS  PubMed  Google Scholar 

  • Park, J.-W., El Benna, J., Scott, K. E., Christensen, B. L., Chanock, S. J., and Babior, B. M., 1994, Isolation of a complex of respiratory burst oxidase components from resting neutrophil cytosol, Biochemistry 33:2907–2911.

    Article  CAS  PubMed  Google Scholar 

  • Parkos, C. A., Allen, R. A., Cochrane, C. G., and Jesaitis, A. J., 1987, Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000, J. Clin. Invest. 80:732–742.

    CAS  PubMed  Google Scholar 

  • Parkos, C. A., Dinauer, M. C., Walker, L. E., Alien, R. A., Jesaitis, A. J., and Orkin, S. H., 1988, Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b, Proc. Natl. Acad. Sci. USA 85:3319–3323.

    CAS  PubMed  Google Scholar 

  • Paul-Eugene, N., Kolb, J. P., Sarfati, M., Arock, M., Ouaaz, F., Debre, P., Mossalayi, D. M., and Dugas, B., 1995, Ligation of CD23 activates soluble guanylate cyclase in human monocytes via an l-arginine-dependent mechanism, J. Leukocyte Biol. 57:160–167.

    CAS  PubMed  Google Scholar 

  • Pick, E., Bromberg, Y., Sphungin, S., and Gadba, R., 1987, Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component, J. Biol. Chem. 262:16476–16483.

    CAS  PubMed  Google Scholar 

  • Pou, S., Nguyen, S. Y., Gladwell, T., and Rosen, G. M., 1995, Does peroxynitrite generate hydroxyl radical? Biochim. Biophys. Acta 1244:62–68.

    PubMed  Google Scholar 

  • Pryor, W. A., and Squadrito, G. L., 1995, The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide, Am. J. Physiol. Lung Cell. Mol. Physiol. 268:L699–L722.

    CAS  Google Scholar 

  • Pryor, W. A., Jin, X., and Squadrito, G. L., 1994, One-and two-electron oxidations of methionine by peroxynitrite, Proc. Natl. Acad. Sci. USA 91:11173–11177.

    CAS  PubMed  Google Scholar 

  • Pufahl, R. A., Nanjappan, P. G., Woodard, R. W., and Marletta, M. A., 1992, Mechanistic probes of N-hydroxylalion of l-arginine by the inducible nitric oxide synthase from murine macrophages, Biochemistry 31:6822–6828.

    Article  CAS  PubMed  Google Scholar 

  • Rakita, R. M., and Rosen, H., 1991, Penicillin-binding protein inactivation by human neutrophil myeloperoxidase, J. Clin. Invest. 88:750–754.

    CAS  PubMed  Google Scholar 

  • Ramos, C. L., Pou, S., Britigan, B. E., Cohen, M. S., and Rosen, G. M., 1992, Spin trapping evidence for myeloperoxidase-depenclent hydroxyl radical formation by human neutrophils and monocytes, J. Biol. Chem. 267:8307–8312.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Crespo, I., Gerber, N. C., and Ortiz de Montellano, P. R., 1996, Endothelial nitric-oxide synthase. Expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation, J. Biol. Chem. 271:11462–11467.

    CAS  PubMed  Google Scholar 

  • Root, R. K., Metcalf, J., Oshino, N., and Chance, B., 1975, H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation and some regulating factors, J. Clin. Invest. 55:945–955.

    CAS  PubMed  Google Scholar 

  • Rosen, H., Rakita, R. M., Waltersdorph, A. M., and Klebanoff, S. J., 1987, Myeloperoxidase-mediated damage to the succinate oxidase system of Escherichia coli. Evidence for selective inactivation of the dehydrogenase component, J. Biol. Chem. 242:15004–15010.

    Google Scholar 

  • Rosen, H., Orman, J., Rakita, R. M., Michel, B. R., and VanDevanter, D. R., 1990, Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli, Proc. Natl. Acad. Sci. USA 87:10048–10052.

    CAS  PubMed  Google Scholar 

  • Rotrosen, D., Yeung, C. L., Leto, T. L., Malech, H. L., and Kwong, C. H., 1992, Cytochrome b558: The flavin-binding component of the phagocyte NADPH oxidase, Science 256:1459–1462.

    CAS  PubMed  Google Scholar 

  • Rowe, G. T., Manson, N. H., Caplan, M., and Hess, M. L., 1983, Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway, Circ. Res. 53:584–591.

    CAS  PubMed  Google Scholar 

  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives, J. Biol. Chem. 269:26066–26075.

    CAS  PubMed  Google Scholar 

  • Sakai, N., and Milstein, S., 1993, Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages, Biochem. Biophys. Res. Commun. 193:378–383.

    Article  CAS  PubMed  Google Scholar 

  • Salgo, M. G., Bermudez, E., Squadrito, G. L., and Pryor, W. A., 1995, Peroxinitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected] [published erratum appears in Arch. Biochem. Biophys. 324(l):200(1995)], Arch. Biochem. Biophys. 322:500–505.

    Article  CAS  PubMed  Google Scholar 

  • Salvemini, D., Nucci, G., Gryglewski, R. J., and Vane, J. R., 1989, Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor, Proc. Natl. Acad. Sci. USA 86:6328–6332.

    CAS  PubMed  Google Scholar 

  • Schneemann, M., Schoedon, G., Hofer, S., Blau, N., Guerrero, L., and Schaffner, A., 1993, Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes, J. Infect. Dis. 167:1358–1363.

    CAS  PubMed  Google Scholar 

  • Schraufstatter, I. U., Hinshaw, D. B., Hyslop, P. A., Spragg, R. G., and Cochrane, C. G., 1985, Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells, J. Clin. Invest. 76:1131–1139.

    CAS  PubMed  Google Scholar 

  • Schraufstatter, I. U., Hyslop, P. A., Hinshaw, D. B., Spragg, R. G., Sklar, L. A., and Cochrane, C. G., 1986, Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase, Proc. Natl. Acad. Sci. USA 83:4908–4912.

    CAS  PubMed  Google Scholar 

  • Schraufstatter, I. U., Browne, K., Harris, A., Hyslop, P. A., Jackson, J. H., Quehenberger, O., and Cochrane, C. G., 1990, Mechanisms of hypochlorite injury of target cells, J. Clin. Invest. 85:554–562.

    CAS  PubMed  Google Scholar 

  • Segal, A. W., West, I., Wientjes, F, Nugent, J. H. A., Chavan, A. J., Haley, B., Garcia, R. C., Rosen, H., and Scrace, G., 1992, Cytochrome b245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes, Biochem. J. 284:781–788.

    CAS  PubMed  Google Scholar 

  • Selvaraj, R. J., Zgliczynski, J. M., Paul, B. B., and Sbarra, A. J., 1980, Chlorination of reduced nicotinamide adenine dinucleotides by myeloperoxidase: A novel bactericidal mechanism, J. Reticuloendothel. Soc. 27:31–38.

    CAS  PubMed  Google Scholar 

  • Sengelov, H., Nielsen, M. H., and Borregaard, N., 1992, Separation of human neutrophil plasma membrane from intracellular vesicles containing alkaline phosphatase and NADPH oxidaseactivity by free flow electrophoresis, J. Biol. Chem. 267:14912–14917.

    CAS  PubMed  Google Scholar 

  • Sennequier, N., Boucher, J. L., Battioni, P., and Mansuy, D., 1995, Superoxide anion efficiently performs the oxidative cleavage of C=NOH bonds of amidoximes and N-hydroxyguanidines with formation of nitrogen oxides, TetrahedronLett. 36:6059–6062.

    CAS  Google Scholar 

  • Shi, X., Rojanasakul, Y, Gannett, P., Liu, K., Mao, Y., Daniel, L. N., Ahmed, N., and Saffiotti, U., 1994, Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH, J. Inorg. Biochem. 56:77–86.

    CAS  PubMed  Google Scholar 

  • Singh, R. J., Hogg, N., Joseph, J., and Kalyanaraman, B., 1996, Mechanism of nitric oxide release from S-nitrosothiols, J. Biol. Chem. 271:18596–18603.

    CAS  PubMed  Google Scholar 

  • Sono, M., Bracete, A. M., Huff, A. M., Ikeda-Saito, M., and Dawson, J. H., 1991, Evidence that a formyl-substituted iron porphyrin is the prosthetic group of myeloperoxidase: Magnetic circular dichroism similarity of the peroxidase to Spirographis heme-reconstituted tnyoglobin, Proc. Natl. Acad. Sci. USA 88: 11148–11152.

    CAS  PubMed  Google Scholar 

  • Squadrito, G. L., Jin, X., and Pryor, W. A., 1995, Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite, Arch. Biochem. Biophys. 322:53–59.

    Article  CAS  PubMed  Google Scholar 

  • Stadtman, E. R., 1995, Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol. 258:379–393.

    CAS  PubMed  Google Scholar 

  • Steinbeck, M. J., Khan, A. U., Karnovsky, M. J.,and Hegg, G. G., 1992, Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap, J. Biol. Chem. 267:13425–13433

    CAS  PubMed  Google Scholar 

  • Steinbeck, M. J., Khan, A. U., and Karnovsky, M. J., 1993, Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and pcrylene in a polystyrene film, J. Biol. Chem. 268:15649–15654.

    CAS  PubMed  Google Scholar 

  • Stevens-Truss, R., and Marletta, M.A., 1995, Interaction of calmodulin with the inducible murine macrophage nitric oxide synthase, Biochemistry 34:15638–15645.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. R., and Marietta, M. A., 1996, Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide, Biochemistry 35:1093–1099.

    CAS  PubMed  Google Scholar 

  • Stuehr, D. J., Cho, H. J., Kwon, N. S., Weise, M. F, and Nathan, C. F, 1991, Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: An FAD-and FMN-containing flavoprotein, Proc. Natl. Acad. Sci. USA 88:7773–7777.

    CAS  PubMed  Google Scholar 

  • Szabo, C., Zingarelli, B., O’Connor, M,, and Salzrnan, A. L., 1996, DNA strand breakage, activation of poly(ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite, Proc. Natl. Acad. Sci. USA 93:1753–1758.

    Article  CAS  PubMed  Google Scholar 

  • Tayeh, M. A., and Marletta, M. A., 1989, Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate, J. Biol. Chem. 264:19654–19658.

    CAS  PubMed  Google Scholar 

  • Taylor, K. L., Pohl, J., and Kinkade, J. M., Jr., 1992, Unique autolytic cleavage of human myeloperoxidase. Implications for the involvement of active site MET409, J. Biol. Chem. 267:25282–25288.

    CAS  PubMed  Google Scholar 

  • Taylor, K. L., Strobel, F., Yue, K. T., Ram, P., Pohl, J., Woods, A. S., and Kinkade, J. M., Jr., 1995, Isolation and identification of a protoheme IX derivative released during autolytic cleavage of human myeloperoxidase, Arch. Biochem. Biophys. 316:635–642.

    CAS  PubMed  Google Scholar 

  • Thomas, E. L., Jefferson, M. M., and Grisham, M., 1982, Myeloperoxidase-catalyzed incorporation of amino acids into proteins: Role of hypochlorous acid and chloramines, Biochemistry 21:6299–6308.

    CAS  PubMed  Google Scholar 

  • Thomas, E. L., Grisham, M. B., and Jefferson, M. M., 1983, Myeloperoxidase-dependent effect of amines on functions of isolated neutrophils, J. Clin. Invest. 72:441–454.

    CAS  PubMed  Google Scholar 

  • Thomas, E. L., Bozeman, P. M., Jefferson, M. M., and King, C. C., 1995, Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines, J. Biol. Chem. 270:2906–2913.

    CAS  PubMed  Google Scholar 

  • Timcenko-Youssef, L., Yamazaki, R. K., and Kimura, T., 1985, Subcellular localization of adrenal cortical glutathione peroxidase and protective role of the mitochondrial enzyme against lipid peroxidative damage, J. Biol. Chem. 260:13355–13359.

    CAS  PubMed  Google Scholar 

  • Turk, J., Henderson, W. R., Klebanoff, S. J., and Hubbard, W. C., 1983, lodination of arachidonic acid mediated by eosinophil peroxidase, myeloperoxidase, and lactoperoxidase: Identification and comparison of products, Biochim. Biophys. Acta 751:189–200.

    CAS  PubMed  Google Scholar 

  • Uppu, R. M., Squadrito, G. L., and Pryor, W. A., 1996, Acceleration of peroxynitrite oxidations by carbon dioxide, Arch. Biochem. Biophys. 327:335–343.

    Article  CAS  PubMed  Google Scholar 

  • van der Vliet, A., O’Neill, C. A., Halliwell, B., Cross, C. E., and Kaur, H., 1994, Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite, FEBS Lett. 339:89–92.

    PubMed  Google Scholar 

  • Vasquez-Vivar, J., Santos, A. M., Junqueira, V. B., and Augusto, O., 1996, Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived radicals, Biochem. J. 314:869–876.

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres, A., Jones-Carson, J., and Balish, E., 1996, Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages, Infect. Immun. 64:3127–3133.

    CAS  PubMed  Google Scholar 

  • Vissers, M. C., and Winterbourn, C. C., 1995, Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid, Biochem. J. 307:57–62

    CAS  PubMed  Google Scholar 

  • Volkman, D. J., Buescher, E. S., Gallin, J. I., and Fauci, A. S., 1984, B cell lines as models for inherited phagocytic diseases: Abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak-Higashi syndrome, J. Immunol. 133:3006–3009.

    CAS  PubMed  Google Scholar 

  • Volpp, B. D., Nauseef, W. M., Donelson, J. E., Moser, D. R., and Clark, R. A., 1989, Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase [published erratum appears in Proc. Natl. Acad. Sci. USA 86(23):9563 (1989)], Proc. Natl. Acad. Sci. USA 86:7195–7199.

    CAS  PubMed  Google Scholar 

  • Vouldoukis, I., Riveros-Moreon, V, Dugas, B., Ouaaz, F, Becherel, P., Debre, P., Moncada, S., and Mossalayi, M. D., 1995, The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the EC epsilon RII/CD23 surface antigen, Proc. Natl. Acad. Sci. USA 92:7804–7808.

    CAS  PubMed  Google Scholar 

  • Wang, Y, and Marsden, P. A., 1995, Nitric oxide synthases: Gene structure and regulation, Adv. Pharmacol. 34:71–90.

    CAS  PubMed  Google Scholar 

  • Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., and Regiani, S., 1986, Brominating oxidants generated by human eosinophils, Science 234:200–202.

    CAS  PubMed  Google Scholar 

  • Wever, R., Oertling, W. A., Hoogland, H., Holscher, B. G., Kim, Y., and Babcock, G. T., 1991, Denaturation and renaturation of myeloperoxidase. Consequences for the nature of the prosthetic group, J. Biol. Chem. 266:24308–24313.

    CAS  PubMed  Google Scholar 

  • White, K. A., and Marletta, M. A., 1992, Nitric oxide synthase is a cytochrome P-450 type hemoprotein, Biochemistry 31:6627–6631.

    CAS  PubMed  Google Scholar 

  • Wientjes, E. B., Hsuan, J. J., Totty, N. F., and Segal, A. W., 1993, p40-phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology domains, Biochem. J. 296:557–561.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Nims, R. W., Darbyshire, J. E., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. E., and DeGraff, N. G., and Mitchell, J. B., 1994, Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 7:519–525.

    Article  CAS  PubMed  Google Scholar 

  • Xia. Y., Dawson, V. L., Dawson, T. M., Snyder, S. H., and Zweier, J. L., 1996, Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediatcd cellular injury, Proc. Natl. Acad. Sci. USA 93:6770–6774.

    CAS  PubMed  Google Scholar 

  • Yazdanbakhsh, M., Tai, P.-C., Spry, C. J. F., Gleich, G. J., and Roos, D., 1987, Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni, J. Immunol. 138:3443–3447.

    CAS  PubMed  Google Scholar 

  • Yermilov, V., Rubio, J., Becchi, M., Friesen, M. D., Ignatelli, B., and Oshima, H., 1995, Formation of 8-nitroguanine by the reaction of guunine with peroxynitrite in vitro, Carcinogenesis 16:2045–2050.

    CAS  PubMed  Google Scholar 

  • Younginan, R. J., Wagner, G. R., Kuhne, F. W., and Elstner, E. F., 1985, Biochemical oxygen activation as the basis for the physiological action of letrachlorodecaoxide (TCDO), Z. Naturforsch. 40:409–414.

    Google Scholar 

  • Zeng, J., and Fenna, R. E., 1992, X-ray crystal structure of canine myelopcroxidase at 3 A resolution, J. Mol. Biol. 226:185–207.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Gunn, C., and Beckman, J. S., 1992, Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298:452–457.

    Article  CAS  PubMed  Google Scholar 

  • Zingarelli, B., O’Connor, M., Wong, H., Salzman, A. L., and Szabó, C., 1996, Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depiction in macrophages stimulated with bacterial lipopolysaccharide, J. Immunol. 156:350–358.

    CAS  PubMed  Google Scholar 

  • Zuurbier, K. W. M, van den Berg, J. D., Van Gelder, B. F., and Muijsers, A. O., 1992, Human hemi-myeloper-oxidase. Initial chlorinating activity at neutral pH, compound II and I I I formation, and stability towards hypochlorous acid and high temperature, Eur. J. Biochem. 205:737–742.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Babior, B.M. (2002). The Production and Use of Reactive Oxidants by Phagocytes. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics