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Abstract

We present the results on the anomalous 2D transport behavior by em-

ploying Drude-Boltzmann transport theory and taking into account the

realistic charge impurity scattering effects. Our results show quantita-

tive agreement with the existing experimental data in several different

systems and address the origin of the strong and non-monotonic tem-

perature dependent resistivity.

I. INTRODUCTION

A large number of recent experimental publications on low temperature trans-

port measurements in low-density high mobility two dimensional (2D) electron sys-

tems in Si MOSFETs [1], GaAs MODFETs [2], and SiGe hetrostructures [3] report

an anomalously strong temperature dependent resistivity in the narrow regime of

0.1−5K. In contrast to the usual Bloch-Grüneisen theory of essentially a temperature-

independent low-temperature resistivity, the measured resistivity changes by as much

as a factor of ten for a 1 − 2K increase in temperature. This observed anomaly has

led to a great deal of theoretical activity [4,5] involving claims of an exotic metal

or even a superconducting system at the interface producing the strong tempera-

ture dependent resistivity, which has no known analog in ordinary three dimensional

metallic behavior. Much more interest has focused around the possibility of a 2D

metal-insulator quantum phase transition being responsible for the observed strong

temperature dependent resistivity since theoretically a 2D electron system at T=0

has so far been thought to be (at least in the absence of electron interaction effects)

an insulator [6].

1

http://arxiv.org/abs/cond-mat/0003429v1


In this paper we provide a theoretical explanation for the temperature dependent

resistivity of the 2D systems in the “metallic” phase (ns ≥ nc, where ns is the 2D

density and nc the critical density which separates “metallic” and “insulating” be-

havior) in the absence of magnetic field [7] by using the Drude-Boltzmann transport

theory with RPA screening and the Dingle temperature approximation to incorporate

collisional broadening effects on screening [8]. In our approach we leave out quantum

corrections, including localization effects, and neglect the inelastic electron-electron

interaction, which may well be significant in the low density 2D systems of experi-

mental relevance. Our calculated resistivity agrees quantitatively with the existing

experimental data [1–3] on the temperature dependent low-density resistivity of 2D

electron systems. We find that the strong temperature dependence arises from a

combination of two effects: the strong temperature dependence of finite wave vector

screening in 2D systems and a sharp quantum-classical crossover due to the low Fermi

temperature in the relevant 2D systems.

II. THEORY

We use the finite temperature Drude-Boltzmann theory to calculate the ohmic re-

sistivity of the inversion layer electrons, taking into account only long range scattering

by the static charged impurity centers with the screened electron-impurity Coulomb

interaction. The screening effect is included within the random phase approximation

(RPA) with the finite temperature static RPA dielectric (screening) function κ(q, T )

given by

κ(q, T ) = 1 +
2πe2

κ̄q
F (q)Π(q, T ), (1)

where F (q) is the form factor for electron-electron interactions and Π(q, T ) is the

static polarization. We assume that the charged impurity centers are randomly dis-

tributed in the plane parallel to the semiconductor-insulator surface. Within the Born

approximation the scattering time τ(ε, T ) for our model is given by

1

τ(ε, T )
=

2π

h̄

∫
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(2π)2

∫

∞
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∣
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∣

∣

∣

2

(1− cos θ)δ (ǫk − ǫk′) , (2)

where q = |k−k′|, Ni(z) is the impurity density of the charged center, θ ≡ θkk′ is the

scattering angle between k and k′, ε = ǫk = h̄2k2/2m, ǫk′ = h̄2k′2/2m, vq(z) is the 2D
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electron-impurity Coulomb interaction. In calculating the Coulomb interaction and

the RPA dielectric function in Eq. (1) we take into account subband quantization

effects in the inversion layer through the lowest subband variational wavefunction.

The resistivity is given by ρ = m/(ne2〈τ〉), where m is the carrier effective mass, n

the effective free carrier density [5], and 〈τ〉 the energy averaged scattering time. The

average is given by 〈τ〉 =
∫

dετ(ε)ε
(

−∂f

∂ε

)

/
∫

dε
(

−∂f

∂ε

)

ε, where f(ε) is the Fermi dis-

tribution function, f(ε) = {1+exp[(ε−µ)]/kBT}
−1 with finite temperature chemical

potential, µ = µ(T, n), which is determined self-consistently.

III. RESULTS AND CONCLUSION

It is physically instructive to first consider the asymptotic behavior of the temper-

ature dependent part of resistivity, ρ(T ). In the quantum regime at low temperature,

T ≪ TF with TF ≡ µ(T = 0)/kB, the dominant behavior of ρ(T ) is linearly increasing

with T, i.e., ρ(T ) ∝ T/TF arising from the temperature dependent screening, κ(q, T )

[8]. In the high temperature limit (T ≫ TF ) corresponding to the classical regime,

the resistivity is decreasing with temperature, i.e., ρ(T ) ∝ TF/T due to the energy

averaging of τ . For intermediate temperatures (T ∼ TF ) the system crosses over from

a non-degenerate classical to a strongly screened degenerate quantum regime [5].

In Fig. 1 we give our numerically calculated resistivity ρ(T, n) for the Si-12 sample

of Ref. [1] using the effective carrier density n = ns−nc [5] at several values of ns > nc

and different Dingle temperatures. The impurity density, Ni, sets the overall scale of

resistivity (ρ ∝ Ni), and does not affect the calculated T and n dependence of ρ(T, n).

We obtain, at low densities, both the observed non-monotonicity and the strong

drop in ρ(T ) in the 0.1 ∼ 2K temperature range [1–3,9]. Our high density results

show weak monotonically increasing ρ(T ) with increasing T similar to experimental

observations [1–3]. In the inset we show the analytic zero temperature conductivity as

a function of density ns, following the approach of Ref. [10]. An approximately linear

dependence is in a good agreement with the T → 0 extrapolation of the experimental

[1] resistivity. Obtained results suggest that the reduced effective density and not the

total value contributes to conductivity and supports our basic freeze-out or binding

model [11]. These analytic results coincide with the full numerical calculation, further

justifying validity of our methods.
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FIGURES

  

FIG. 1. The calculated resistivities for various electron densities, ns = 1.03, 1.08, 1.19,

1.31 ×1011cm−2 (top to bottom) as a function of T for the Si-12 sample of Ref. [1], using

the critical density nc = 1011cm−2. In the inset we show the analytic zero temperature

conductivity as a function of density ns. Points represent extrapolated σ(T → 0) from

Si-12 sample of Ref. [1].

In conclusion we obtain good agreement with the experimental results. The strong

temperature dependence of resistivity at low and intermediate densities (ns ≥ nc)

arises from the temperature dependent screening and a low Fermi temperature by

virtue of the low effective carrier density. Thus, charged impurity scattering, carrier

binding and freeze-out, temperature and density dependence of 2D screening, and

classical to quantum crossover are playing significant roles in the experiments and

can not be neglected in theoretical analysis of the “2D M-I-T” phenomenon.
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