Skip to main content

Oral Delivery of Microencapsulated Proteins

  • Chapter

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 10))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, D., and Rodewald, R., 1981, Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine, J. Cell Biol. 91:270–280.

    Google Scholar 

  • Addison, J. M., Matthews, D. M., and Burston, D., 1974, Evidence for active transport of the dipeptide carnosine (b-alanyl-L-histidine) by hamster jejunum in vitro, Clin. Sci. Mol. Med. 46:707–714.

    Google Scholar 

  • Addison, J. M., Burston, D., Dalrymple, J. A., Matthews, D. M., Payne, J. W., Sleisenger, M. H., and Wilkinson, S., 1975, A common mechanism for transport of di-and tripeptides by hamster jejunum in vitro, CIin Sci. Mol. Med. 49:313–322.

    Google Scholar 

  • Adibi, S. A., and Kim, Y. S., 1981, Peptide absorption and hydrolysis, in: Physiology of the Gastrointestinal Tract, 1st ed. (L. R. Johnson, ed.), Raven Press, New York, p. 1073–1085.

    Google Scholar 

  • Adibi, S. A., and Morse, E. L., 1977, The number of glycine residues which limit intact absorption of glycine oligopeptides in human jejunum, J. Clin. Invest. 60:1008–1016.

    Google Scholar 

  • Adibi, S. A., and Phillips, E., 1968, Evidence for greater absorption of amino acid from peptide than from free form by human intestine, Clin. Res. 16:446–448.

    Google Scholar 

  • Alkermes, Inc., 1994, Annual Report, Cambridge Massachusetts.

    Google Scholar 

  • Allen, J. G., Havas, L., Leichtt, E., Lenox-Smith, J., and Nisbet, L. J., 1979, Phosphonopeptides as antibacterial agents: Metabolism and pharmacokinetics of alafosfalin in animals and humans, Antimicrob. Agents, Chemother. 16:306–313.

    Google Scholar 

  • Allen, R. H., and Majerus, P. W., 1972a Isolation of vitamin B12-binding proteins using affinity chromatography II. Purification and properties of a human granulocyte vitamin B12-binding protein, J. Biol. Chem. 242:7702–7708.

    Google Scholar 

  • Allen, R. H., and Majerus, P. W., 1972b, Isolation of vitamin B12-binding proteins using affinity chromatography III. Purification and properties of human plasma transcobalamin II. J. Biol. Chem. 242:7709–7717.

    Google Scholar 

  • Alpar, H. O., Bowen, J. C., and Brown, M. R. W., 1992, Effectiveness of liposomes as adjuvants of orally and nasally administered tetanus toxoid, Int. J. Pharm. 88:335–344.

    Google Scholar 

  • Alpers, D. H., 1987, Digestion and absorption of carbohydrates and proteins, in: Physiology of the Gastrointestinal Tract, Vol. 2. (L. R. Johnson, ed.), Raven Press, New York, pp. 1469–1487.

    Google Scholar 

  • Alpers, D. H., and Isselbacher, K. J., 1967, Protein synthesis by the rat intestinal mucosa: The role of ribonuclease, J. Biol. Chem. 242:5617–5620.

    Google Scholar 

  • Amidon, G. L., and Lee, H. J., 1994, Absorption of peptide and peptidomimetic drugs, Annu. Rev. Pharmacol. Toxicol. 34:321–341.

    Google Scholar 

  • Amidon, G. L., Sinko, P. J., and Fleisher, D., 1988, Estimating human oral fraction dose absorbed: A correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds, Pharm. Res. 5:651–654.

    Google Scholar 

  • Anonymous, 1994, Bio Scan 8(April).

    Google Scholar 

  • Aramaki, Y., Tomizawa, H., Hara, T., Yachi, K., Kikuchi, H., and Tsuchiya, S., 1993, Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration, Pharm. Res. 10:31228–1231.

    Google Scholar 

  • Arshady, R., 1991, Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters, J. Controlled Release 17:1–22.

    Google Scholar 

  • Asatoor, A. M., Chadha, A., Milne, M. D., and Prosser, D. I., 1973, Intestinal absorption of stereoisomers of dipeptides in the rat, Clin. Sci. Mol. Mol. Med 45:199–212.

    Google Scholar 

  • Bai, P. F., Subramanian, P., Mosberg, H. I., and Amidon, G. L., 1991, Structural requirements for the intestinal mucosal cell peptide transporter: The need for N-terminal a-amino group, Pharm. Res. 8:593–599.

    Google Scholar 

  • Benet, L. Z., and Williams, R. L., 1990, Design and optimization of dosage regimens: Pharmacokinetic data, in: The Pharmacological Basis of Therapeutics (A. G. Gilman, T. W. Rall, A. S. Nies, and P. Taylor, eds.), Pergamon, New York, 1655.

    Google Scholar 

  • Bemstein, I. D. and Ovary, Z., 1968, Absorption of antigens from the gastrointestinal tract, Int. Arch. Allergy Appl. Immunol. 33:521–529.

    Google Scholar 

  • Blaustein, R. O., Germann, W. J., Finkelstein, A., and DasGupta, B. R., 1987, The N-terminal half of the heavy chain of botulinum type A neurotoxin forms of channels in planar phospholipid bilayers, FEBS Lett. 226:115–120.

    Google Scholar 

  • Bockman, D. E., and Cooper, M. D., 1973, Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Facricius appendix and Peyer’s patches. An electron microscopic study, Am. J. Anat. 136:455–477.

    Google Scholar 

  • Bockman, D. E., and Winborn, W. B., 1966, Light and electron microscopy of intestinal ferritin absorption. Observations in sensitized and nonsensitized hamsters (Mesocricetus auratus), Anat. Rec. 155:603–622

    Google Scholar 

  • Boyd, C. A. R., and Ward, M. R., 1982, A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of Necturus macuosus, J. Physiol. 324:411–428

    Google Scholar 

  • Burston, D., Taylor, E., and Matthews, D. M., 1979, Intestinal handling of two tetrapeptides by rodent small intestine in vitro, Biochim. Biophy. Acta. 553:175–178.

    Google Scholar 

  • Casley-Smith, J. R., 1967, The passage of ferritin into jejunal epithelial cells, Experientia 23:370–371.

    Google Scholar 

  • Castle, W. B., 1953, N. Engl. J. Med. 11:603.

    Google Scholar 

  • Castro, G., 1981, in: Development of Mammalian Absorptive Processes,Ciba Foundation Symposium 70, Excerpta Medica, Amsterdam, p. 201–225.

    Google Scholar 

  • Chanarin, I., Muir, M., Hughes, A., and Hoffbrand, A. V., 1978, Evidence for intestinal origin of transcobalamin II during vitamin B12 absorption, Br. Med. J. 1:1453–1455.

    Google Scholar 

  • Cheeseman, C. I., and Smyth, D. H., 1972, Specific transfer process for intestinal absorption of peptides, Proc. Physiol. Soc. 1972(November):45p–46p.

    Google Scholar 

  • Chiang, C.-M., and Weiner, N., 1987a, Gastrointestinal uptake of liposomes. I: In vitro and in situ studies, Int. J. Pharm. 37:75–85.

    Google Scholar 

  • Chiang, C.-M., and Weiner, N. 1987b, Gastrointestinal uptake of liposomes. 11: In vivo studies, Int. J. Pharm. 40:143–150.

    Google Scholar 

  • Childers, N. K., Denys, F. R., McGee, N. F., and Michalek, S. M., 1990, Ultrastructural study of liposome uptake by M cells of rat Peyer’s patch: An oral vaccine system for delivery of purified antigen, Regional Immunol. 3:8–16.

    Google Scholar 

  • Chisui, N. S., 1968, Morphological aspects suggesting the transfer procedure absorption of some proteins in intestine of adult rats, Rev. Roun. Med Intern. 5:65–71.

    Google Scholar 

  • Cho, Y. W., and Flynn, M., 1989, Oral delivery of insulin, Lancet 1989:1518–1519.

    Google Scholar 

  • Chouinard, F., Kan, F. W. K., Leroux, J.-C., Foucher, C., and Lenaerts, V., 1991, Preparation and purification of isohexylcyanoacrylate nanocapsules, Int. J. Pharm. 72:21 1–217.

    Google Scholar 

  • Chouinard, F., Buczkowski, S., and Lenaerts, V., 1994, Polyalkylcyanoacrylate nanocapsules: Physicochemical characterization and mechanism of formation, Pharm. Res. 11:869–873.

    Google Scholar 

  • Clarke, C. J., and Stokes, C. R., 1992, The intestinal and serum humoral immune response of mice to systemically and orally administered antigens in liposomes: I. The response to liposome-entrapped soluble proteins, Vet. Immunol. Immunopathol. 32:125–138.

    Google Scholar 

  • Clayton, J. P., Cole, M., Elson, S. W., Hardy, K. D., Mizen, L. W., and Sutherland, R., 1975, Preparation, hydrolysis and oral absorption of alpha-carboxy esters of carbenicillin, J. Med. Chem. 18:172–177.

    Google Scholar 

  • Cornell, R., Walker, W. A., and Isselbacher, K. J., 1971, Small intestinal absorption of horseradish peroxidase. A cytochemical study, Lab. Invest. 25:42–48.

    Google Scholar 

  • Cox, D. S., and Taubman, M. A., 1984, Oral induction of the secretory antibody response by soluble and particulate antigens, Int. Arch. Appl. Immunol. 75:126–131.

    Google Scholar 

  • Csaky, T. Z., 1984, Intestinal permeation and permeability: An overview, in: Pharmacology of Intestinal Permeation Z (T. Z. Csaky, ed.), Spinger-Verlag, Berlin.

    Google Scholar 

  • Dallas, W. S., and Falkow, S., 1980, Amino acid sequence homology between cholera toxin and E. coli heat-labile toxin, Nature 288:499–201.

    Google Scholar 

  • Damge, C., Michel, C., Aprahamian, M., and Couvreur, P., 1988, New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier, Diabetes 37:246–251.

    Google Scholar 

  • Damge, C., Michel, C., Aprahamian, M., Couvreur, P., and Devissaguet, J. P., 1990, Nanocapsules as carriers for oral peptide delivery, J. Controlled Release 13:233–239.

    Google Scholar 

  • Danforth, E., and Moore, R. D., 1959, Intestinal absorption of insulin in the rat, Endocrinology 65:118–126.

    Google Scholar 

  • Dapergolas, G., and Gregoriadis, G., 1976a, Lancet ii:1054–1056.

    Google Scholar 

  • Dapergolas, G., and Gregoriadis, G., 1976b, Hypoglycaemic effect of liposome entrapped insulin administered intragastrically into rats, Lancet ii:824–827.

    Google Scholar 

  • Das, M., and Radhakrishnan, A. N., 1975, Studies on a wide-spectrum intestinal dipeptide uptake system in the monkey and in the human, Biochem. J. 146:133–139.

    Google Scholar 

  • Das, N., Das, M. K., and Bachhawat, B. K., 1984, Detection of liposomes in portal blood following oral administration, J. Appl. Biochem. 6:346–352.

    Google Scholar 

  • Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1981, Can intact liposomes be absorbed in the gut? Life Sci. 28:239–242.

    Google Scholar 

  • Doxsey, S. J., Brodsky, F. M., Blank, G. S., and Helenius, A., 1987, Inhibition of endocytosis by anti-clathrins antibodies, Cell 50:453–463.

    Google Scholar 

  • Dunn, K. W., McGraw, T. E., and Maxfield, F. R., 1989, Iterative fractionation of recyclin receptor from lysosomally destined ligands in an early sorting endosome, J. Cell Biol. 109:3303–3314.

    Google Scholar 

  • Dvorak, A. F., and Bast, R. C., 1970, Nature of the immunogen in crystalline serum albumin, Immunochemistry 7:118–124.

    Google Scholar 

  • Ebel, J. P., 1990, A method for quantifying particle absorption form the small intestine of the mouse, Pharm. Res. 7:848–851.

    Google Scholar 

  • Edelman, R., Russell, R. G., Losonsky, G., Tall, B. D., Tacket, C. O., Levine, M. M., and Lewis, D. H., 1993, Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly(lactide-co-glycolide), Vaccine 11(2):155–158.

    Google Scholar 

  • Egberts, H. J., Koninkx, J. F., Dijk, J., and Mouwen, J. M., 1984, Biological and pathobiological aspects of the glycocalyx of the small intestinal epithelium—a review, Vet. Quat. 6:186–199.

    Google Scholar 

  • Eldridge, J., 1988, Paper presented at the Oral Immunization Symposium, Birmingham, Alabama.

    Google Scholar 

  • Eldridge, J. H., Gilley, R. M., Staas, J. K., Moldoveanu, Z., Meulbroek, J. A., and Tice, T. R., 1989% Biodegradable microspheres: Vaccine delivery system for oral immunization, Curr. Top. Microbiol. Immunol. 146:59–65.

    Google Scholar 

  • Eldridge, J. H., Meulbroek, J. A., Staas, J. K., Tice, T. R., and Gilley, R. M. 1989b, Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv. Exp. Med. Biol. 251:191–202.

    Google Scholar 

  • Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., and Tice, T. R., 1990, Controlled vaccine release in the gut-associated lymphoid tissues. 1. Orally administered biodegradable microspheres target the Peyer’s patches, J. Controlled Release 11:205–214.

    Google Scholar 

  • Eldridge, J. H., Staas, J. K., Meulbroek, J. A., McGhee, J. R., Tice, T. R. and Gilley, R. M., 1991, Biodegradable microspheres as a vaccine delivery system, Mol. Immunol. 28:287–294.

    Google Scholar 

  • Emisphere Technologies, 1993, Annual Reports, Emisphere Technologies, Inc., Hawthorne, New York.

    Google Scholar 

  • Esposito, G., Faelli, A., Tosco, M., Orsenigo, M., De Gasperi, R., and Pacces, N., 1983, Influence of the enteric surface coat on the unidirectional flux of acetamide across the wall of the rat small intestine, Experientia 39:149–151.

    Google Scholar 

  • Fara, J. W., 1985, in: Rate Control in Drug Therapy (L. F. Prescott and W. S. Nimmo, eds.), Churchill Livingstone, New York, pp. 144–150.

    Google Scholar 

  • Fox, H. J., and Castle, W. B., 1942, Am. J. Med. Sci. 203:18–26.

    Google Scholar 

  • Friedman, D. I., and Amidon, G. L., 1989a, Intestinal absorption mechanism of two prodrug ACE inhibitors in rats: Enalapril maleate and fosinopril sodium, Pharm. Res. 6:1043–1047.

    Google Scholar 

  • Friedman, D. I., and Amidon, G. L., 1989b, The intestinal absorption mechanism of dipeptide ACE inhibitors of the lysyl-proline type: Lisonopril and SQ 29,852, Pharm. Sci. 78:995–998.

    Google Scholar 

  • Ganapthy, V., and Leibach, F., 1985, Is intestinal peptide transport energized by a proton gradient? Am. J. Physiol. 249:G153–G160.

    Google Scholar 

  • Gardner, M. L., 1984., Intestinal assimilation of intact peptides and proteins from the diet— a neglected field, Biol. Rev. 59:289–331.

    Google Scholar 

  • Gill, D. M., 1978, Seven toxic peptides that cross cell membranes. in: Bacterial Toxins and Cell Membranes (J. Jeljasewicz and T. Wadstrom, eds.), Academic Press, New York, pp. 291–332.

    Google Scholar 

  • Goldstein, I. J., and Poretz, R. D., 1986, Isolation, physiochemical characterization and carbohydrate specificity of lectins, in: The Lectins (I. E. Leiner, N. Sharon, and I. J. Goldstein eds.), Academic Press, Orlando, Florida, pp. 33–47.

    Google Scholar 

  • Grasback, R., Kantero, I., and Slurala, M., 1959, Influence of calcium ions on vitamin B., absorption, steatorrheoea and pernicious anaemia, Lancet i:234–236.

    Google Scholar 

  • Greer, F., Brewer, A. C., and Pusztai, A., 1985, Effect of kidney bean (Phaseolusvulgaris) toxin on tissue weight and composition and some metabolic functions of rats, Br. J. Nutr. 54:95–103.

    Google Scholar 

  • Gruber, P., Longer, M. A., and Robinson, J. R., 1987, Some biological issues in oral, controlled drug delivery, Adv. Drug Delivery Rev. 1:1–18.

    Google Scholar 

  • Gruskay, F. L., and Cooke, R. E., 1955, The gastrointestinal absorption of unaltered protein in normal infants and in infants recovering from diarrhea, Pediatrics 16:763–768.

    Google Scholar 

  • Hammer, R., Joel, D. D., and LeFevre, M. E., 1983, Ultrastructure of macrophages of the murine Peyer’s patch dome, Exp. Cell. Biol. 51:61–69.

    Google Scholar 

  • Hemker, H. C., Muller, A. D., Hermens, W. T., and Zwaal, R. F. A., 1980, Oral treatment of haemophilia A by gastrointestinal absorption of factor VIII entrapped in liposomes, Lancet 1980:70–71.

    Google Scholar 

  • Heyman, M., Duroc, R., Desjeux, J.-F., and Morgat, J. L., 1982, Horseradish peroxidase transport across adult rabbit jejunum in vitro, Am. J. Physiol. 242:G558–G564.

    Google Scholar 

  • Heyman, M., Crain-DeNoyelle, A-M., Nath, S. M., and Desjeux, J-F., 1990, Quantification of protein transcytosis in the human colon carcinoma cell line CaCo-2, J. Cell. Physiol. 143:391–395.

    Google Scholar 

  • Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., 1989, Characterization of the human colon carcinoma cell line (CaCo-2) as a model system for intestinal epithelial permeability, Gastroenterology 96:136–749.

    Google Scholar 

  • Houston, J. B., and Wood, S. G., 1980, Gastrointestinal absorption of drugs, in: Progress in Drug Metabolism (J. W. Bridges and L. F. Chasseaud, eds.), John Wiley & Sons, New York.

    Google Scholar 

  • Hu, M., and Amidon, G. L., 1988, Passive and carrier-mediated intestinal absorption components of captopril, J. Pharm. Sci. 77:1007–1011.

    Google Scholar 

  • Humphrey, M. J., 1986, The oral bioavailability of peptides and related drugs in: Delivery Systemsfor Peptide Drugs (S. S. Davis, T. I. Illum, and E. Tomlinson, eds.), Plenum Press, New York, pp. 139–151.

    Google Scholar 

  • Humphrey, M. J., and Ringrose, P. S., 1986, Peptides and related drugs: A review of their absorption, metabolism, and excretion, Drug Metab. Rev. 17:283–310.

    Google Scholar 

  • Jackson, D., Walker-Smith, J. A., and Philips, A. D., 1983, Macromolecular absorption by histological normal and abnormal small intestinal mucosa in childhood: An in vitro study using organ culture, J. Pediatr. Gastroenterol. Nutr. 2:235–247.

    Google Scholar 

  • Jani, P., Halbert, W., Langridge, J., and Florence, A. T., 1989, The uptake and translocation of latex nanospheres and microspheres after oral administration to rats, J. Pharm. Pharmacol. 41:809–812.

    Google Scholar 

  • Joel, D. D., Sordat, B., Hess, W., and Cotier, H., 1970, Uptake and retention of particles from the intestine by Peyer’s patches in mice, Experientia 26:694.

    Google Scholar 

  • Joel, D. D., Laissue, J. A., and LeFevre, M. E., 1978, Distribution and fate of ingested carbon particles in mice, J. Reticulendothel. Soc. 24:77–487.

    Google Scholar 

  • Kabir, S., Rosenstreich, D. L., and Mergenhagen, S. E., 1978, Bacterial endotoxins and cell membranes, in: Bacterial Toxins and Cell Membranes (J. Jeljaszewicz and T. Wadstrom, eds.), Academic Press, New York, pp. 59–87.

    Google Scholar 

  • Katayama, H., and Kanke, M., 1992, Drug release from directly compressed tablets containing zein, Drug Dev. Ind. Pharm. 18:2173–2184.

    Google Scholar 

  • Keljo, D. J., and Hamilton, J. R., 1983, Quantitative determination of macromolecular transport across intestinal Peyer’s patches, Am. J. Physiol. 244:G637–644.

    Google Scholar 

  • Kerchner, G. A., and Geary, L. E., 1983, Studies on the transport of enkephalin-like oligopeptides in rat intestinal mucosa, J. Pharmacol. Exp. Ther. 226:33–38.

    Google Scholar 

  • Kilpatrick, D. C., Pusztai, A., Grant, G., Graham, C., and Ewen, S. W. B., 1985, Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects, FEBS Lett. 185:299–305.

    Google Scholar 

  • Kimura, T., Yamamoto, T., Mizuno, M., Suga, Y., Kitade, S., and Sezaki, H., 1983, Characterization of aminocephalosporin transport across rat small intestine, J. Pharmacobiodyn. 6:246–253.

    Google Scholar 

  • King, T. P., Pusztai, A., and Clarke, E. M. W., 1980, Kidney bean (Phaseolus vulgaris) lectin-induced lesion in rat small intestine. 1. Light microscope studies. J. Comp. Pathol. 90:585–595.

    Google Scholar 

  • King, T. P., Pusztai, A., and Clarke, E. M. W., 1982, Kidney bean (Phaseolus vulgaris) lectin-induced lesion in rat small intestine. 3. Ultrastructural studies, J. Comp. Pathol. 92:357–373.

    Google Scholar 

  • King, T. P., Pusztai, A., Grant, G., and Slater, D., 1986, Immunogold localization of ingested kidney bean (Phaseolus vulgaris) lectins in epithelial cells of the rat small intestine, Histochem. J. 18:413–420.

    Google Scholar 

  • Korenblat, R. E., Rothberg, R. M., and Minden, P., 1968, Immune response of human adults after oral and prenatal exposure to bovine serum albumin, J. Allergy 41:226–235.

    Google Scholar 

  • Kramer, W., Girbig, F., Gutjahr, U., Kleeman, H.’ W., Leipe, I., Urbach, H., and Wagner, A., 1990, Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and beta-lactam antibiotics, Biochim. Biophys. Acta 1027:25–30.

    Google Scholar 

  • Krause, W., Matheis, H., and Wulf, K., 1969, Fungamie and funguria after oral administration of Candida albicans, Lancet i:598–599.

    Google Scholar 

  • Landsverk, T., 1988, Phagocytosis and transcytosis by follicle-associated epithelium of the ileal Peyer’s patch in calves, Immunol. Cell. Biol. 66:261–268.

    Google Scholar 

  • Larkins, B. A., Pedersen, K., Marks, M. D., and Wilson, D. R., 1984, The zein proteins of maize endosperm, Trends Biochem. Sci. 1984(JuIy):306–308.

    Google Scholar 

  • Lee, V. H. L., Dodda-Kashi, S., Grass, G. M., and Rubas, W., 1991, Oral route of peptide and protein drug delivery, in: Peptide and Protein Drug Delivery (V. H. L. Lee, ed.), Marcel Dekker, New York, pp. 691–738.

    Google Scholar 

  • LeFevre, M. E., and Joel, D. D., 1984, Peyer’s patch epithelium: An imperfect barrier to large particulates in mice, in: Intestinal Toxicology (C. M. Schiller, ed.), Raven Press, New York, p. 45–58.

    Google Scholar 

  • LeFevre, M. E., and Joel, D. D., 1986, Distribution of label after intragastric administration of’ Be-labeled carbon to weanling and aged mice, Proc. Soc. Exp. Biol. Med 182:112–119.

    Google Scholar 

  • LeFevre, M. E., Olivo, R., Vanderhoff, J. W., and Joel, D. D., 1978a, Accumulation of latex in Peyer’s patches and its subsequent appearance in villi and mesenteric lymph nodes, Proc. Soc. Exp. Biol. Med. 159:298–302.

    Google Scholar 

  • LeFevre, M. E., Vanderhoff, J. W., Lasissue, J. A., and Joel, D. D., 1978b, Accumulation of 2 μm latex particles in mouse Peyer’s patches during chronic latex feeding, Experientia 34:120–122.

    Google Scholar 

  • LeFevre, M. E., Hammer, R., and Joel, D. D., 1979, Macrophages of the mammalian small intestine: A review, J. Reticulendothel. Soc. 26:553–573.

    Google Scholar 

  • LeFevre, M. E., Hancock, D. C., and Joel, D. D., 1980, Intestinal barrier to large particles in mice, J. Toxicol. Environ. Health 6:691–704.

    Google Scholar 

  • LeFevre, M. E., Joel, D. D., and Schidlovsky, G., 1985a, Retention of ingested latex particles in Peyer’s patches of germfree and conventional mice, Proc. Sci. Exp. Biol. Med. 179:522–528.

    Google Scholar 

  • LeFevre, M. E., Warren, J. B., and Joel, D. D., 1985b, Particles and macrophages in murine Peyer’s patches, Exp. Cell. Biol. 53:121–129.

    Google Scholar 

  • LeFevre, M. E., Boccio, A. M., and Joel, D. D., 1989, Intestinal uptake of fluorescent micropheres in young and aged mice, Proc. Soc. Exp. Biol. Med 190:23–27.

    Google Scholar 

  • Luckey, T. D., 1974, The villus chemostat in man, Am. J. Clin. Nutr. 27:1266–1276.

    Google Scholar 

  • Mathan, V. I., Baboir, B. M., and Donaldson, R. M., 1974, Kinetics of the attachment of intrinsic factor bound cobamides to ileal receptors, J. Clin. Invest. 54:598–608.

    Google Scholar 

  • Mathiowitz, E., Bernstein, H., Morrel, E., and Schwaller, K., 1993, Method for producing protein microspheres, U.S. Patent 5,271,961, December 21, 1993.

    Google Scholar 

  • Mathiowitz, E., Chickering, D., Jacob, J., DiBiase, M., Berstein, H., Gunn, K., and Sherman, M., 1994, GI transit studies of hydrophobic microspheres, Proc. Int. Symp. Control. Rel. Bioact. Mater. 21.

    Google Scholar 

  • Matthews, D. M., 1975, Intestinal absorption of peptides, Physiol. Rev. 55:537–540.

    Google Scholar 

  • Matthews, D. M., 1983, Intestinal absorption of peptides, Biochem. Soc. Trans. 11:808–810.

    Google Scholar 

  • Matthews, D. M., 1991, Protein Absorption, John Wiley & Sons, New York.

    Google Scholar 

  • Matthews, D. M., and Payne, J. W., 1980, Transmembrane transport of small peptides, Curr. Top. Membr. Transp. 14:331–425.

    Google Scholar 

  • Matthews, D. M., Craft, I. L., Geddes, D. M., Wise, I. J., and Hyde, C. W., 1968, Absorption of glycine and glycine peptides from the small intestine of the rat, Clin. Sci. 35:415–424.

    Google Scholar 

  • Mayorga, L. S., Diax, R., and Stahl, P. D., 1989, Reconstitution of endosomal proteolysis in a cell-free system, J. Biol. Chem. 264:5392–5399.

    Google Scholar 

  • McClugage, S. G., Low, F. N., and Zimny, M. L., 1986, Porosity of the basement membrane overlying Peyer’s patches in rats and monkeys, Gastroenterology 91:1128–1133.

    Google Scholar 

  • McDonel, J. L., 1980, Binding of Clostridium perfringes (125I) enterotoxin to rabbit intestinal cells, Biochemistry 19:4801–4807.

    Google Scholar 

  • Menzies, I. S., 1984, Transmucosal passage of inert molecules in health and disease, in: Intestinal Absorption and Secretion (E. Skadhauge and K. Heintze, eds.), MTP Press, Lancaster, pp. 527–543.

    Google Scholar 

  • Michalek, S. M., Childers, N. K., Katz, J., Dertzbaugh, M., Zhang, S., Russell, M. W., Macrina, F. L., Jackson, S., and Mestecky, J., 1992, Liposomes and conjugate vaccines for antigen delivery and induction of mucosal immune responses, in: Genetically Engineered Vaccines (J. E. Ciardi et al., eds.), Plenum Press, New York, pp. 191–198.

    Google Scholar 

  • Milstein, S., Baughman, R., Santiago, N., Rivera, T., Falzarano, L., Dewland, P., and Welch, S., 1992, Initial clinical assessment of the oral administration of low molecular weight heparin (LMWH) using the proteinoid oral delivery system, American Association of Pharmaceutical Scientists 1992 Annual Meeting and Exposition, November 15–19, San Antonio, Texas.

    Google Scholar 

  • Moldoveanu, Z., Novak, M., Huang, W.-Q., Gilley, R. M., Staas, J. K., Schfer, D., Compans, R. W., and Mestecky, J., 1993, Oral immunization with influenza virus in biodegradable microspheres, J. Infect. Dis. 167:84–90.

    Google Scholar 

  • Nakishima, E., Tsuji, A., Kagatani, S., and Yamana, T., 1984, Intestinal absorption mechanism of amino-b-lactam antibiotics. III. Kinetics of carrier-mediated transport across the rat small intestine in situ, J. Pharmacobio-Dyn. 7:452–464.

    Google Scholar 

  • Neutra, M. R., Phillips, T. L., Mayer, E. L., and Fishkind, D. J., 1987, Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch, Cell Tissue Res. 247:537–546.

    Google Scholar 

  • New, R. R. C., Guard, P., Hotten, P., Stevens, D., Harris, R., Shepherd, T., and Flynn, M. J., 1993, Use of a lipid carrier to deliver calcitonin and insulin via the small intestine, Sixth International Symposium on Recent Advances in Drug Delivery Systems, Salt Lake City, Utah, February 22–25.

    Google Scholar 

  • New, R. R. C., Guard, P. W., Littlewood, G. M., and Flynn, M. J., 1994a, Oral delivery of calcitonin to animals and man in an emulsion-based carrier system, U.K. Association of Pharmaceutical Sciences, Leicester, March 29–31.

    Google Scholar 

  • New, R. R. C., Guard, P. W., Littlewood, G. M., and Flynn, M. J., 1994b, Changes in urinary crosslinks after administration of calcitonin to humans by subcutaneous and oral routes, Controlled Release Society 21st International Symposium, Nice, France, June.

    Google Scholar 

  • New, R. R. C., Guard, P. W., Littlewood, G. M., Sandbank, B. M., and Flynn, M. J., 1994c, Administration of calcitonin to humans: Comparison of intra-nasal and oral routes, Third European Symposium on Controlled Release Drug Delivery, Noordwijk aan Zee, The Netherlands, April 6–8.

    Google Scholar 

  • Newey, H., and Smith, D. H., 1962, J. Physiol. 164:527.

    Google Scholar 

  • Nicholson, J. A., and Peters, T. J., 1977, Subcellular distribution of hydrolase activities for glycine and leucine homopeptides in human jejunum, Clin. Sci. Mol. Med 54:205–207.

    Google Scholar 

  • Oh, D., 1991, Estimating Oral Drug Absorption in Humans, Ph.D. thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Oh, D., Curl, R. L., and Amidon, G. L., 1993, Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: A mathematical model, Pharm. Res. 10:264–270.

    Google Scholar 

  • Oh, D. M., Sinko, P. J., and Amidon, G. L., 1989, Characterization of oral absorption of some penicillins: Determination of intrinsic membrane absorption parameters in the intestine in situ, Pharm. Res. 6:S-91.

    Google Scholar 

  • Oh, D. M., Sinko, P. J., and Amidon, G. L., 1990, Peptide transport of b-lactam antibiotics: Structural requirements for an a-amino group, Pharm. Res. 7:S-119.

    Google Scholar 

  • O’Hagan, D. T., 1994, Microparticles as oral vaccines, in: Novel Delivery Systems for Oral Vaccines (D. T. O’Hagan, ed.), CRC Press, Boca Raton, Florida, p. 188–197.

    Google Scholar 

  • O’Hagan, D. T., Palin, K. J., and Davis, S. S., 1987, Intestinal absorption of proteins and macromolecules and the immunological response, CRC Crit. Rev. Ther. Drug Carrier Syst. 4:197–220.

    Google Scholar 

  • O’Hagan, D. T., Palin, K. J., and Davis, S. S., 1989, Polybutylcyanoacrylate particles as adjuvants for oral immunization, Vaccine 7:213–216.

    Google Scholar 

  • Owen, R. L., 1977, Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: An ultrastructural study, Gastroenterology 72:440–451.

    Google Scholar 

  • Owen, R. L., and Bhalla, D. K., 1983, Cytochemical analysis of alkaline phosphatase and sterase activities and of lectin-binding and anionic sites in rat and mouse Peyer’s patch M cells, Am. J. Anat. 168:199–212.

    Google Scholar 

  • Owen, R. L., and Jones, A. I., 1974, Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles, Gastroenterology 66:189–203.

    Google Scholar 

  • Owen, R. L., Apple, R. T., and Bhalla, D. K., 1986a, Morphometric and cytochemical analysis of lysosomes in rat Peyer’s patch follicle epithelium: Their reduction in volume fraction and acid phosphate content in M cells compared to adjacent enterocytes, Anat. Rec. 216:521–527.

    Google Scholar 

  • Owen, R. L., Pierce, N. F., Apple, R. T., and Cray, W. C., (1986b), M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: A mechanism for antigen sampling and for microbial transepithelial migration, J. Infect. Dis. 153:1108–1118.

    PubMed  CAS  Google Scholar 

  • Pappenheimer, A. M., Jr., 1977, Diphtheria toxin, Annu. Rev. Biochem. 46:69–94.

    Google Scholar 

  • Pappo, J., and Ermak, T. H., 1989, Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: A quantitative model for M cell uptake, Clin. Exp. Immunol. 76:144–148.

    Google Scholar 

  • Pappo, J., Steger, H. J., and Owen, R. L., 1988, Differential adherence of epithelium overlying gut-associated lymphoid tissue. An ultrastructural study, Lab. Invest. 58:692–697.

    Google Scholar 

  • Pappo, J., Ermak, T. H., and Steger, H. J., 1991, Monoclonal antibody-directed targeting of fluorescent polystyrene microspheres to Peyer’s patch M cells, Immunology 73:277–280.

    Google Scholar 

  • Patel, H. M., and Ryman, B. E., 1976, Oral administration of insulin by encapsulation within liposomes, FEBS Lett. 62:60–62.

    Google Scholar 

  • Patel, H. M., and Ryman, B. E., 1977, The gastrointestinal absorption of liposomally entrapped insulin in normal rats (proceedings), Biochem. SOC. Trans. 5:1054–1056.

    Google Scholar 

  • Patel, H. M., Stevenson, R. W., Parsons, J. A., and Ryman, B. E., 1982, Use of liposomes to aid intestinal absorption of entrapped insulin in normal and diabetic dogs, Biochim. Biophys. Acta 716:188–193.

    Google Scholar 

  • Pusztai, A., 1986a, The role in food poisoning of toxins and allergens from higher plants, in: Developments in Food Microbiology, Vol. 2 (R. K. Robinson, ed.), Elsevier Applied Science Publishers, London, pp. 179–194.

    Google Scholar 

  • Pusztai, A., 1986b, The biological effects of lectins in the diet of animals and man, in: Lectins, Biology, Biochemistry, Clinical Biochemistry, Vol. 5 (T. C. Bog-Hansen, and E. van Driessche, eds.), Walter de Gruyter, Berlin, pp. 317–327.

    Google Scholar 

  • Pusztai, A., 1988, Lectins, in: Toxicants of Plant Origin. III. Proteins and Amino Acids (P. R. Cheeke, ed.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pusztai, A., 1989, Transport of proteins through the membranes of the adult gastrointestinal tract-potentialfor drug delivery?, Adv. Drug Delivery Rev. 3:215–228.

    Google Scholar 

  • Pusztai, A., Grant, G., and De Olveira, J. T. A., 1986, Local (gut) and systemic responses to dietary lectins, IRCS Med. Sci. 14:205–208.

    Google Scholar 

  • Quay, J. F., 1972, Transport interaction of glycine and cephalexin in rat jejunum, Physiologist 13:241.

    Google Scholar 

  • Quay, J. F., and Foster, L., 1970, Cephalexin penetration of the surviving rat intestine, Physiologist 13:287–288.

    Google Scholar 

  • Ray, R., Novak, M., Duncan, J. D., Matsuoka, Y., and Compans, R. W., 1993, Microencapsulated human parainfluenza virus induces a protective immune response, J. Infect. Dis. 167:752–755.

    Google Scholar 

  • Reid, R. H., Boedecker, E. C., McQueen, C. E., Davis, D., Tseng, L-Y., Kodak, J., Sau, K., Wilhelmsen, C. L., Nellore, R., Dalal, P., and Bhagat, H. R., 1993, Preclinical evaluation of microencapsulated CFA/II oral vaccine against enterotoxigenic E. coli, Vaccine 11:159–168.

    Google Scholar 

  • Rhodes, R. S., and Karnovsky, M. J., 1971, Loss of macromolecular barrier function associated with surgical trauma in the intestine, Lab. Invest. 25:220–229.

    Google Scholar 

  • Robinson, J. R., 1993, Recent advances in formulation of poorly absorbed drugs. Current status on targeted drug delivery to the gastrointesintal tract, Capsugel Symposium, Short Hills, New Jersey, April 22.

    Google Scholar 

  • Roederer, M., Bowser, R, and Murphy, R. F., 1987, Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: Evidence for a maturation model for the formation of lysosomes, J. Cell. Physiol. 131:200–209.

    Google Scholar 

  • Rowland, R. N., and Woodley, J. F., 1980, The stability of liposomes in vitro to pH, bile salts and pancreatic lipase, Biochim. Biophys. Acta 620:400–409.

    Google Scholar 

  • Rowland, R. N., and Woodley, J. F., 1981, The uptake of distearoyl phosphatidylcholine/cholesterol liposomes by rat intestinal sacs in vitro, Biochim. Biophys. Acta 673:217–223.

    Google Scholar 

  • Roy, M. J., 1987, Precocious development of lectin (Ulex europeaeus agglutinin I ) receptors in dome epithelium of gut-associated lymphoid tissues, Cell Tissue Res. 248:483–489.

    Google Scholar 

  • Rubino, A., Field, M., and Schwachman, H., 1971, Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border, J. Biol. Chem. 246:3542–3548.

    Google Scholar 

  • Salzman, N. H., and Maxfield, F. R., 1989, Fusion accessibility of endocytotic compartments along the recycling and endocytotic pathways in intact cells, J. Cell. Biol. 109:2097–2104.

    Google Scholar 

  • Sanchez, A., Vila-Jato, J. L., and Alonso, M. J., 1993, Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A, Int. J. Pharm. 99:263–273.

    Google Scholar 

  • Sandvig, K., Olsnes, S., Petersen, 0. W., and Deurs, B. B., 1978, Acidification of the cytosol inhibits endocytosis from coated pits, J. Cell. Biol. 105:679–689.

    Google Scholar 

  • Santiago, N., Milstein, S., Rivera, T., Garcia, E., Zaidi, T., Hong, H., and Bucher, D., 1993, Oral immunization of rats with proteinoid microspheres encapsulating influenza virus antigens, Pharm. Res. 10:1243–1247.

    Google Scholar 

  • Shen, W.-C., and Ryser, H. J.-P., 1978, Conjugation of poly-L-lysine to albumin and horseradish peroxidase: A novel method of enhancing the cellular uptake of proteins, Proc. Natl. Acad. Sci. USA 75:1872–1876.

    Google Scholar 

  • Silk, D. B., Grimble, G. K., and Rees, R. G., 1985, Protein digestion and amino acid and peptide absorption, Proc. Nutr. Soc. 44:63–72.

    Google Scholar 

  • Sinko, P. J., and Amidon, G. L., 1988, Characterization of the oral absorption of 8-lactam antibiotics. I. Cephalosporins. Determination of intrinsic membrane absorption parameters in the rat intestine in situ, Pharm. Res. 5:645–650.

    Google Scholar 

  • Sinko, P. J., and Amidon, G. L., 1989, Characterization of the oral absorption of 8-lactam antibiotics. II. Competitive absorption and peptide carrier specificity, J. Pharm. Sci. 78:732–726.

    Google Scholar 

  • Sinko, P. J., Leesman, G. D., and Amidon, G. L., 1991, Predicting fraction dose absorbed in humans using a macroscopic mass balance approach, Pharm. Res. 8:979–988.

    Google Scholar 

  • Smithson, K. W., Millar, D., Jacobs, L., and Gray, G., 1981, Intestinal diffusion barrier: Unstirred water layer or membrane surface mucous coat, Science 214:1241–1244.

    Google Scholar 

  • Spangler, R. S., 1990, Insulin administration via liposomes, Diabetes Care 1391 1–922.

    Google Scholar 

  • Steiner, S., and Rosen, R., 1990, Delivery systems for pharmacological agents encapsulated with proteinoids. U.S. patent 4,925, 673, May 15, 1990.

    Google Scholar 

  • Stone, H. H., Kolb, L. D., Currie, C. A., Geheber, C. E., and Cuzzell, J. Z., 1974, Candida sepsis: Pathogenesis and principles of treatment, Ann. Surg. 179:697–711.

    Google Scholar 

  • Straus, W., 1969, Use of horseradish peroxidase as a marker protein for studies of phagolyso-somes, permeability, and immunology, Methods Achiev. Exp. Pathol. 4:54–91.

    Google Scholar 

  • Swallen, L. C., 1941, Zein-a new industrial protein, Ind. Eng. Chem. 1941(March):394–398.

    Google Scholar 

  • Tartakoff, A. M., 1987, The Secretory and Endocytic Paths. Mechanism and Specificity of Vesicular Traffic in the Cell Cytoplasm, John Wiley & Sons, New York.

    Google Scholar 

  • Thomson, A. B. R., and Dietschy, J. M., 1984, The role of the unstirred water layer in intestinal permeation, in: Pharmacology of Intestinal Permeation II (T. Z. Csaky, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Tomita, Y., Katsura, T., Okano, T., Inui, K. I., and Hori, R., 1990, Transport mechanisms of bestatin in rabbit intestinal brush-border membrane: Role of H+/dipeptide cotransport system. J. Pharmacol. Exp. Ther. 252:859–862.

    Google Scholar 

  • Tomizawa, H., Aramaki, Y., Fujii, Y., Hara, T., Suzuki, N., Yachi, K., Kikuchi, H., and Tsuchiya, S., 1993, Uptake of phosphatidyl-serine liposomes by rat Peyer’s patches following intraluminal administration, Pharm. Res. 10:549–552.

    Google Scholar 

  • Tsuji, A., Hirooka, I., Tamai, I., and Terasaki, T., 1986, Evidence for a carrier mediated transport in the small intestine available for FK089, a new cephalosporin antibiotic without an amino group, J. Antibiot. 39:1592–1597.

    Google Scholar 

  • Tsuji, A., Terasaki, T., Tamai, O., and Hirooka, H., 1987, H+-gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brushborder membrane vesicles from rat small intestine, J. Pharmacol. Exp. Ther. 241:594–601.

    Google Scholar 

  • Verdun, C., Couvreur, P., Vranckx, H., Lenaerts, V., and Roland, M., 1986, Development of a nanoparticle controlled-release formulation for human use, J. Controlled Release 3:205–210.

    Google Scholar 

  • Volkheimer, G., 1975, Hematogenous dissemination of ingested polyvinylchloride particles, Ann. N. Y. Acad. Sci. 246:164–171.

    Google Scholar 

  • Volkheimer, G., 1977, Persorption of particles: Physiology and pharmacology, Adv. Pharmacol. Chemother. 14:163–187.

    Google Scholar 

  • Volkheimer, G., and Schulz, F. H., 1968, The phenomenon of persorption, Digestion 1:213–218.

    Google Scholar 

  • Volkheimer, G., and Schulz, F. H., 1969, Effect of caffeine on the rate of persorption, Nutr. Dieta 11:13–22.

    Google Scholar 

  • Volkheimer, G., Schulz, F. H., Hofmann, I., Pioeser, J., Rack, O., Reichlt, G., Rothenbaecker, W., Schmelich, G., Schurig, B., Teicher, G., and Weiss, B., 1968, The effects of drugs on the rate of persorption, Pharmacology 1:8–14.

    Google Scholar 

  • Volkheimer, G., Schulz, F. H., John, H., Meier, Zu Eisen, J., and Niederkorn, K., 1969, Persorbed food particles in the blood of newborns, Gynaecologia 168:86–92.

    Google Scholar 

  • Walker, W. A., 1979, Gastrointestinal host defense: Importance of gut closure in control of macromolecular transport, in: Development of Mammalian Absorptive Processes, Ciba Foundation Symposium No. 70, Excerpta Medica, Amsterdam, pp. 201–216.

    Google Scholar 

  • Walker, W. A., 1982, Mechanism of antigen handling by the gut, in: Clinics in Immunology and Allergy, Vol. w, No. 1, (J. Brostoff and S. J. Challacombe, eds.), W. B. Saunders, London, pp. 15–40.

    Google Scholar 

  • Walker, W. A., and Isselbacher, K. J., 1974, Uptake and transport of macromolecules by the intestine: Possible role in clinical disorders, Gastroenterology 67:531–550.

    Google Scholar 

  • Walker, W. A., Cornell, R., Davenport, L. M., and Isselbacher, K. J., 1972, Macromolecular absorption mechanism of horesradish peroxidase uptake and transport in adult and neonatal rat intestine, J. Cell. Biol. 54:195–205.

    Google Scholar 

  • Warshaw, A. L., Walker, W. A., Cornell, R., and Isselbacher, K. J., 1971, Small intestinal permeability to macromolecules: Transmission of horseradish peroxidase into mesenteric lymph and portal blood, Lab. Invest. 25:675–684.

    Google Scholar 

  • Wells, C. L., Maddaus, M. A., Erlandsen, S. L., and Simmons, R. L., 1988, Evidence for the phagocytic transport of intestinal particles in dogs and rats, Infect. Immun. 56:278–282.

    Google Scholar 

  • Weltzin, R., Lucia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra, M. R., 1989, Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins, J. Cell. Biol. 108:1673–1685.

    Google Scholar 

  • Wessling-Resnick, M., and Braell, W. A., 1990, The sorting and segregation mechanism of the endocytic pathway is functional in a cell-free system, J. Biol. Chem. 265:690–699.

    Google Scholar 

  • Westergaard, H., 1987, The passive permeability properties of in vivo perfused rat jejunum, Biochim. Biophys. Acta 900:129–138.

    Google Scholar 

  • Wheeler, P. G., Menzies, I. S., and Creamer, B., 1978, Effect of hyperosmolar stimuli and coeliac disease on the permeability of the human gastrointestinal tract, Clin. Sci. Mol. Med. 54:495–501.

    Google Scholar 

  • Wilson, S. J., and Walzer, M., 1935, Absorption of undigested proteins in human beings, Am. J. Dis. Child. 50:49–57.

    Google Scholar 

  • Wolf, J. L., Rubin, D. H., Finberg, R., Kauffman, R. S., Sharpe, A. H., Trier, J. S., and Fields, B. N., 1981, Intestinal M cells: A pathway for entry of reovirus into the host, Science 212:471–472.

    Google Scholar 

  • Wood, A. J., Maurer, G., Niederberger, W., and Reveridge, T., 1983, Cyclosporine—pharmacokinetics, metabolism, and drug interactions, Transplant. Proc. 15:2409.

    Google Scholar 

  • Woodward, S. C., Herrmann, J. B., Cameron, J. L., Brandes, G., Pulaski, E. J., and Leonard, F., 1965, Histotoxicity of cyanoacrylate tissue adhesives in the rat, Ann. Surg. 162:113–122.

    Google Scholar 

  • Wyvratt, M. J., and Patchett, A., 1985, Recent developments in the design of angiotensin-converting enzyme inhibitors, Med. Res. Rev. 5:483–485.

    Google Scholar 

  • Xi, M., Variano, B. F., Chaudary, K., Pastores, G. W., Lonardo, C. A., Milstein, S. J., Santiago, N., and Baughman, R. A., 1993, Invitro mechanistic investigation of the proteinoid microsphere oral delivery system, Proc. Int. Symp. Control. Rel. Bioact. Mater. 20:334–335.

    Google Scholar 

  • Yee, A., and Amidon, G. L., 1990, Intestinal absorption mechanism of three angiotensin-converting enzyme inhibitors: Quinapril, benazepril and CGS16617, Pharm. Sci 7:S-155.

    Google Scholar 

  • Yokohama, S., Yoshioka, T., and Kitamori, N., 1984a, Absorption of g-butyrolactone-g-carbonyl-L-histidyl-L-prolinamide citrate (DN-1417), an analog of thyrotropin-releasing hormone, in rats and dogs. J. Pharmacobio-Dyn. 7:527–535.

    Google Scholar 

  • Yokohama, S., Yoshioka, T., Yamashita, K., and Kitamori, N., 1984b, Intestinal absorption mechanisms of thyrotropin releasing hormone, J. Pharmacobio-Dyn. 7:44–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

DiBiase, M.D., Morrel, E.M. (2002). Oral Delivery of Microencapsulated Proteins. In: Sanders, L.M., Hendren, R.W. (eds) Protein Delivery. Pharmaceutical Biotechnology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/0-306-46803-4_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46803-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45359-5

  • Online ISBN: 978-0-306-46803-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics