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Abstract

In this paper, we further analyze, test, modify and improve the high order WENO

(weighted essentially non-oscillatory) �nite di�erence schemes of Liu, Osher and Chan

[9]. It was shown by Liu et al. that WENO schemes constructed from the r
th order

(in L
1 norm) ENO schemes are (r+1)th order accurate. We propose a new way of

measuring the smoothness of a numerical solution, emulating the idea of minimizing

the total variation of the approximation, which results in a 5th order WENO scheme

for the case r=3, instead of the 4th order with the original smoothness measurement

by Liu et al. This 5th order WENO scheme is as fast as the 4th order WENO scheme

of Liu et al. and, both schemes are about twice as fast as the 4th order ENO schemes

on vector supercomputers and as fast on serial and parallel computers. For Euler sys-

tems of gas dynamics, we suggest to compute the weights from pressure and entropy

instead of the characteristic values to simplify the costly characteristic procedure. The

resulting WENO schemes are about twice as fast as the WENO schemes using the char-

acteristic decompositions to compute weights, and work well for problems which do not

contain strong shocks or strong re
ected waves. We also prove that, for conservation

laws with smooth solutions, all WENO schemes are convergent. Many numerical tests,

including the 1D steady state nozzle 
ow problem and 2D shock entropy wave inter-

action problem, are presented to demonstrate the remarkable capability of the WENO

schemes, especially the WENO scheme using the new smoothness measurement, in re-

solving complicated shock and 
ow structures. We have also applied Yang's arti�cial

compression method to the WENO schemes to sharpen contact discontinuities.
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1 Introduction

In this paper, we further analyze, test, modify and improve the WENO (weighted essentially

non-oscillatory) �nite di�erence schemes of Liu, Osher and Chan [9] for the approximation

of hyperbolic conservation laws of the type:

ut + divf(u) = 0 (1:1)

or perhaps with a forcing term g(u;x; t) on the right hand side. Here u = (u1; . . . ; um); f =

(f1; . . . ; fd);x = (x1; . . . ; xd) and t > 0:

WENO schemes are based on ENO (essentially non-oscillatory) schemes, which were �rst

introduced by Harten, Osher, Engquist and Chakravarthy [5] in the form of cell averages.

The key idea of ENO schemes is to use the \smoothest" stencil among several candidates to

approximate the 
uxes at cell boundaries to a high order accuracy and at the same time to

avoid spurious oscillations near shocks. The cell-averaged version of ENO schemes involves

a procedure of reconstructing point values from cell averages and could become complicated

and costly for multi-dimensional problems. Later, Shu and Osher [14, 15] developed the


ux version of ENO schemes which does not require such a reconstruction procedure. We

will formulate the WENO schemes based on this 
ux version of ENO schemes. The WENO

schemes of Liu et al. [9] are based on the cell averaged version of ENO schemes.

For applications involving shocks, second order schemes are usually adequate if only

relatively simple structures are present in the smooth part of the solution (e.g. the shock

tube problem). However, if a problem contains rich structures as well as shocks, (e.g.

the shock entropy wave interaction problem in Example 4, Section 8.3), high order shock

capturing schemes (order of at least three) are more e�cient than low order schemes in

terms of CPU time and memory requirements.

ENO schemes are uniformly high order accurate right up to the shock and are very

robust to use. However, they also have certain drawbacks. One problem is with the freely

adaptive stencil, which could change even by a round-o� error perturbation near zeroes of

the solution and its derivatives. Also, this free adaptation of stencils is not necessary in

regions where the solution is smooth. Another problem is that ENO schemes are not cost

e�ective on vector supercomputers such as the CRAY C-90 because the stencil choosing

step involves heavy usage of logical statements, which perform poorly on such machines.

The �rst problem could reduce the accuracy of ENO schemes for certain functions [12],

however this can be remedied by embedding certain parameters (e.g. threshold and biasing

factor) into the stencil choosing step so that the preferred linearly stable stencil is used in

regions away from discontinuities. See [1, 3, 13].

WENO scheme of Liu, Osher and Chan [9] is another way to overcome these drawbacks

while keeping the robustness and high order accuracy of ENO schemes. The idea is the

following: instead of approximating the numerical 
ux using only one of the candidate

stencils, one uses a convex combination of all the candidate stencils. Each of the candidate

stencils is assigned a weight which determines the contribution of this stencil to the �nal

approximation of the numerical 
ux. The weights can be de�ned in such a way that in

smooth regions it approaches certain optimal weights to achieve a higher order of accuracy

(a rth order ENO scheme leads to a (2r�1)th orderWENO scheme in the optimal case), while

in regions near discontinuities, the stencils which contain the discontinuities are assigned a

nearly zero weight. Thus, the essentially non-oscillatory property is achieved by emulating

ENO schemes around discontinuities and a higher order of accuracy is obtained by emulating
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upstream central schemes with the optimal weights away from discontinuities. WENO

schemes completely remove the logical statements that appear in the ENO stencil choosing

step. As a result, the WENO schemes run at least twice as fast as ENO schemes (see

Section 7) on vector machines (e.g. CRAY C-90) and are not sensitive to round-o� errors

that arise in actual computation. Atkins [1] also has a version of ENO schemes using a

di�erent weighted average of stencils.

Another advantage of WENO schemes is that its 
ux is smoother than that of the ENO

schemes. This smoothness enables us to prove convergence of WENO schemes for smooth

solutions using Strang's technique [18], see Section 6. According to our numerical tests, this

smoothness also helps the steady state calculations, see Example 4 in Section 8.2.

In [9], the order of accuracy shown in the error tables (Table 1-5 in [9]) seemed to suggest

that the WENO schemes of Liu et al. are more accurate than what the truncation error

analysis indicated. In Section 2, we carry out a more detailed error analysis for the WENO

schemes and �nd that this \super-convergence" is indeed super�cial: the \higher" order is

caused by larger error on the coarser grids instead of smaller error on the �ner grids. Our

error analysis also suggests that the WENO schemes can be made more accurate than those

in [9].

Since the weight on a candidate stencil has to vary according to the relative smoothness

of this stencil to the other candidate stencils, the way of evaluating the smoothness of a

stencil is crucial in the de�nition of the weight. In Section 3, we introduce a new way of

measuring the smoothness of the numerical solution which is based upon minimizing the L2

norm of the derivatives of the reconstruction polynomials, emulating the idea of minimizing

the total variation of the approximations. This new measurement gives the optimal 5th

order accurate WENO scheme when r = 3 (the smoothness measurement in [9] gives a 4th

order accurate WENO scheme for r = 3).

Although the WENO schemes are faster than ENO schemes on vector supercomputers,

they are only as fast as ENO schemes on serial computers. In Section 4, we present a simpler

way of computing the weights for the approximation of Euler systems of gas dynamics. The

simpli�cation is aimed at reducing the 
oating point operations in the costly but necessary

characteristic procedure and is motivated by the following observation: the only nonlinearity

of a WENO scheme is in the computation of the weights. We suggest the use of pressure

and entropy to compute the weights instead of the local characteristic quantities. In this

way one can exploit the linearity of the rest of the scheme. The resulting WENO scheme

(r=3) is about twice as fast as the original WENO scheme which uses local characteristic

quantities to compute the weights (see Section 7). The same idea can also be applied to

the original ENO schemes. Namely, we can use the undivided di�erences of pressure and

entropy to replace the local characteristic quantities to choose the ENO stencil. This has

been tested numerically but the results are not included in this paper since the main topic

here is the WENO schemes.

WENO schemes have the same smearing at contact discontinuities as ENO schemes.

There are mainly two techniques for sharpening the contact discontinuities for ENO schemes.

One is Harten's subcell resolution [4] and the other is Yang's arti�cial compression (slope

modi�cation) [20]. Both were introduced in the cell average context. Later, Shu and

Osher [15] translated them into the point value framework. In one dimensional problems,

subcell resolution technique works slightly better than the arti�cial compression method.

However, for two or higher dimensional problems, the latter is found to be more e�ective and

easier to use [15]. We will highlight the key procedures of applying the arti�cial compression
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method to the WENO schemes in Section 5.

In Section 8, we test the WENO schemes (both the WENO schemes of Liu et al. and

the modi�ed WENO schemes), on several 1D and 2D model problems and compare them

with ENO schemes to examine their capability in resolving shock and complicated 
ow

structures.

We conclude this paper by a brief summary in Section 9.

The time discretization of WENO schemes will be implemented by a class of high order

TVD Runge-Kutta type methods developed by Shu and Osher [14]. To solve the following

ordinary di�erential equation:
du

dt
= L(u) (1:2)

where L(u) is a discretization of the spatial operator, the third order TVD Runge-Kutta is

simply:

u(1) = un + �tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
�tL(u(1)) (1.3)

un+1 =
1

3
un +

2

3
u(2) +

2

3
�tL(u(2))

Another useful, although not TVD, fourth order Runge-Kutta scheme is:

u(1) = un +
1

2
�tL(un)

u(2) = un +
1

2
�tL(u(1))

u(3) = un + �tL(u(2)) (1.4)

un+1 =
1

3

�
�un + u(1) + 2u(2) + u(3)

�
+
1

6
�tL(u(3))

This fourth order Runge-Kutta scheme can be made TVD by an increase of operation

counts [14]. We will mainly use these two Runge-Kutta schemes in our numerical tests in

Section 8. The third order TVD Runge-Kutta scheme will be referred to as \RK-3" while

the fourth order (non-TVD) Runge-Kutta scheme will be referred to as \RK-4".

2 The WENO Schemes of Liu, Osher and Chan

In this section, we use the 
ux version of ENO schemes as our basis to formulate WENO

schemes of Liu et al. and analyze their accuracy in a di�erent way from that used in [9].

We use one dimensional scalar conservation laws (i.e. d=m=1 in (1.1) ) as an example:

ut + f(u)x = 0 (2:1)

Let us discretize the space into uniform intervals of size �x and denote xj = j�x.

Various quantities at xj will be identi�ed by the subscript j. The spatial operator of the

WENO schemes, which approximates �f(u)x at xj , will take the following conservative

form:

L = �
1

�x

�
f̂j+ 1

2

� f̂j� 1

2

�
(2:2)
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where the numerical 
ux f̂j+ 1

2

approximates hj+ 1

2

= h(xj+ 1

2

) to a high order with h(x)

implicitly de�ned by [15]

f(u(x)) =
1

�x

Z x+�x=2

x��x=2
h(�)d� (2:3)

We can actually assume f 0(u) � 0 for all u in the range of our interest. For a general


ux, i.e. f 0(u) 6� 0, one can split it into two parts either globally or locally:

f(u) = f+(u) + f�(u) (2:4)

where
df(u)+

du
� 0 and

df(u)�

du
� 0. For example, one can de�ne

f�(u) =
1

2
(f(u)� �u) (2:5)

where � = maxjf 0(u)j and the maximum is taken over the whole relevant range of u. This

is the global Lax-Friedrichs (LF) 
ux splitting. For other 
ux splittings, especially the Roe


ux splitting with entropy �x (RF), see [15] for details. Let f̂+
j+ 1

2

and f̂�
j+ 1

2

be, resp. the

numerical 
uxes obtained from the positive and negative parts of f(u), we then have:

f̂j+ 1

2

= f̂+
j+ 1

2

+ f̂�
j+ 1

2

(2:6)

Here we will only describe how f̂+
j+ 1

2

is computed in [9] on the basis of the 
ux version

of ENO schemes. For simplicity, we will drop the \+" sign in the superscript. The formulas

for the negative part of the split 
ux are symmetric (with respect to xj+ 1

2

) and will not be

shown.

As we know, the rth order (in L1 sense) ENO scheme chooses one \smoothest" stencil

from r candidate stencils and uses only the chosen stencil to approximate the 
ux hj+ 1

2

.

Let's denote the r candidate stencils by Sk ; k = 0; 1; . . . ; r�1 where

Sk = (xj+k�r+1 ; xj+k�r+2; � � � ; xj+k)

If the stencil Sk happens to be chosen as the ENO interpolation stencil, then the rth order

ENO approximation of hj+ 1

2

is:

f̂j+ 1

2

= qrk(fj+k�r+1; � � � ; fj+k) (2:7)

where

qrk(g0; � � � ; gr�1) =
r�1X
l=0

ark;lgl (2:8)

Here ark;l; 0 � k; l � r�1 are constant coe�cients. For later use, we provide these coe�cients
for r = 2; 3 in Table 1.

To just use the one smoothest stencil among the r candidates for the approximation

of hj+ 1

2

, is very desirable near discontinuities because it prohibits the usage of information

on discontinuous stencils. However, it is not so desirable in smooth regions because all the

candidate stencils carry equally smooth information and thus can be used together to give

a higher order (higher than r, the order of the base ENO scheme) approximation to the 
ux
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Table 1: Coe�cients ark;l.

r k l = 0 l = 1 l = 2

2 0 �1=2 3=2

1 1=2 1=2

3 0 1=3 �7=6 11=6

1 �1=6 5=6 1=3

2 1=3 5=6 �1=6

hj+ 1

2

. In fact, one could use all the r candidate stencils, which all together contain (2r�1)

grid values of f to give a (2r�1)th order approximation of hj+ 1

2

:

f̂j+ 1

2

= q2r�1r�1 (fj�r+1; � � � ; fj+r�1) (2:9)

which is just the numerical 
ux of a (2r�1)th order upstream central scheme. As we know,

high order upstream central schemes (in space) combined with high order Runge-Kutta

methods (in time), are stable and dissipative under appropriate CFL numbers and thus

are convergent, according to Strang's convergence theory [18] when the solution of (1.1) is

smooth (see Section 6). The above facts suggest that, one could use the (2r�1)th order

upstream central scheme in smooth regions and only use the rth order ENO scheme near

discontinuities.

As in (2.7), each of the stencils can render an approximation of hj+ 1

2

. If the stencil is

smooth, this approximation is rth order accurate, otherwise, it is less accurate or even not

accurate at all if the stencil contains a discontinuity. One could assign a weight !k to each

candidate stencil Sk, k = 0; 1; . . . ; r�1 and use these weights to combine the r di�erent

approximations to obtain the �nal approximation of hj+ 1

2

as follows:

f̂j+ 1

2

=
r�1X
k=0

!kq
r
k(fj+k�r+1 ; � � � ; fj+k) (2:10)

where qrk(fj+k�r+1; � � � ; fj+k) is de�ned in (2.8). To achieve the essentially non-oscillatory

property, one then requires the weights to adapt to the relative smoothness of f on each

candidate stencil such that any discontinuous stencil is e�ectively assigned a zero weight. In

smooth regions, one can adjust the weight distribution such that the resulting approximation

of the 
ux f̂j+ 1

2

is as close as possible to that given in (2.9).

Simple algebra gives the coe�cients Cr
k such that

q2r�1r�1 (fj�r+1; � � � ; fj+r�1) =
r�1X
k=0

Cr
kq

r
k(fj+k�r+1 ; � � � ; fj+k) (2:11)

and
Pr�1

k=0 C
r
k = 1 for all r � 2. For r = 2; 3, these coe�cients are given in Table 2.

Comparing (2.11) with (2.10), we get:

f̂j+ 1

2

= q2r�1r�1 (fj�r+1; � � � ; fj+r�1) +
r�1X
k=0

(!k � Cr
k)q

r
k(fj+k�r+1; � � � ; fj+k) (2:12)
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Table 2: Optimal weights Cr
k .

Cr
k k=0 k=1 k=2

r=2 1/3 2/3 |

r=3 1/10 6/10 3/10

Recalling (2.9), we see that, the �rst term on the right hand side of the above equation is a

(2r�1)th order approximation of hj+ 1

2

. Since
Pr�1

k=0 C
r
k = 1, if we require

Pr�1
k=0 !k = 1, the

last summation term can be written as

r�1X
k=0

(!k � Cr
k)(q

r
k(fj+k�r+1; � � � ; fj+k)� hj+ 1

2

) (2:13)

Each term in the last summation can be made O(h2r�1) if

!k = Cr
k +O(hr�1) (2:14)

for k = 0; 1; . . . ; r�1. Here, h = �x. Thus Cr
k will bear the name of optimal weight.

The question now is how to de�ne the weight such that (2.14) is satis�ed in smooth

regions while essentially non-oscillatory property is achieved. In [9], the weight !k for

stencil Sk is de�ned by

!k =
�k

�0 + � � �+ �r�1
(2:15)

where

�k =
Cr
k

(� + ISk)p
k = 0; 1; . . . ; r�1: (2:16)

Here � is a positive real number which is introduced to avoid the denominator to become

zero ( in our later tests, we will take � = 10�6 ); the power p will be discussed in a moment;

ISk in (2.16) is a smoothness measurement of the 
ux function on the kth candidate stencil.

It is easy to see that
Pr�1

k=0 !k = 1. To satisfy (2.14), it su�ces to have (through a Taylor

expansion analysis):

ISk = D(1 +O(hr�1)) (2:17)

for k = 0; 1; . . . ; r�1 where D is some nonzero quantity independent of k.

As we know, an ENO scheme chooses the \smoothest" ENO stencil by comparing a

hierarchy of undivided di�erences. This is because these undivided di�erences can be used

to measure the smoothness of the numerical 
ux on a stencil. In [9], ISk is de�ned as

ISk =
r�1X
l=1

r�lX
i=1

(f [j+k+i�r; l])2

r � l
(2:18)

where f [�; �] is the lth undivided di�erence:

f [j; 0] = fj

f [j; l] = f [j+1; l�1]� f [j; l�1]; k = 1; . . . ; r�1:

For example, when r = 2, we have

ISk = (f [j + k � 1; 1])2 k = 0; 1 (2:19)
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When r = 3, (2.18) gives

ISk =
1

2

�
(f [j + k � 2; 1])2+ (f [j + k � 1; 1])2

�
+ (f [j + k � 2; 2])2 k = 0; 1; 2 (2:20)

In smooth regions, Taylor expansion analysis of (2.18) gives

ISk = (f 0h)2(1 + O(h)) k = 0; 1; . . . ; r�1: (2:21)

where f 0 = f 0(uj). Note the O(h) term is not O(hr�1) that we would want to have (see

(2.17)). Thus in smooth monotone regions, i.e. f 0 6= 0, we have:

!k = Cr
k + O(h) k = 0; 1; . . . ; r�1: (2:22)

Recalling (2.12), we see that the WENO schemes with the smoothness measurement given

by (2.18) is (r + 1)th order accurate in smooth monotone regions of f(u(x)). This result

was proven in [9] using a di�erent approach. For r = 2, this is optimal in the sense that

the 3rd order upstream central scheme is approximated in most smooth regions. However,

this is not optimal for r = 3, for which this measurement can only give 4th order accuracy

while the optimal upstream central scheme is 5th order accurate. We will introduce a new

measurement in the next section which will result in an optimal order accurate WENO

scheme for the r = 3 case.

When r = 3, Taylor expansion of (2.20) gives:

IS0 =
1

2

�
(f 0h �

3

2
f 00h2)2 + (f 0h�

1

2
f 00h2)2

�
+ (f 00h2)2 + O(h5) (2.23)

IS1 =
1

2

�
(f 0h �

1

2
f 00h2)2 + (f 0h+

1

2
f 00h2)2

�
+ (f 00h2)2 + O(h5) (2.24)

IS2 =
1

2

�
(f 0h +

1

2
f 00h2)2 + (f 0h+

3

2
f 00h2)2

�
+ (f 00h2)2 + O(h5) (2.25)

We can see that the second order terms are di�erent from stencil to stencil. Thus (2.22) is

no longer valid at critical points of f(u(x)) which implies that the WENO scheme of Liu

et al. for r = 3 is only 3rd order accurate at these points. In fact, the weights computed

from the smoothness measurement (2.18) diverge far away from the optimal weights near

critical points (see Figure 1 in the next section) on coarse grids (10 to 80 grid points per

wave). But on �ne grids, since the smoothness measurements ISk for all k are relatively

smaller than the non-zero constant � in (2.16), the weights become close to the optimal

weights. Therefore the \super-convergence" phenomena which appeared in Table 1-5 in [9]

are caused by large error commitment on coarse grids and less error commitment on �ner

grids when using the errors of the 5th order central scheme as reference (see Table 3 and 4).

At discontinuities, it is typical that one or more of the r candidate stencils reside in

smooth regions of the numerical solution while other stencils contain the discontinuities.

The size of the discontinuities is always O(1) and does not change when the grid is re�ned.

So we have for a smooth stencil Sk,

ISk = O(h2p) (2:26)

and for a non-smooth stencil Sl,

ISl = O(1) (2:27)
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From the de�nition of the weights (2.15), we can see that, for this non-smooth stencil Sl,

the corresponding weight !l satis�es

!l = O(h2p) (2:28)

Therefore for small h and any positive integer power p, the weight assigned to the non-

smooth stencil vanishes as h ! 0. Note, if there is more than one smooth stencil in the

r candidates, from the de�nition of the weights in (2.15), we expect each of the smooth

stencils will get a weight which is O(1). In this case, the weights do not exactly resemble

the \ENO digital weights". However, if a stencil is smooth, the information that it contains

is useful and should be utilized. In fact, in our extensive numerical experiments, we �nd

the WENO schemes in [9] work very well at shocks. We also �nd that p = 2 is adequate

to obtain essentially non-oscillatory approximations at least for r = 2; 3, although it is

suggested in [9] that p should be taken as r, the order of the base ENO schemes. We will

use p = 2 for all our numerical tests.

In summary, WENO schemes of Liu et al. de�ned by (2.10), (2.15) and (2.18) have the

following properties:

1. They involve no logical statements which appear in the base ENO schemes.

2. The WENO scheme based on the rth order ENO scheme is (r+1)th order accurate

in smooth monotone regions, although this is still not as good as the optimal order

(2r�1)th.

3. They achieve the essentially non-oscillatory property by emulating ENO schemes at

discontinuities.

4. They are smooth in the sense that the numerical 
ux f̂j+ 1

2

is a smooth function of all

its arguments (For a general 
ux, this is also true if a smooth 
ux splitting method

is used, e.g. global Lax-Friedrichs 
ux splitting).

3 A New Smoothness Measurement

In this section, we present a new way of measuring the smoothness of the numerical solution

on a stencil which can be used to replace (2.18) to form a new weight.

As we know, on each stencil Sk , we can construct a (r�1)th order interpolation poly-

nomial, which if evaluated at x = xj+ 1

2

, renders the approximation of hj+ 1

2

given in (2.7).

Since total variation is a good measurement for smoothness, it would be desirable to mini-

mize the total variation for the approximation. Consideration of a smooth 
ux and of the

role of higher order variations leads us to the following measurement for smoothness: let

the interpolation polynomial on stencil Sk be qk(x), we de�ne

ISk =
r�1X
l=1

Z x
j+ 1

2

x
j� 1

2

h2l�1
�
q
(l)
k

�2
dx (3:1)

where q
(l)
k is the lth derivative of qk(x). The right hand side of (3.1) is just a sum of

the L2 norms of all the derivatives of the interpolation polynomial qk(x) over the interval

(xj� 1

2

; xj+ 1

2

). The term h2l�1 is to remove h�dependent factors in the derivatives of the
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polynomials. This is similar to but smoother than the total variation measurement based

on the L1 norm. It also renders a more accurate WENO scheme for the case r = 3, when

used with (2.15) and (2.16).

When r = 2, (3.1) gives the same measurement as (2.18). However, they become

di�erent for r � 3. For r = 3, (3.1) gives

IS0 =
13

12
(fj�2 � 2fj�1 + fj)

2 +
1

4
(fj�2 � 4fj�1 + 3fj)

2 (3.2)

IS1 =
13

12
(fj�1 � 2fj + fj+1)

2 +
1

4
(fj�1 � fj+1)

2 (3.3)

IS2 =
13

12
(fj � 2fj+1 + fj+2)

2 +
1

4
(3fj � 4fj+1 + fj+2)

2 (3.4)

In smooth regions. Taylor expansion of (3.2)-(3.4) gives, resp.

IS0 =
13

12
(f 00h2)2 +

1

4
(2f 0h �

2

3
f 000h3)2 + O(h6) (3.5)

IS1 =
13

12
(f 00h2)2 +

1

4
(2f 0h +

1

3
f 000h3)2 + O(h6) (3.6)

IS2 =
13

12
(f 00h2)2 +

1

4
(2f 0h �

2

3
f 000h3)2 + O(h6) (3.7)

where f 000 = f 000(uj). If f
0 6= 0, then

ISk = (f 0h)2(1 +O(h2)) k = 0; 1; 2 (3:8)

which means the weights (see (2.15)) resulting from this measurement satisfy (2.17) for

r = 3, thus we obtain a 5th order (the optimal order for r = 3) accurate WENO scheme.

Moreover, this measurement is also more accurate at critical points of f(u(x)). When

f 0 = 0, we have

ISk =
13

12
(f 00h2)2(1 + O(h2)) k = 0; 1; 2 (3:9)

which implies that the weights resulting from the measurement (3.1) are also 5th order

accurate at critical points.

To illustrate the di�erent behavior of the two measurements (i.e. (2.18) and (3.1)) for

r = 3 in smooth monotone regions, near critical points or near discontinuities, we compute

the weights !0; !1 and !2 for the following function:

fj =

(
sin 2�xj if 0 � xj � 0:5,

1� sin 2�xj if 0:5 < xj � 1:
(3:10)

at all half grid points xj+ 1

2

where xj = j�x, xj+ 1

2

= xj + �x=2 and �x = 1=40. We

display the weights !0 and !1 in Figure 1. (!2 = 1 � !0 � !1 is omitted in the picture).

Note the optimal weight for !0 is C3
0 = 0:1 and for !1 is C3

1 = 0:6. We can see that the

weights computed with (2.18) (referred to as the original measurement in Figure 1) are

far less optimal than those with the new measurement especially around the critical points

x = 1
4 ;

3
4 . However, near the discontinuity x = 1

2 , the two measurements behave similarly:

the discontinuous stencil always gets an almost zero weight. Moreover, for the grid point

immediately to the left of the discontinuity, !0 �
1
7
and !1 �

6
7
, which means, when only one

of the three stencils is non-smooth, the other two stencils get O(1) weights. Unfortunately,
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Figure 1: A comparison of the two smoothness measurements.

these weights do not approximate a 4th order scheme at this point. A similar situation

happens to the point just to the right of the discontinuity.

For simplicity of notations, we use WENO-X-3 to stand for the 3rd order WENO scheme

(i.e. r = 2, for which the original and new smoothness measurement coincide) where X=LF,

Roe, RF refers resp. to the global Lax-Friedrichs 
ux splitting, Roe's 
ux splitting and Roe's


ux splitting with entropy �x; The accuracy of this scheme has been tested in [9]. We will

use WENO-X-4 to represent the 4th order WENO scheme of Liu et al. (i.e. r = 3 with

the original smoothness measurement of Liu et al.) and WENO-X-5 to stand for the 5th

order WENO scheme resulting from the new smoothness measurement. In later sections,

we will also use ENO-X-Y to denote conventional ENO schemes of \Y"th order with \X"


ux splitting. We caution the reader that the orders here are in L1 sense. So ENO-RF-4 in

our notation refers to the same scheme as ENO-RF-3 in [15].

In the following we test the accuracy of WENO schemes on the linear equation:

ut + ux = 0 � 1 � x � 1 (3.11)

u(x; 0) = u0(x) periodic. (3.12)

In Table 3, we show the errors of the two schemes at t = 1 for the initial condition u0(x) =

sin(�x) and compare them with the errors of the 5th order upstream central scheme (referred

to as CENTRAL-5 in the following tables). We can see that WENO-RF-4 is more accurate

than WENO-RF-5 on the coarsest grid (N=10) but becomes less accurate than WENO-RF-

5 on the �ner grids. Moreover, WENO-RF-5 gives the expected order of accuracy starting

at about 40 grid points. In this example and the one for Table 4, we have adjusted the time

step to �t � (�x)
5

4 so that the 4th order Runge-Kutta in time is e�ectively 5th order.

In Table 4, we show errors for the initial condition u0(x) = sin4(�x). Again we see that

WENO-RF-4 is more accurate than WENO-RF-5 on the coarsest grid (N=20) but becomes

less accurate than WENO-RF-5 on �ner grids. The order of accuracy for WENO settles

10



Table 3: Accuracy on ut + ux = 0 with u0(x) = sin(�x).

Method N L1 error L1 order L1 error L1 order

10 1.31e-2 - 7.93e-3 -

20 3.00e-3 2.13 1.32e-3 2.59

WENO-RF-4 40 4.27e-4 2.81 1.56e-4 3.08

80 5.17e-5 3.05 1.13e-5 3.79

160 4.99e-6 3.37 6.88e-7 4.04

320 3.44e-7 3.86 2.74e-8 4.65

10 2.98e-2 - 1.60e-2 -

20 1.45e-3 4.36 7.41e-4 4.43

WENO-RF-5 40 4.58e-5 4.99 2.22e-5 5.06

80 1.48e-6 4.95 6.91e-7 5.01

160 4.41e-8 5.07 2.17e-8 4.99

320 1.35e-9 5.03 6.79e-10 5.00

10 4.98e-3 - 3.07e-3 -

20 1.60e-4 4.96 9.92e-5 4.95

CENTRAL-5 40 5.03e-6 4.99 3.14e-6 4.98

80 1.57e-7 5.00 9.90e-8 4.99

160 4.91e-9 5.00 3.11e-9 4.99

320 1.53e-10 5.00 9.73e-11 5.00

down later than in the previous example. Notice that this is the example for which ENO

schemes lose their accuracy [12].

4 A Simple Way for Computing Weights for Euler Systems

For system (1.1) with d > 1, the derivatives dfi
dxi

; i = 1; . . . ; d are approximated dimension

by dimension: for example, when approximating df1
dx1

, one �xes xl; l > 1 and uses an one

dimensional approximation in the direction of x1. In the following, we only discuss how to

approximate df1
dx1

and will drop the index \1" for simplicity. We will also assume that all

the eigenvalues of the Jacobian df
du

are nonnegative (a condition identical to f 0 � 0 in the

scalar equation). For a general 
ux, one can split it locally into positive and negative parts

just as in the scalar case. The formulas for the negative part of the 
ux will be omitted due

to symmetry.

For systems of equations, the 
uxes f̂j+ 1

2

are usually approximated in the (local) char-

acteristic �elds. Let's take Aj+ 1

2

to be some average Jacobian at xj+ 1

2

, e.g., the arithmetic

mean

Aj+ 1

2

=
@f

@u

���u=(uj+uj+1)=2 (4:1)

or for Euler systems, the Roe's mean matrix [11]. We denote by rs (column vector) and

ls (row vector) the sth right and left eigenvector of Aj+ 1

2

, resp. Then the scalar WENO

11



Table 4: Accuracy on ut + ux = 0 with u0(x) = sin4(�x).

Method N L1 error L1 order L1 error L1 order

20 7.31e-2 - 3.29e-2 -

40 2.48e-2 1.56 9.99e-3 1.72

WENO-RF-4 80 4.60e-3 2.43 1.44e-3 2.79

160 3.59e-4 3.68 8.31e-5 4.12

320 2.12e-5 4.08 3.06e-6 4.76

640 1.51e-6 3.81 9.57e-8 5.00

20 1.08e-1 - 4.91e-2 -

40 8.90e-3 3.60 3.64e-3 3.75

WENO-RF-5 80 1.80e-3 2.31 5.00e-4 2.86

160 1.22e-4 3.88 2.17e-5 4.53

320 4.37e-6 4.80 6.17e-7 5.14

640 9.79e-8 5.48 1.57e-8 5.30

20 5.23e-2 - 3.35e-2 -

40 2.47e-3 4.40 1.52e-3 4.46

CENTRAL-5 80 8.32e-5 4.89 5.09e-5 4.90

160 2.65e-6 4.97 1.60e-6 4.99

320 8.31e-8 5.00 4.99e-8 5.00

640 2.60e-9 5.00 1.56e-9 5.00

scheme can be applied to each of the characteristic �elds. For example, (2.10) becomes

~fj+ 1

2
;s =

r�1X
k=0

!k;sq
r
k(ls �fj+k�r+1; � � � ; ls �fj+k) (4:2)

which gives the numerical 
ux in the sth characteristic �eld. Here !k;s; k = 0; 1; . . . ; r�1
are the weights in the sth characteristic �eld:

!k;s = !k(ls �fj�r+1; . . . ; ls �fj+r�1) (4:3)

which is a nonlinear function. (!k is de�ned by (2.15)). The numerical 
uxes obtained in

each characteristic �eld can then be projected back to the component space by:

f̂j+ 1

2

=
mX
s=1

~fj+ 1

2
;srs (4:4)

Because of the nonlinearity of the weights (see (4.3)), the above procedure involves many

local projections (or vector vector products). In fact, these projections are responsible

for most of the 
oating point operations of WENO schemes (true also for ENO schemes).

Moreover, these projections can not be avoided if the weights are to be computed from the

projected quantities. However, if the weights can be computed from other quantities, we

then can exploit the linearity of the rest of the scheme (e.g. the linearity of qrk) to reduce

the number of 
oating point operations because the only nonlinear part of WENO schemes

is in the calculation of the weights.
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The question then is what quantities can serve as replacements of the projected val-

ues. Obviously for each characteristic �eld, the replacing quantity must indicate the jump

discontinuities in that �eld. Although such quantities are yet to be discovered for general

systems of equations, we �nd, after an extensive searching and trial, that pressure and en-

tropy are good replacements for the projected values when Euler systems are concerned, at

least for problems without strong shocks and re
ective waves.

Namely, we will use pressure to compute the weights in the genuinely nonlinear charac-

teristic �elds (s = 1; m) and use entropy for the linearly degenerate �eld(s) (1 < s < m).

The motivation: (1). The pressure does not jump at contact discontinuities but always

jumps at shocks; (2). The entropy jumps at contact discontinuities but jumps only slightly

at a weak shock.

Since the pressure and entropy can be obtained independent of the characteristic projec-

tion procedure, we can reformulate the WENO schemes to take advantage of the linearity

of the rest of the scheme. Let's de�ne

Fj+ 1

2
;s =

r�1X
k=0

!k;sq
r
k(fj+k�r+1; � � � ; fj+k) s = 1; . . . ; m (4:5)

For Euler systems, the sth (1 < s < m) characteristic �eld is linearly degenerate. These

�elds have the same characteristic speed (eigenvalue) and the weights are all computed from

the entropy. So we have for all 1 < s < m:

!k;s = !k;2 8k = 0; . . . ; r�1:

and therefore

F+

j+ 1

2
;s
= F+

j+ 1

2
;2

for all 1 < s < m. Combine (4.2) and (4.4) and use the linearity of qrk to take out ls, we get

f̂j+ 1

2

=
mX
s=1

(ls �Fj+ 1

2
;s)rs

=
�
l1 �(Fj+ 1

2
;1 � Fj+ 1

2
;2)
�
r1 +

�
lm �(Fj+ 1

2
;m � Fj+ 1

2
;2)
�
rm + Fj+ 1

2
;2 (4.6)

As we can see, we only need two projections from component space to characteristic space

and two inverse projections, plus the few operations for computing Fj+ 1

2
;s; s = 1; 2; m.

We will denote, by WENO-LF-5-PS, the WENO scheme for the case r = 3, which

uses pressure and entropy for weight computation in conjunction with the new smoothness

measurement (3.1), the weights (2.15) and global Lax-Friedrichs 
ux splitting (according

to our numerical tests, the original smoothness measurement of Liu et al. does not perform

well at shocks when combined with the above way of computing weights).

Accuracy of WENO-LF-4, WENO-LF-5 and WENO-LF-5-PS on the 1D Euler system

is tested using an initial condition which produces a smooth solution, the same example

used in Section 6. The result is similar to the scalar case in Table 3 and thus will not be

shown.
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5 Sharpening of Contact Discontinuities

For a linear, constant coe�cient problem ( f(u) = au in (2.1) ), Yang's arti�cial compression

method, when applied to the WENO schemes is simply ( assuming a > 0 ):

f̂A
j+ 1

2

= f̂j+ 1

2

+ cj+ 1

2

(5:1)

where f̂j+ 1

2

is the 
ux obtained by one of the methods introduced in the previous three

sections, and

cj+ 1

2

= m

�
�j

2
m(f̂R

j+ 1

2

� f̂j+ 1

2

; f̂R
j� 1

2

� f̂j� 1

2

); fj+1 � f̂j+ 1

2

; f̂R
j� 1

2

� fj�1

�
(5:2)

Here f̂R
j+ 1

2

is obtained by the same method for f̂j+ 1

2

pretending a < 0; m is the usual

minmod function de�ned by

m(a1; � � � ; an) =

(
s � min

1�i�n
jaij; if s = sign(a1) = � � �= sign(an)

0 otherwise;
(5:3)

and �j is given by

�j = �

 
jfj+1 � 2fj + fj�1j

jfj+1 � fj j+ jfj � fj�1j

!2

(5:4)

where � is a positive parameter. We will use � = 33 as suggested by Yang [20] in all our

tests in Section 8, though this parameter can be tuned to optimize the results for individual

problems. The case of a < 0 can be treated symmetrically and the generalization to variable

coe�cient or nonlinear problems is rather straight forward. See [15] for details.

We will apply the above sharpening technique only to contact discontinuities or contact

characteristic �eld(s) in case of Euler systems. A scheme which uses the above arti�cial

technique will be denoted by adding to its name the su�x \-A", e.g. WENO-LF-5-A.

6 Convergence for Smooth Solutions

As we can see from the previous sections, the WENO schemes are smooth in the sense that

the spatial operator L

L = L(fj�r; fj�r+1; � � � ; fj+r�1) (6:1)

is in�nitely di�erentiable to any of its arguments ( see (2.2), (2.10), (2.15), (2.16) and (2.18)

or (3.1) ). Here r � 2 is the L1 order of the base ENO scheme. In case of a general 
ux, if a

smooth 
ux splitting is used (e.g. the global Lax-Friedrichs 
ux splitting), the smoothness

of the WENO schemes is unchanged.

Strang's theorem (Theorem I in [18]) implies that, for a conservation law whose 
ux

function and solution have enough continuous derivatives, a smooth, consistent scheme is

convergent if its �rst variation (see [18] for the de�nition) is l2-stable.

It is easy to see that, for the scalar one dimensional conservation law (2.1) with f 0 � 0,

the spatial operator of WENO schemes has the following simple �rst variation ~L

~L �
j+r�1X
l=j�r

@L

@ul
(uj ; � � � ; uj)ul

= �
f 0(uj)

�x

�
q2r�1r�1 (uj�r+1; � � � ; uj+r�1)� q2r�1r�1 (uj�r ; � � � ; uj+r�2)

�
(6.2)
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because @!k

@ul
(uj ; � � � ; uj) = 0 and !k(uj ; � � � ; uj) = Cr

k for all k = 0; . . . ; r � 1 and l =

j � r; . . . ; j + r � 1. (6.2) can be rewritten into a summation of a (2r � 2)th order central

di�erence D2r�2 and a (2r � 1)th order upwind biased di�erence.

~L = �
f 0(uj)

�x

�
D2r�2(uj�r+1; � � � ; uj+r�1) + (�1)r�1�r�

2r�1
+ uj�r

�
(6:3)

where �r =
(r�1)!(r�1)!

(2r�1)!
> 0 and �2r�1

+ is the (2r � 1)th order forward di�erence operator.

Applying the classical Fourier analysis to the �rst variation, we see that the (2r�2)th order

central di�erence has a purely imaginary spectrum while the second term in (6.3), which is

just a (2r � 1)th order upwind biased di�erence, has a spectrum of the form

22r�1�r

�
sin

�

2

�2r�1

(sin
�

2
+ i cos

�

2
) (6:4)

where 0 � � � 2�. (6.3) and (6.4) together imply that the spectrum of the operator ~L lies

fully on the left half of the complex plane. Therefore, with an appropriately chosen CFL

number, the �rst variation of the WENO schemes are l2-stable when the 3
rd or higher order

Runge-Kutta time discretization is used.

Let's de�ne by u(x0; t0;�x) the numerical solution at (x0; t0) 2 Rd � R+ for grid size

�x and �xed CFL number. For general scalar conservation laws, the same analysis gives

Theorem 6.1 For the initial value problem of (1.1) with m = 1 (i.e., scalar conservation

laws), 8(x0; t0) 2 Rd�R+, if the exact solution v and df
dv
; g have r+[d+1

2
]+q0+2 continuous

derivatives in the domain of dependence of (x0; t0) as de�ned in [18], the WENO schemes

using a smooth 
ux splitting and a nth order Runge-Kutta scheme ( n � max(r; 3) ) satisfy

u(x0; t0;�x) = v(x0; t0) + O(�xr) (6:5)

for appropriately chosen CFL number. Here q0 is a small constant integer (see [18]).

For a few special cases, we list the CFL numbers in Table 5.

Table 5: CFL numbers (n: order of the Runge-Kutta scheme).

n = 3 n = 4

r = 2 1.625 1.745

r = 3 1.434 1.731

7 E�ciency Comparison

In this section, we compare the e�ciency of WENO-LF-4, WENO-LF-5, WENO-LF-5-PS

and ENO-LF-4 on a vector supercomputer (CRAY C-90) and two serial workstations (SUN

Sparc10 and SGI Indigo2).
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1D, 2D and 3D Euler systems are solved. The 3D Euler system is (1.1) with d = 3; m = 5

and

u = (�; �u; �v; �w;E)T ; (7.1)

f(u) = (�u; P + �u2; �uv; �uw; u(E + P ))T ; (7.2)

g(u) = (�v; �vu; P + �v2; �vw; v(E + P ))T ; (7.3)

h(u) = (�w; �wu; �wv; P + �w2; w(E + P ))T : (7.4)

where

P = (
 � 1)(E �
1

2
�(u2 + v2 + w2))

The initial condition is

� = 1 + 0:2 sin(�(x+ y + z)); u = v = w = 1; P = 1

Here we use f ; g;h; x; y; z instead of f1; f2; f3; x1; x2; x3. The 1D and 2D Euler systems and

their initial conditions can be deduced from the above 3D problem by removing the extra

degree of freedom(s).

We display the CPU time of ENO-LF-4, WENO-LF-4, WENO-LF-5 and WENO-LF-

5-PS (all with RK-4) on the CRAY C-90, the Sparc10 and the SGI Indigo2 in Table 6.

We observe that WENO-LF-4 and WENO-LF-5 are at least twice as fast as ENO-LF-4 on

the CRAY C-90 and WENO-LF-5-PS is 2.5 times as fast as ENO-LF-4 for the 1D Euler

problem, 3.2 times as fast for the 2D Euler problem and 3.9 times as fast for the 3D Euler

system. On the workstations, WENO-LF-4 and WENO-LF-5 are a bit faster than ENO-

LF-4 on the SUN Sparc10 but a bit slower on the SGI Indigo2. WENO-LF-5-PS is 1.5

to 2.2 times as fast as ENO-LF-4 on the SUN Sparc10 and on the SGI Indigo2. As a

reference, we also include the CPU times of a typical second order TVD scheme [8] (Van

Leer's limiter with 2nd order Runge-Kutta scheme in time, our own implementation) in the

following tables. We can see the 2nd order scheme is about 10 times as fast as ENO-LF-4

on the CRAY C-90, 4.5 times as fast on the SUN Sparc10 and 3.5 times as fast on the SGI

Indigo2.

In Table 7, the number of 
oating point operations and the MFlops (million 
oating-

point operations per second) are given for the 2nd order scheme, ENO-Roe-4, ENO-LF-4,

WENO-LF-5, WENO-LF-5-PS, ENO-Roe-4-A and WENO-LF-5-A. The operation count

and MFlops for WENO-LF-4 is about the same as those for WENO-LF-5, thus omitted

in the table. We can see all the WENO schemes achieve the speed of about 500 MFlops,

which is 50% of the peak speed of CRAY C-90. The decrease of MFlops for high dimensions

is because of the shorter array length N used in our tests. Notice also that the operation

count per grid point per Runge-Kutta stage, of the full characteristic based 4th or 5th order

ENO schemes using Lax-Friedrichs building blocks, is about 3 to 4 times that of the 2nd

order schemes. This ratio actually decreases to only about 1:5 if the Roe building block

is used instead, i.e. f+(u) and f�(u) are not approximated separately. This is somewhat

surprising, as it was commonly believed that high order methods are much more expensive

than lower order ones. When the Roe building block is used, Yang's arti�cial compression

causes a 40% increase in operation count for the 1D Euler system and a 65% increase for

the 2D Euler system as we can see from the operation counts for ENO-Roe-4 and ENO-

Roe-4-A. When the Lax-Friedrichs building block is used, the increase of operation count is

65% for the 1D Euler system and 100% for the 2D Euler system as shown by the operation
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Table 6: CPU time in seconds. N points in each spatial dimension; 104�d iterations for the

d-dimensional system.

d N 2nd order ENO-LF-4 WENO-LF-4 WENO-LF-5 WENO-LF-5-PS

CRAY C-90, compiled with \-O vector2"

1 1600 1.75 16.67 7.44 7.45 6.29

2 200 13.13 122.52 63.93 60.84 37.67

3 60 15.48 171.42 76.79 78.89 43.47

SUN Sparc10 (66MHz, HyperSparc), compiled with \-r8 -O4"

1 1600 69.43 311.22 317.55 319.02 215.95

2 200 512.33 2582.25 2132.50 2116.53 1163.72

3 40 178.95 807.75 716.05 754.88 389.77

SGI Indigo2 (75MHz, R8000), compiled with \-r8 -O3"

1 1600 21.03 66.21 73.88 77.01 58.14

2 200 151.26 555.51 564.54 578.22 347.48

3 60 167.44 626.92 699.58 715.91 366.29

counts for WENO-LF-5 and WENO-LF-5-A. The increase in CPU time is well re
ected by

the above percentages.

8 Numerical Results

8.1 Scalar Conservation Laws in One Dimension

Example 1. Linear Equation. We solve the linear equation:

ut + ux = 0 � 1 < x < 1;

u(x; 0) = u0(x) periodic

where

u0(x) =

8>>>>><
>>>>>:

1
6
(G(x; �; z� �) + G(x; �; z+ �) + 4G(x; �; z)) �0:8 � x � �0:6;

1 �0:4 � x � �0:2;
1� j10(x� 0:1)j 0 � x � 0:2;
1
6
(F (x; �; a� �) + F (x; �; a+ �) + 4F (x; �; a)) 0:4 � x � 0:6;

0 otherwise.

G(x; �; z) = e��(x�z)
2

F (x; �; a) =
q
max(1� �2(x� a)2; 0)

The constants are taken as a = 0:5; z = �0:7; � = 0:005; � = 10 and � = log2
36�2

. The solution

contains a smooth but narrow combination of Gaussians, a square wave, a sharp triangle

wave, and a half ellipse.

We compute the solution up to t = 8 with 200 points. The results are shown in Figure 2.

We observe that both WENO-Roe-4 and WENO-Roe-5 perform better than ENO-Roe-4

17



Table 7: Number of operations per Runge-Kutta stage per grid point and MFlops on CRAY

C-90. d: the spatial dimension.

Scheme d x� y x � y x=y jxj sign(x) xy ,
p
x MFlops

1 82 83 9 8 3 3 478

2nd order 2 239 248 22 20 8 6 400

3 476 506 39 36 15 9 350

1 102 98 3 19 0 3 179

ENO-Roe-4 2 309 304 6 50 0 6 191

3 663 656 9 93 0 9 |

1 244 233 3 39 0 3 223

ENO-LF-4 2 791 766 6 102 0 6 219

3 1751 1718 9 189 0 9 190

1 235 284 27 3 0 3 557

WENO-LF-5 2 703 838 70 6 0 6 503

3 1466 1718 129 9 0 9 442

1 145 129 13 3 0 4 474

WENO-LF-5-PS 2 341 315 26 6 0 8 453

3 576 579 39 9 0 12 357

1 144 135 4 33 6 3 164

ENO-Roe-4-A 2 511 484 10 106 24 6 178

1 375 447 37 19 12 3 526

WENO-LF-5-A 2 1379 1654 110 70 48 6 482
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for all the four types of waves in the initial condition. WENO-Roe-4 does better than

WENO-Roe-5 at acute turns in the solution curve (or spike-like peaks) but WENO-Roe-5

does better for the square wave and at obtuse turns in the solution curve. With Yang's

arti�cial compression technique, WENO-Roe-5-A performs the best at all waves. Note, we

have adjusted the CFL number for WENO-Roe-5-A from 0.4 to 0.2. For CFL=0.4, using

� = 40 in (5.4) gives similar results.

Example 2. Non-convex Problems. We test the 3rd and 5th order WENO schemes on

the Buckley-Leverett problem whose 
ux is

f(u) =
4u2

4u2 + (1� u)2
(8:1)

with initial data u = 1 in [1
2
; 0] and u = 0 elsewhere. (For the numerical results of the 4th

order WENO scheme of Liu et al., see [9]). The exact solution is a shock-rarefaction-contact

discontinuity mixture.

The results obtained by WENO-RF-3 (with RK-3) and WENO-RF-5 (with RK-4) are

shown in Figure 3. We can see both schemes converge to the correct entropy solution and

give sharp shock pro�le. Note that, around discontinuities, WENO schemes are simulating

the base ENO schemes. Therefore the sharpness of the shock pro�le obtained by the WENO

schemes are only expected to be as good as that obtained by the base ENO schemes.

However, in terms of this sharpness, our tests show that the 3rd order WENO scheme is

comparable to the 3rd order ENO scheme instead of the base 2nd ENO scheme and, the 5th

WENO scheme is comparable to the 4th order ENO scheme.

8.2 Euler System in One Dimension

Example 1. 1D Riemann Problems. We consider here two well known problem. which

have the following Riemann type initial conditions:

u(x; 0) =

(
uL if x < 0

uR if x > 0

The �rst one is the Sod problem [17]. The initial data are:

(�L; qL; PL) = (1; 0; 1); (�R; qR; PR) = (0:125; 0; 0:1)

The second one is the Riemann problem proposed by Lax [7]:

(�L; qL; PL) = (0:445; 0:698; 3:528); (�R; qR; PR) = (0:5; 0; 0:571)

The numerical results are presented in Figure 4. We can see that all schemes give the

correct solution with good resolution. WENO-RF-5 is better than WENO-LF-5-PS which is

in turn better than WENO-RF-3. We note that Figures 4b and 4c ( Figures 4e and 4f ) are

comparable, resp. to Figure 10 ( Figure 11 ) in [15]. Also see Figures 9a ( Figure 10a ) in [9].

WENO-LF-5-A does much better than all other schemes at the contact discontinuities. We

would like to point out that, according to our experience with extensive numerical testing,

these two problems, especially the Lax's problem, are tough test cases for non-characteristic
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Figure 2: Linear Equation. 3rd order Runge-Kutta in time. 200 points, CFL=0.4 (0.2 for

(d) only), T=8. (a) ENO-Roe-4. (b) WENO-Roe-4. (c) WENO-Roe-5. (d) WENO-Roe-5-

A.
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Figure 3: The Buckley-Leverett problem. (a): WENO-RF-3; (b): WENO-RF-5.

based schemes of order at least three. Oscillations can easily appear for such schemes. Here

WENO-LF-5-PS performs well in these two cases.

Example 2. 1D Shock Entropy Wave Interaction. In this example, we test the WENO

schemes on a model that involves a moving shock interacting with an entropy wave of small

amplitude. On a domain [0; 5], the initial condition is:

� = 3:85714; u = 2:629369; P = 10:33333; when x < 0:5

� = e�� sin(kx); u = 0; P = 1; when x � 0:5

where � and k are the amplitude and wave number of the entropy wave, resp. The mean


ow is a pure right moving Mach 3 shock. If � is small compared to the shock strength, the

shock will march to the right at approximately the non-perturbed shock speed and generate

a sound wave which travels along with the 
ow behind the shock. At the same time, the

perturbing entropy wave, after \going through" the shock, is compressed and ampli�ed and

travels approximately at the speed of u+ c where u and c are the velocity and speed of the

sound of the mean 
ow left of the shock. The ampli�cation factor for the entropy wave can

be obtained by linear analysis. See [10, 21] for details. In order to get rid of the transient

waves due to the non-numerical initial shock pro�le, we let the shock move up to x = 4:5

and then shu�e it back to x = 0:5. The solution is examined when the shock reaches

x = 4:5 the second time.

The goal of this test is to examine the stability and accuracy of the WENO schemes in

the presence of the shock. Since the entropy wave here is set to be very weak relative to the

shock, any excessive oscillation could pollute the generated waves (e.g. the sound waves)

and the ampli�ed entropy waves. In our tests, we take � = 0:01 and k = 13. The amplitude

of the ampli�ed entropy waves predicted by the linear analysis is 0.08690716 (shown in

the following �gures as horizontal solid lines). First we use 800 points which is e�ectively

20 points in each wave length of the generated entropy wave. Since the generated sound

waves (or pressure wave) are of lower frequency than the ampli�ed entropy waves, they are

much better resolved by this grid size. Therefore we only display the entropy component

of the numerical solutions. WENO-LF-4, WENO-LF-5 and WENO-LF-5-PS are used in

our tests and the results are shown in Figure 5 (the mean 
ow has been subtracted from
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Figure 4: Density. (a)-(d). Sod's problem. (e)-(h) Lax's problem.
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the numerical solution). We see that all three schemes catch the ampli�ed entropy waves

quite well. WENO-LF-4 performs the best on this grid and WENO-LF-5 ranks the second.

In order to examine the relative performance of WENO-LF-4 and WENO-LF-5, we run

the same test on a grid of 1200 points. The results for these two schemes are displayed in

Figure 6. We can see that on this grid (approximately 30 points per wave length), WENO-

LF-5 is as accurate as WENO-LF-4. In fact, on �ner grids, WENO-LF-5 becomes more

accurate than WENO-LF-4. This is in good agreement with our accuracy test in section 4.

For the purpose of comparison with low order schemes, we also include the entropy computed

by a typical second order scheme [8] (half Van Leer's limiter, half Superbee limiter with

2nd order Runge-Kutta scheme in time, 2000 points). The advantage of using higher order

schemes for this example is apparent.

Example 3. Two Interacting Blast Waves. We consider here the interaction of two

blast waves. The initial data are the following:

u(x; 0) =

8><
>:

uL if 0 < x < 0:1

uM if 0:1 < x < 0:9

uR if 0:9 < x < 1

where

�L = �M = �R = 1 uL = uM = uR = 0 PL = 103 PM = 10�2 PR = 102

A re
ective boundary condition is applied at both x = 0 and x = 1. See [19] for a detailed

discussion of this problem.

Three grids are used: 199, 399, 799 points. We examine our numerical solutions at

t = 0:038. The \exact" solution (solid lines in all the pictures) are computed by ENO-RF-5

with 1600 points. In Figure 7, we show the density computed by WENO-RF-3 (with RK-3),

WENO-RF-4, WENO-RF-5 and WENO-RF-5-A (with RK-4).

We observe that the 4th order and 5th order WENO schemes are much better than

the 3rd order WENO scheme and the results are comparable with those obtained by the

unmodi�ed ENO-RF-4 (see Figure 12 in [15]. Note, the 4th order ENO scheme in the L1

norm was denoted as ENO-RF-3 there). WENO-RF-4 is slightly better than WENO-RF-5

on the medium grid while on the �ne grid WENO-RF-5 seems to be better. The results

of WENO-RF-5-A on the coarse and medium grids are nearly as good as WENO-RF-5 on,

resp. medium and �ne grids.

Example 4. Quasi-One Dimensional Nozzle Flow. In this example, we use the WENO

schemes to solve the steady state quasi-1D nozzle 
ow. The governing equation of the

quasi-1D nozzle 
ow is the 1D Euler system with the following forcing term:

g(u; x) = �
Ax

A
(�u; �u2; u(E + P ))T

where A = A(x) is the cross area function of the nozzle and Ax = dA
dx . The nozzle here is

of unit length, whose shape is determined by assuming a linear, isentropic Mach number

distribution, which is 0.8 at x = 0 (the entrance) and 1.8 at x = 1 (the exit). The exit 
ow

condition is then decided by the prescribed shock position, which is x = 0:5 in our test.

In Figure 8, we display the density computed by WENO-Roe-4 and WENO-Roe-5 with

34 points. We can see both schemes converge nicely to the exact solution (solid line in the
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Figure 5: 1D Shock entropy wave interaction. Entropy. �t = 0:6�x.
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Figure 6: 1D Shock entropy wave interaction(cont'd). Entropy. �t = 0:6�x.

pictures). The residue computed with both schemes settles down to 10�7 for this grid, and

to a smaller number for a �ner grid.

This example shows that WENO has its advantage for steady state calculations.

8.3 Euler System in Two Dimensions

Example 1. Oblique Sod's Problem. The purpose of this test is to analyze the capability

of WENO schemes in resolving waves that are oblique to the computational mesh. The

2D Sod's problem is solved where the initial jump makes an angle � against the x-axis

(0 < � � �
2
). If � = �

2
, we have the one-dimensional Sod's problem. If 0 < � < �

2
, all

the waves produced will be oblique to the rectangular computational mesh. We take our

computational domain to be [0; 6]� [0; 1] and position the initial jump at (x; y) = (2:25; 0).

The physical domain varies with � and is taken as [0; 6
sin � ] � [0; 1

sin � ]. The scaling factor
1

sin �
is to ensure the same grid resolution normal to the wave propagation on a given mesh

at some �xed time for all choices of �. See [3] for details. We take � to be arctan 1; arctan2;

and arctan 4. The solution is computed up to t = 1:2 on a 96� 16 mesh.

WENO-LF-4, WENO-LF-5, WENO-LF-5-A and WENO-LF-5-PS are used in our tests

and the results are compared with that obtained by ENO-LF-4 (all with RK-4 and �t =

0:6�x). For the case � = arctan 1, we display the density contours obtained by WENO-
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Figure 7: Two interacting blast waves.
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Figure 8: Density. Steady quasi-1D nozzle 
ow. 34 points. RK-3 in time.

LF-5-PS in Figure 9a; In Figure 9b, we show the densities at y = 0 obtained by all four

schemes. We can see that all WENO schemes are doing well in resolving the oblique waves

and their di�erences from the ENO-LF-4 (except WENO-LF-5-A) are barely noticeable.

WENO-LF-5-A gives sharp pro�le of the contact discontinuity as expected. In Figure 9(c-

f), a more quantitative study is carried out. Namely, for each scheme, we measure the

di�erences between oblique cases and the one-dimensional case. We can see that WENO-

LF-4 and WENO-LF-5 perform similarly as ENO-LF-4 does while WENO-LF-5-PS gives

a slightly larger deviation near the contact discontinuity. However, this small di�erence

can be regarded as negligible. We want to note that WENO-LF-5-PS performs well at the

shock.

Example 2. A Mach 3 Wind Tunnel with a Step. This model problem has been carefully

examined in [19]. The set up of the problem is the following: The wind tunnel is 1 length

unit wide and 3 length units long. The step is 0.2 length units high and is located 0.6 length

units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach

3 
ow. Re
ective boundary conditions are applied along the walls of the tunnel and an in-


ow and an out-
ow boundary conditions are applied at the entrance (left-hand end) and

the exit (right-hand end). For the treatment of the singularity at the corner of the step, we

adopt the same technique used in [19], which is based on the assumption of a nearly steady


ow in the region near the corner.

WENO-LF-4 and WENO-LF-5 are used in our tests and the results are compared with

those obtained by ENO-LF-4 (all with RK-4 and �t = 0:6�x). Two grids are used: 122�39
and 242� 79. They correspond resp. to the medium and �ne grids in [19].

In Figure 10 to 11, we show the density component obtained by all three schemes on the

two grids. We can see that all the schemes perform well with good resolution. Relatively

speaking, WENO-LF-4 and WENO-LF-5 have slightly better resolution at the contact line

(originated from the Mach step) and contain less visible \bumps", which are indeed small

numerical oscillations, than ENO-LF-4.

WENO-LF-5-PS does not work for this problem because of the strong re
ecting waves.
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Figure 9: Oblique Sod's problem. (a) Density contours. WENO-LF-5-PS, � = arctan 1. (b)

Density, y = 0, � = arctan 1. (c)-(f) �� � �1D, y = 0. (c) ENO-LF-4. (d) WENO-LF-4. (e)

WENO-LF-5. (f) WENO-LF-5-PS.
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Figure 10: Flow past a forward facing step. Density on medium grid: 122 � 39. (a)

WENO-LF-4. (b) WENO-LF-5. (c) ENO-LF-4.
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Figure 11: Flow past a forward facing step (cont'd). Density on �ne grid: 242 � 79. (a)

WENO-LF-4. (b) WENO-LF-5. (c) ENO-LF-4.
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Example 3. Double Mach Re
ection of a Strong Shock. The computational domain

for this problem is chosen to be [0; 4] � [0; 1]. The re
ecting wall lies at the bottom of

the computational domain starting from x = 1
6
. Initially a right-moving Mach 10 shock is

positioned at x = 1
6
; y = 0 and makes a 60� angle with the x-axis. For the bottom boundary,

the exact post-shock condition is imposed for the part from x = 0 to x = 1
6
and a re
ective

boundary condition is used for the rest. At the top boundary of our computational domain,

the 
ow values are set to describe the exact motion of the Mach 10 shock. See [19] for a

detailed description of this problem.

Two grids have been used in our tests: 240� 59 and 480� 119. They correspond to the

medium and �ne grids in [19], resp. We will only show the solutions on part of the domain:

[0; 3]� [0; 1] where most of the 
ow features are located.

We use WENO-LF-4, WENO-LF-5 and ENO-LF-4 (all with RK-3 and �t = 0:6�x) in

our tests. We show the density contours obtained by these three schemes. See Figure 12

and 13. We see that all three schemes resolve the two Mach stems well. Again WENO-LF-

5-PS does not work because of the strong re
ecting wave pattern in this problem.

Example 4. 2D Shock Entropy Wave Interaction. In this example, we test the WENO

schemes on a 2D model that involves the interaction between a normal shock and a weak

entropy wave which makes an angle �r 2 (0; �=2) against the x-axis. If �r = 0, we have

essentially the 1D problem (see Example 2 in Section 8.2). Since the weak entropy waves

are oblique to the shock, the waves generated by the interaction are much more di�cult

to resolve than in the 1D case. Our goal here is to further examine the capability of the

WENO scheme in capturing such small scale waves in the presence of a shock. See [21, 16]

for detailed discussions on this subject. The set-up of the problem is the following: for a

right moving normal shock of Mach number M , we add a small entropy wave to the 
ow

on the right of the shock which is equivalent to changing only the density of the 
ow on the

right of the shock to:

� = �re
��r(sin�r)=Pr

where �r and Pr are resp. the density and pressure of the right state of the shock, �r =

kr(x cos�r + y sin �r) and kr is the entropy wave number. In order to enforce periodic

boundary conditions in the y-direction, we take the computation domain to be [0; 5] �
[0; 2�

kr sin �r
]. We initially position the normal shock at x = 0:5 and allow it to move up to

x = 4:5 and then shu�e the data back to x = 0:5. We extract the data at the time when

the shock moves up to x = 4:5 again. See [16] for a similar implementation.

In our tests, we take ur, the velocity on the right of the shock, to be 0 and set M = 3,

�r = 0:01; kr = 15; �r = 30�.

We measure the performance by comparing the amplitude of the ampli�ed entropy

waves, which is computed by a Fourier analysis in the y direction for all �xed grid values

x 2 [3:4; 4:4].

Both ENO-LF-4 and ENO-LF-5 su�er a loss of accuracy if not modi�ed (see [16]).

WENO-LF-4 and WENO-LF-5 work nicely without any modi�cation.

The loss of accuracy of the ENO schemes can be easily �xed by the techniques introduced

in [1, 13], which e�ectively force an upstream centered stencil to be chosen away from the

shock and free adapted stencil to be used near the shock. The techniques can also be adapted
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Figure 12: Double Mach re
ection. Density on medium grid: 240� 59. (a) WENO-LF-4.

(b) WENO-LF-5. (c) ENO-LF-4.
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Figure 13: Double Mach re
ection (cont'd). Density on �ne grid: 480� 119. (a) WENO-

LF-4. (b) WENO-LF-5. (c) ENO-LF-4.
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to enhance the performance of WENO schemes by modifying the weights as follows:

~!k =

(
Cr
k if ISl < ��1 for any l = 0; . . . ; r�1,

!k otherwise.
(8:2)

where � is taken as 2 and !k; k = 0; . . . ; r�1 are the regularly computed weights. (8.2)

leads to the optimal weights being used for stencils away from the shock and regularly

computed weights being used near the shock. We denote the modi�ed ENO-LF-4, ENO-

LF-5, WENO-LF-4 and WENO-LF-5 to be, resp. ENO2-LF-4, ENO2-LF-5, WENO2-LF-4

and WENO2-LF-5. Note that, with the modi�ed weights, WENO-LF-4 becomes 5th order

accurate in smooth regions. In all tests, RK-4 is used with �t = 0:6�x.

First we use 800 points in the x�direction and 20 points in the y�direction which

give approximately 20 points per entropy wave length in both directions. In Figure 14,

the amplitude of the ampli�ed entropy waves obtained by all aforementioned schemes are

displayed. The solid horizontal line is the amplitude predicted by linear analysis which is

0:08744786 (see [10, 21]). We see that the modi�ed schemes generally perform better in

terms of accuracy and decay rate than the unmodi�ed schemes. As a reference, we have also

included the amplitudes obtained by a typical second order TVD scheme [8] (half Van Leer's

limiter, half Superbee limiter with 2nd order Runge-Kutta scheme in time, 800 points). We

can see that high order schemes perform much better than the second order schemes in

terms of accuracy and decay rate for this problem.

WENO-LF-5-PS does not perform well for this problem even with the remedy above.

This indicates that the pressure-entropy combination is not good enough to indicate pre-

cisely the smoothness of the numerical solution. This causes oscillations generated at shocks

and thus destroys the accuracy of the scheme in resolving the waves which have \undergone"

the interaction with the shock.

Remark: We have seen that WENO-LF-5-PS does not work for the step problem

and the double Mach re
ection problem because it can not handle the re
ective boundary

properly. This can be explained by the following: the usual way of imposing the re
ective

boundary condition3 is to reverse the normal velocity at the grid points which are symmetric

with respect to that boundary while setting other 
ow quantities (density, pressure and

tangential velocity) to be the same; in particular the pressure and entropy at each pair of

symmetric grid points are identical. Therefore neither the pressure nor the entropy can

indicate possible jumps in the normal velocity. This failure will result in an unstable weight

distribution in the normal direction near the re
ective boundary and cause fatal errors such

as density becoming negative. An immediate \�x" seems to be using the normal velocity

to compute the weights for one of the linearly degenerate �elds. Unfortunately, the jump

in the normal velocity is not like a contact discontinuity, which belongs solely to one of the

characteristic �elds. While this might cure the ill distribution of the weights in the �eld, in

which the velocity is used, it can not cure this ill distribution in other �elds.

However, WENO-LF-5-PS can be applied to problems where the re
ective boundary

does not play a vital role. As an example, we look at the following model problem.

Example 5. Shock Vortex Interaction. This model problem describes the interaction

between a stationary shock and a vortex. The computational domain is taken to be [0; 2]�

3We assume here the physical boundary is 
at, as is the case in aforementioned problems
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Figure 14: 2D shock entropy wave interaction. Amplitude of ampli�ed entropy waves. 800

points (about 20 points per entropy wave length).

[0; 1]. A stationary Mach 1.1 shock is positioned at x = 0:5 and normal to the x-axis. Its

left state is (�; u; v; P ) = (1;
p

; 0; 1). A small vortex is superposed to the 
ow left to the

shock and centers at (xc; yc) = (0:25; 0:5). We describe the vortex as a perturbation to the

velocity (u; v), temperature (T = P
�
) and entropy (S = ln P

�

) of the mean 
ow and denote

it by the tilde values:

~u = ��e�(1��
2) sin � (8.3)

~v = ���e�(1��
2) cos � (8.4)

~T = �
(
 � 1)�2e2�(1��

2)

4�

(8.5)

~S = 0 (8.6)

where � = r
rc

and r =
p
(x� xc)2 + (y � yc)2. Here � indicates the strength of the vortex,

� controls the decay rate of the vortex and rc is the critical radius for which the vortex

has the maximum strength. In our tests, we choose � = 0:3; rc = 0:05 and � = 0:204. The

above de�ned vortex is a steady state solution to the 2D Euler equation.

We use a grid of 251�100 which is uniform in y but re�ned in x around the shock using

a Roberts transform (see [2] and the references there). The upper and lower boundaries

are intentionally set to be re
ective. The pressure contours obtained by WENO-LF-5-PS

at t = 0:05; t = 0:20 and t = 0:35 are shown in Figure 15(a-c). We can see that for this

problem, where the re
ective boundary is nonessential, WENO-LF-5-PS works nicely. To

appreciate this further, we look at the solution at t = 0:8. By this time one branch of the

shock bifurcations has reached the top boundary and been re
ected. The pressure contours
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obtained by WENO-LF-5-PS at this moment are shown in Figure 15d. We see that the

re
ection is well captured.

In Figure 15(e-g), we compare the results obtained by WENO-LF-5-PS, WENO-LF-

5 and ENO-LF-4. 90 contours are drawn for the pressure component in the range of

(1:19; 1:37). We see that the three methods give approximately the same resolution. A

careful examination reveals that WENO schemes are slightly better in the sense that less

numerical noise is generated. Between the two WENO schemes, WENO-LF-5 seems a little

better for the same reason. For a qualitative comparison, see also [2]. Note that a di�erent

vortex is used there.

(a) 0.0 0.5 1.0
0.0

0.5

1.0

(b) 0.0 0.5 1.0
0.0

0.5

1.0

(c) 0.0 0.5 1.0
0.0

0.5

1.0

(d) 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

(e) 0.45 0.95 1.45
0.0

0.5

1.0

(f) 0.45 0.95 1.45
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0.5
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(g) 0.45 0.95 1.45
0.0

0.5

1.0

Figure 15: 2D shock vortex interaction. Pressure. (a)-(d) WENO-LF-5-PS. 30 contours.

(a) t=0.05. (b) t=0.20. (c) t=0.35. (d) t=0.80. (e)-(g) t=0.60. 90 contours from 1.19 to

1.37. (e) WENO-LF-5-PS. (f) WENO-LF-5. (g) ENO-LF-4.

Example 6. Flow Past a Cylinder. In this test, we use the WENO schemes to simulate
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the supersonic 
ow past a cylinder. In the physical space, a cylinder of unit radius is

positioned at the origin on a x� y plane. The computational domain is chosen to be

[0; 1]� [0; 1] on the ��� plane. The mapping between the computational domain and the

physical domain is:

x = (Rx � (Rx � 1)�) cos(�(2� � 1)) (8.7)

y = (Ry � (Ry � 1)�) sin(�(2� � 1)) (8.8)

where we takeRx = 3; Ry = 6 and � = 5�
12 . See [16] for the eigenvalues and eigenvectors of 2D

Euler systems on general structured grids. A uniform mesh of 60� 80 in the computational

domain is used. For an illustration of the mesh in the physical space (drawing every other

grid line), see Figure 16a.

The problem is initialized by a Mach 3 shock moving toward the cylinder from the

left. A re
ective boundary condition is imposed at the surface of the cylinder, i.e. � = 1,

in
ow boundary condition is applied at � = 0 and out
ow boundary condition is applied at

� = 0; 1,

The pressure contour obtained by WENO-LF-5 with RK-4 and �t = 0:6�x is shown in

Figure 16b. Similar results can be obtained by WENO-LF-4 and ENO-LF-4.

9 Conclusion

With the new smooth measurement, which is based on minimizing the L2 norm of the

derivatives of the interpolation polynomials, the WENO schemes formulated from the rth

order ENO schemes can be made (2r�1)th order accurate in smooth regions of the 
ux

function (in spatial variables), at least for r = 2; 3. However, at discontinuities, all WENO

schemes are just rth accurate (r is the order of the base ENO scheme).

The 4th order WENO scheme of Liu et al. and the 5th order WENO scheme resulting

from the new smoothness measurement are found to be at least twice as fast as the 4th order

ENO schemes on vector supercomputers (e.g. CRAY C-90) and as fast on serial machines

(therefore on parallel machines as well). Many 1D and 2D numerical tests suggest that both

WENO schemes are very robust for shock calculations. The 4th order WENO scheme of

Liu et al. is slightly more accurate than the 5th order WENO scheme on coarse grids (20

points or less per wave length) but becomes less accurate on �ner grids.

For Euler systems, we also suggest computing the weights from pressure and entropy

instead of the projected values. The resulting WENO schemes are about twice as fast as

the WENO schemes which use the projected values to compute weights, and work well for

problems which do not contain strong shocks or strong re
ected waves.

More detailed numerical results for WENO schemes can be found in [6].

We have also adopted the arti�cial compression method of Yang [20] to enhance the per-

formance of WENO schemes at contact discontinuities. However, the CPU cost is increased

by as much as 100% when a Lax-Friedrichs building block is used. We believe the idea of

arti�cial compression method can be adapted directly into the weight de�nition to achieve

the sharpening e�ect at a much lower expense. This will be investigated in the future.
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