97,9395

SANDIA REPORT

SAND91— 1144 ¢ uc—405
Uniimited Release
Printed May 1993

Fast Parallel Algorithms for Short-
Range Molecular Dynamics

Steve Plimpton

Prepared by

Sandia National Laboratories

Albugquerque, New Mexico 87185 and Livermore, California 94550
tor the United States Department of Energy

undar Contract DE-ACOd—7GDP00789

NDISTRIBUTION OF THIS DOCUMENT I8 UNLIMITED

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to tiie public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

Distribution Category UC—‘éOS

SAND91-1144
Unlimited Release
Printed May 1993

Fast Parallel Algorithms

for

Short—-Range Molecular Dynamics

Steve Plimpton
Department 1421
Sandia National Laborutories
Albuguerque, NM 87185
(505) 845-7873
sjplin.p@cs.sandia.gov

Abstract

Three parallel algorithms for classical molecular dynamics are presented. The first assigns each
processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the
third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models
which can be difficult to parallelize efficiently — those with short-range forces where the neighbors of
each atom change rapidly. They can be implemented on any distributed-memory parallel machine which
allows for message-passing of data between independently executing processors. The algorithms are
tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000
atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing
the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current
generation of parallel machines is competitive with conventional vector supercomputers even for small
problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel
Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90
processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex
molecular dynamics simulations are also discussed.

This work was partially supported by the Applied Mathematical Sciences program, U.S. Department of Energy, Office of
Energy Research, and was performed at Sandia National Laboratories, operated for the DOE under contract No. DE-AC04-
76DP00789.

This is a pre-print of a paper submitted to a journal; please contact the author if you would like the latest up-to—date
version of the manuscript. For example, when they become available, Intel Paragon and Cray MPP timings will likely be added
to the tables in Section 7.

MASTER

DISTRIBUTION OF THIS DOCUMENT I8 UNLIMITED

1 Introduction

Classical molecular dynamics (MD) is a commonly used computational tool for simulating the properties
of liquids, solids, and molecules [1, 2]. Each of the N atoms or molecules in the simulation is treated as
a point mass and Newton’s equations are integrated to compute their motion. From the motion of the
ensemble of atoms a variety of useful microscopic and macroscopic information can be extracted such as
transport coeflicients, phase diagrams, and structural or conformational pryperties. The physics of the
model is contained in a potential energy functional for the system from which individual force equations for
each atom are derived.

MD simulations are typically not memory intensive since only vectors of atom information are stored.
Computationally, the simulations are “large” in two domains -~ the number of atoms and number of
timesteps. The length scale for atomic coordinates is Angstroms; in three dimensions many thousands
or millions of atorns must usually be simulated to approach even the microscopic scale. In liquids and solids
the timestep size is constrained by the demand that the vibrational motion of the atoms be accurately
tracked. This limits timesteps to the femtosecond scale and so tens or hundreds of thousands of timesteps
are necessary to simulate even picoseconds of “real” time. Because of these computational demands, con-
siderable effort has been expended by researchers to optimize MD calculations for vector supercomputers
[22, 28, 31, 39, 41] and even to build special-purpose hardware for performing MD simulations [3, 4). The
current state-of-the-art is such that simulating ten- to hundred-thousand atom systems for picoseconds
takes hours of CPU time on machines such as the Cray Y-MP.

The fact that MD computations are inherently parallel has been extensively discussed in the literature
(9, 19]. There has been considerable effort in the last few years by researchers to exploit this parallelism
on various machines. The majority of the work that has included implementations of proposed algorithms
has been for single-instruction/multiple-data (SIMD) parallel machines such as the CM-2 (10, 46], or for
multiple-instruction/multiple—data (MIMD) parallel machines with a few dozens of processors (24, 32, 40].
More recently there have been efforts at creating scalable algorithms that will work well on hundred- to
thousand -processor MIMD machines [7,12, 34, 45]. We are convinced that the MIMD programming model
(or the single-program/multiple-data SPMD model as it is sometimes called) is the only one that provides
enough flexibility to implement all the data structure and computational enhancements that are conunonly
exploited in MD codes on serial and vector machines. Also, we have found that it is only the current
generation of massively parallel MIMD machines with hundreds to thousands of processors that have the
computational power to be competitive with the fastest vector machines for MD calculations.

In this paper we present three parallel algorithms which are appropriate for a general class of MD problems
that has two salient characteristics. The first characteristic is that forces are limited in range, meaning each
atom interacts only with other atoms that are geometrically nearby. Solids and liquids are often modeled
this way due to electronic screening effects or simply to avoid the computational cost of including long-range

Coulombic forces. For short-range MD the computational effort per timestep scales as N, the number of

atoms, but care must be taken to write efficient parallel algorithms that take full advantage of the local
nature of the forces.

The second characteristic is that the atoms can undergo large displacements over the duration of the
simulation. This could be due to diffusion in a solid or liquid or conformational changes in a biological
molecule. The important feature from a computational standpoint is that each atom’s neighbors change as
the simulation progresses. While the algorithms we discuss could also be used for fixed-neighbor simulations
(e.g. all atoms remain on lattice sites in a solid), it is a harder task to continually track the neighbors of
each atom and maintain efficient O(N) scaling for the overall computation on a parallel machine.

Our first goal in this effort was to develop parallel algorithms that would be competitive with the fastest
methods on vector supercomputers such as the Cray. Moreover we wanted the algorithms to work well
on problems with small numbers of atoms, not just for large problems where parallelism is often easier to
exploit. This is because currently the vast majority of MD simulations are performed on systems of a few
hundred to several thousand atoms where N is chosen to be as small as possible while still accurate enough
to model the desired physical effects [6, 38, 47]. The computational goal in these calculations is to perform
cach timestep as quickly as possible. This is particularly true in non-equilibrium MD where macroscopic
changes in the system may take significant time to evolve, requiring millions of timesteps to model. Thus, it
is often more useful to be able to perform a 100, 000 timestep simulation of a 1000 atom system fast rather
than 1000 timesteps of a 100,000 atom system, though the O(N) scaling means the computational effort is
the same for both cases. To this end, we consider model sizes as small as a few hundred atoms in this paper.

For very large MD problems, our second goal in this work was to develop parallel algorithms that would
be scalable to larger and faster parallel machines. While the timings we present for large MD models (108
to 107 atoms) on the current generation of parallel supercomputers (hundreds to thousands of processors)
are quite fast compared to vector supercomputers, they are still too slow to allow long-timescale simulations
to he done routinely. However, our large-system algorithm scales optimally with respect to N and P (the
number of processors) so that as parallel machines become more powerful in the next few years, algorithms
similar to it will enable larger problems to be studied.

Our earlier efforts in this area [33] produced algorithms which were fast for systems up to tens of thou-
sands of atoms but did not scale optimally with N for larger systems. After improving on these efforts
to create a scalable large-system algorithm [34] we have recently added an idea of Tamayo and Giles [45]
that has improved the algorithm’s performance on medium-sized problems by reducing the inter—processor
communication requirements. We have also recently developed a new parallel algorithm which we present
here in the context of MD simulations for the first time. It offers the advantages of both simplicity and speed
for small to medium-sized problems.

In this paper we present the culmination of our efforts: several algorithms we have found, through
implementing and testing a varicty of ideas on different parallel machines, to be the fastest methods for

short-range molecular dynamics across a wide range of problem sizes. By implementing the algorithms on

machines with hundreds to thousands of processors, we have been able to understand in practical terms
what algorithmic features work best and tailor the algorithms accordingly to optimize their performance as
a function of N and P. Due to their scalability, we can also predict how these algorithms will perform on
the faster, larger parallel machines of the future.

In the next section, the computational aspects of MD are highlighted and efforts to speed the calculations
on vector and parallel machines are reviewed. In Sections 3, 4, and 5 we describe our three parallel algorithms
in detail. A standard Lennard-Jones benchimark calculation is outlined in Section 6. In Section 7, imple-
mentation details and timing results for the parallel algorithms on three massively parallel MIMD machines
are given and comparisons made to the best Cray Y-MP and C90 timings for the benchmark calculation.
Discussion of the scaling properties of the algorithms is also included. Next, in Section 8, issues relevant to
using the parallel algorithms in different kinds of MD simulations are discussed. Finally, in Section 9, we
draw conclusions and give several guidelines for deciding which parallel algorithm is likely to be fastest for

a particular short-range MD simulation.

2 Computational Aspects of Molecular Dynamics

The computational task in a MD simulation is to integrate the set of coupled differential equations (Newton’s

equations) given by

dv; L L
771,'7 = ZFQ(PDT‘J‘)+ZZF3(P£»7'J‘»7'I:)+"' (1)
j ik
@
da

where my is the mass of atom 4, 7 and #; are its position and velocity vectors, Fy is a force function describing
pairwise interactions between atoms, F3 describes three-body interactions, and many-body interactions can
be added. The force terms are derivatives of energy expressions in which the energy of atom i is typically
written as a function of only the positions of itself and other atoms. In practice, only one or a few terms in
equation (1) are kept and Fu, F3, etc. are constructed so as to include many-body and quantum effects. To
the extent the approximations are accurate these equations give a full description of the time-evolution of
the system. Thus, the great computational advantage of classical MD, as compared to ab initio electronic
structure calculations, is that the dynamic behavior of the atomic system is described empirically without
having to solve Schrodinger’s equation at each timestep.

The force terms in equation (1) are typically non-linear functions of the distance ri; between pairs of
atoms and may be either long-range or short-range in nature. For long-range forces, such as Coulombic
interactions in an ionic solid or biological system, each atom interacts with all others. Directly computing
these forces scales as N? and is too costly for large N. Various approximate methods overcome this difficulty.

They include particle-mesh algorithms [29] which scale as f(M)N where M is the number of mesh points,

hierarchical methods [5] which scale as N log(N), and fast-multipole methods [21] which scale as N. Recent
parallel implementations of these algorithms [17, 50] have improved their range of applicability for many-
body simulations, but because of their expense, long-range force models are not commonly used in classical
MD simulations.

By contrast, short-range force models are used extensively in MD and is what we are concerned with
in this paper. They are chosen either because electronic screening effectively limits the range of influence
of the interatomic forces being modeled or simply to truncate the long-range interactions and lessen the
computational load. In either case, the summations in equation (1) are restricted to atoms within some
small region surrounding atom 7. This is typically implemented using a cutoff distance r., outside of which
all interactions are ignored. The work to compute forces now scales linearly with N. However, even with this
savings, the vast majority of computation time spent in a short-range force MD simulation is in evaluating the
force terms in equation (1). The time integration typically requires only 2-3% of the total time. To evaluate
the sums efficiently requires knowing which atoms are within the cutoff distance r. at every timestep. The
key 1s to minimize the number of neighboring atoms that must be checked for possible interactions since
calculations performed on neighbors at a distance r > r, are wasted computation. There are two basic
techniques used to accomplish this on serial and vector machines; we discuss them briefly here since our
parallel algorithms incorporate similar ideas.

The first idea, that of neighbor lists, was originally proposed by Verlet [49]. For each atom, a list is
maintained of nearby atoms. Typically, when the list is formed, all neighboring atoms within an extended
cutoff distance r, = r. + 6 are stored. The list is used for a few timesteps to calculate all force interactions.
Then it is rebuilt before any atom could have moved from a distance r > r, to » < r.. Though § is always
chosen to be small relative to r., an optimal value depends on the parameters (e.g. temperature, diffusivity,
density) of the particular simulation. The advantage of the neighbor list is that once it is built, examining
it for possible interactions is much faster than checking all atoms in the system.

The second technique commonly used for speeding up MD calculations is known as the link-cell method
[30]. At every timestep, all the atoms are binned into 3-D cells of side length d where d = r. or slightly
larger. This reduces the task of finding neighbors of a given atom to checking in 27 bins — the bin the atom
is in and the 26 surrounding ones. Since binning the atoms only requires O(N) work, the extra overhead
associated with it is acceptable for the savings of only having to check a local region for neighbors.

The fastest MD algorithms on serial and vector machines use a combination of neighbor lists and link—cell
binning. In the combined method, atoms are only binned once every few timesteps for the purpose of forming
neighbor lists. In this case atoms are binned into cells of size d > r,. At intermediate timesteps the neighbor
lists alone are used in the usual way to find neighbors within a distance r, of each atom. This is a significant
savings over a conventional link-cell method since there are far fewer atoms to check in a sphere of volume
47ry3 /3 than in a cube of volume 27r.2. Additional savings can be gained due to Newton’s 3rd law by only

computing a force once for each pair of atoms (rather than once for each atom in the pair). In the combined

method this is done by only searching half the surrounding bins of each atom to form its neighbor list. This
has the effect of storing atom j in atom ¢’s list, but not atom i in atom j’s list, thus halving the number of
force computations that must be done.

Although these ideas are simply described, optimal performance on a vector machine requires careful
attention to data structures and loop constructs to insure complete vectorization. The fastest implementation
reported in the literature is that of Grest, et. al. {22]. They use the combined neighbor list/link—cell method
described above to create long lists of pairs of neighboring atoms. At each timestep, they prune the lists to
keep only those pairs within the cutofl distance r.. Finally, they organize the lists into packets in which no
atoin appears twice [39). The force computation for each packet can then be completely vectorized, resulting
in performance on the benchmark problem described in Section 6 that is from 2 to 10 times faster than other
vectorized algorithms [28, 41] over a wide range of simulation sizes.

Recently there has been considerable interest in devising parallel MD algorithms. The natural parallelism
in MD is that the force calculations and velocity /position updates can be done simultaneously for all atoms.
To date, two basic ideas have been exploited to achieve this parallelism. The goal in each is to divide the
force computations in equation (1) evenly across the processors so as to extract maximum parallelism. To
our knowledge, all algorithms that have been proposed or implemented (including ours) have been variations
on these two methods. References [18, 23, 43] include good overviews of various techniques.

In the first class of methods a pre-determined set of force computations is assigned to each processor.
The assignment remains fixed for the duration of the simulation. The simplest way of doing this is to give a
subgroup of atoms to each processor. We call this method an atom-decomposition of the workload, since the
processor computes forces on its atoms no matter where they move in the simulation domain. More generally,
a subset of the force loops inherent in equation (1) can be assigned to each processor. We term this a force-
decompostition and describe a new algorithm of this type later in the paper. Both of these decompositions are
analogous to Lagrangian gridding in a fluids simulations where the grid cells (computational elements) move
with the fluid (atoms in MD). By contrast, in the second general class of methods, which we call a spatial-
decomposition of the workload, each processor is assigned a portion of the physical simulation domain. Each
processor compiites only the forces on atoms in its sub-domain. As the simulation progresses processors
exchange atoms as they move from one sub-domain to another. This is analogous to an Eulerian gridding
for a fluids simulation where the grid remains fixed in space as fluid moves through it.

Within the two classes of methods for parallelization of MD, a variety of algorithms have been proposed
and implemented by various researchers. The details of the algorithms vary widely from one parallel machine
to another since there are numerous problem-dependent and machine-dependent trade-offs to consider, such
as the relative speeds of computation and communication. A brief review of some notable efforts follows.

Atom-decomposition methods, also called replicated-data methods [43] because vectors of atom infor-
mation are replicated across all processors, are often used in MD simulations of molecular systems. This is

because the duplication of information makes for straight-forward computation of additional three- and four-

body force terms. Parallel implementations of state-of-the-art biological MD programs such as CHARMM
and GROMOS using this technique are discussed in [11, 15]. Force-decomposition methods which systoli-
cally cycle atom data around a ring or through a grid of processors have been used on MIMD [24, 43)
and SIMD machines [14, 51]. Other force-decomposition methods that use the force-matrix formalism we
discuss in Sections 3 and 4 have been presented in {10] and [13]. Boyer and Pawley [10] block-decompose
the force matrix in a manner similar to that explained in Section 4, while the method of Brunet, et. al. [13]
partitions the matrix element by element. Both of the methods are designed for long-range force systems
requiring all-pairs calculations {no neighbor lists) on SIMD machincs. Thus the scaling of these algorithms
15 different from what is presented in Section 4 as is the way they distribute the atom data among processors
and perform inter-processor communication.

Spatial-decomposition methods, also called geometric methods [18, 23], are more common in the literature
because they are well-suited to very large MD simulations. Recent parallel MIMD implementations for the
Intel iPSC/2 hypercube [32, 40, 43], CM--5 (7, 45], and Fujitsu AP 1000 [12] have some features in common
with the spatial-decomposition algorithm we present in Section 5. The fastest published algorithms for
SIMD machines also employ spatial-decomposition techniques (46]. However, the SIMD programming model,
which requires processors executing each statement to operate simultaneously on a global data structure,
introduces inefficiencies in short-range MD algorithms, particularly when coding the construction and access
of variable-length neighbor lists via indirect addressing. Thus the timings in [46] for the benchmark problem
discussed in Section 6 on a 32K-processor CM-2 [46] are slower than the single-processor Cray Y-MP
timings presented in Section 7. By contrast, the timings for the MIMD parallel algorithms in this paper and
references [7, 12, 45] are considerably faster, indicating the advantage a MIMD capability offers for exploiting

parallelism in short-range MD simulations.

3 Atom-Decomposition Algorithm

In our first parallel algorithm each of the P processors is assigned a group of N/P atoms at the beginning
of the simulation. Atoms in a group need not have any special spatial relationship to each other. For ease
of exposition, we assume N is a multiple of P, though it is simple to relax this constraint. A processor will
compute forces on only its N/ P atoms and will update their positions and velocities for the duration of the
simulation no matter where they move in the physical domain. As discussed in the previous section, this is
an atom-decomposition of the computational workload.

A useful construct for representing the computational work involved in the algorithm is the N x N force
matrix F'. The (ij) element of F represents the force on atom ¢ due to atom j. Note that £ is sparse due
to short-range forces and skew-symmetric, i.e. Fj; = —Fj;, due to Newton’s 3rd law. We also define z
and f as vectors of length N which store the position and total force on each atom. For a 3-D simulation,
z; would store the three coordinates of atom i. With these definitions, the atom-decomposition algorithm

assigns each processor a sub-block of F which consists of N/P rows. This is shown in Figure 1 where we let

the z subscript denote the processor number from 0 to P — 1. Thus, processor F, computes matrix elements

in the F, block of rows. It also is assigned the corresponding sub-vectors of length N/P denoted by z, and

e

x,f

Figure 1: The division of the force matrix among processors in the atom-decomposition algorithm. Processor

z is assigned a group of N/P rows of the matrix and corresponding pieces of the position and force vectors,
z and f.

Assume the computation of matrix element Fj; requires only the two atom positions z; and z;. (We
relax this assumption in Section 8.) To compute all the elements in F;, processor P, will need the positions
of many atoms owned by other processors. In the atom-decomposition algorithm, this is accomplished
by having each processor send its updated atom positions to all the other processors after each timestep,
an operation called all-to-all communication. Various algorithms have been developed for performing this
operation efficiently on different parallel machines and architectures [19, 48]. We use an idea due to Fox,
et. al. [19] that is simple, portable, and works well on a variety of machines. We describe it here because it
is the chief communication component of both the atom-decomposition algorithims of this section and the
force-decomposition algorithms presented in the next section.

Following Fox’s nomenclature, we term the all-to-all communication procedure an erpand operation.
Each processor allocates memory of length N to store the entire r vector. At the beginning of the expand,
processor P, has z,, an updated piece of z of length N/P. Each processor needs to acquire all the other
processor’s pieces, storing them in the correct places in its copy of z. Figure 2 illustrates the steps that
accomplish this for an 8 processor example. The processors are mapped consecutively to the sub—pieces of

the vector. In the first communication step, each processor exchanges its piece with an adjacent processor

in the vector. Processor 2 exchanges with processor 3 in the figure. Now, every processor has a contiguous
piece of = that is of length 2N/P. In the second step, each processor exchanges this piece with a processor
two positions away (2 exchanges with 0). Each processor now has a 4N/ P-length piece of . In the last
step, each processor exchanges an N/2-length piece of z with a processor P/2 positions away (2 exchanges

with 6); the entire vector now resides on each processor.

Step 1:

Step 2:

Step 3:

Figure 2: An ezpand operation among 8 processors. Processor 2 exchanges successively longer sub-vectors

with processors 3, 0, and 6.

A pseudo-code version of the expand operation is given in Figure 3. For simplicity we again assume a
power—of-two number of processors; relaxing this assumption is straightforward. The expand proceeds in
log,(P) steps. At each step P, performs a data exchange with a partner processor /. The new processor
number P’ is obtained by flipping one bit in z, which itself is a string of log,(P) bits. The sub-vector y is
sent to P’ and the received sub-vector w is concatenated with y (the “|” operation) in the proper order. Thus
y doubles in length at every step; at the end of the expand y has become the full N-length vector z. Costs
for a communication algorithm are typically quantified by the number of messages and the total volume of
data sent and received. On both these accounts the expand is optimal; each processor performs log(P)
sends and receives and exchanges N — N/P data values. This is the reason the expand operation works well
on many machines. A drawback is that it requires O(N) storage on every processor. Alternative methods
for performing all-to-all communication require less storage at the cost of more sends and receives. This is
usually not a good trade-off for MD simulations because, as we shall see, quite large problems can be run
with an atom-decomposition algorithm in the many Mbytes of local memory available on current-generation

processors.

yi=z,
FORk=0,...,log,(P)-1
P’ := P, with k*# bit of z flipped
SEND y to processor P’
RECEIVE w from processor P’
IF bit k of 2 is 0 THEN

vi=ylw
ELSE
yi=wly

T=y

Figure 3: The ezpand operation for processor P,.

A communication operation that is essentially the inverse of the expand will also prove useful in the
atom- and force-decomposition algorithms. Assume each processor has stored new force values throughout
its copy of the force vector f. Processor P, needs to know the N/P values in f,, where each of the values is
summed across all P processors. A procedure for doing this is known as a feld operation [19] and is outlined
in Figure 4. Again the operation proceeds in log,(P) steps. "At each step, y represents a portion of the
force vector f, and is split into two pieces, u and v. One of the pieces is sent to a partner processor P.
The received sub-vector w is summed element by element with the retained piece. This summed sub-vector
becomes y in the next step, so that y is halving in length at each iteration of the loop. When the fold is
finished, y has become f,, with values summed across all P processors. Like the expand, the fold operation
requires log,(P) sends and receives and N — N/P data to be exchanged by each processor. Additionally it
requires N — N/ P floating point operatiqns to do the summations, typically a small extra cost.

Having defined the expand and fold operations, we now present two versions of the atom-decomposition
algorithm. The first is simpler and does not take advantage of Newton’s 3rd law. We call this algorithm
Al; it is outlined in Figure 5 with the dominating term(s) in the computation or communication cost of
each ctep listed on the right. We assume at the beginning of the timestep that each processor xnows the
current positions of all N atoms, i.e. each has a copy of the entire z vector. Step (1) of the algorithm is to
construct neighbor lists for all the pairwise interactions that must be computed in block F,. Typically this
will only be done once every few timesteps. If the ratio of the physical domain diameter D to the extended
force cutoff length r, is relatively small, it is quicker for P, to construct the lists by checking all N2/P pairs
in its F, block. When the simulation is large enough that 4 or more bins can be created in each dimension,
it is quicker for each processor to bin all N atoms, then check the 27 surrounding bins of each of its N/P
atoms to form the lists. This checking scales as N/P but has a large coefficient, so the overall scaling of the

binned neighbor list construction is recorded as N/P+ N.

10

y:=f
FOR k= log,(P)-1,...,0
u := top half of y vector
v := bottom half of y vector
P’ := P, with k** bit of z flipped
IF bit k of 2 is 0 THEN
SEND v to processor P’
RECEIVE w from processor P’
y:=u+w
ELSE
SEND u to processor P’
RECEIVE w from processor P’
y:=v4w
foi=y

Figure 4: The fold operation for processor P,.

In step (2) of the algorithm, the neighbor lists are used to compute the non-zero matrix elements in F.
As each pairwise force interaction is computed, the force components are summed into f;, so that F, is never
actually stored as a matrix. At the completion of the step, each processor knows the total force f, on each
of its N/ P atoms. This is used to update their positions and velocities in step (4). (A step (3) will be added
to other algorithms in this and the following sections.) Finally, in step (5) the updated atom positions in z,
are shared among all P processors in preparation for the next timestep via the expand operation of Figure

3. As discussed above, this operation scales as N, the volume of data in the position vector z.

(1) Construct neighbor lists of non-zero interactions in F,
(D < 4ry) All pairs -’-}’,2-
(D > 4r,) Binning ¥- +N
(2) Compute elements of F,, summing results into f, ¥
(4) Update atom positions in =, using f, -’f;
(5) Expand z, among all processors, result is z N

Figure 5: Single timestep of atom-decomposition algorithm A1 for processor P,.

11

As mentioned above, algorithm A1 ignores Newton’s 3rd law. If different processors own atoms ¢ and
j as is usually the case, both processors compute the (ij) interaction and store the resulting force on their
atom. This can be avoided at the cost of more communication by using a modified force matrix G which
references each pairwise interaction only once. There are several ways to do this by striping the force matrix
[42]; we choose instead to form G as follows. Let G;; = Fyj, except that G;; = 0 when i > jand i+ j is
even, and likewise G;; = 0 when ¢ < j and i + j is odd. Conceptually, G is colored like a checkerboard with
red squares above the diagonal set to zero and black squares below the diagonal also set to zero. A modified
atom-decomposition algorithm A2 that uses G to take advantage of Newton’s 3rd law is outlined in Figure
6.

I\I) Construct neighbor lists of non-zero interactions in G,
(D < 4r;) All pairs %;-
(D > 4r,) Binning 55+ N
(2) Compute elements of G,
doubly summing results into local copy of f 5”,,
(3) Fold f among all processors, result is f, N
(4) Update atom positions in z, using f, %’-
() Expand z, among all processors, result is z N

Figure 6: Single timestep of atom-decomposition algorithm A2 for processor P,, which takes advantage of

Newton’s 3rd law.

Step (1) is the same as in algorithm A1 except only half as many neighbor list entries are made by each
processor since G, has only half the non-zero entries of F,. This is reflected in the factors—of-two included
in the scaling entries. For neighbor lists formed by binning, each processor must still bin all N atoms, but
only need check half the surrounding bins of each of its /P atoms. In step (2) the neighbor lists are used
to compute elements of G,. For an interaction between atoms 7 and j, the resulting forces on atoms i and j
are surnmed into both the i and j locations of force vector f. This means each processor must store a copy
of the entire force vector, as opposed to just storing f; as in algorithm A1. When all the matrix elements
have been computed, f is folded across all P processors using the algorithm in Figure 4. Each processor
ends up with f, the total forces on its atoms. Steps (4) and (5) then proceed the same as in A1l.

Note that implementing Newton’s 3rd law essentially halved the computational cost in steps (1) and (2),
at the expense of doubling the communication cost. There are now twc communication steps (3) and (5),
each of which scale as N. This will only be a net gain if the communication cost in A1 is less than a third
of the overall run time. As we shall see, this will usually not be the case on large numbers of processors, so

in practice we almost always choose A1 instead of A2 for an atom-decomposition algorithm. However, for

12

small P or expensive force models, A2 can be faster.

Finally. we discuss the issue of load-balance. Each processor will has an equal a amount of work if each
F; or G, block has roughly the same number of non-zero elements. This will be the case if the atom density
is uniform wcross the simulation domain. However non-uniform densities can arise if, for example, there are
free surfaces so that some atoms border on vacuum, or phase changes are occurring within a liquid or solid.
This is only a problem for load-balancing of the atom-decormposition computation across processors if the N
atoms are ordered in a geometric sense as is typically the case. Then a group of N/P atoms near a surface,
for example, will have fewer neighbors than groups in the interior. This can be overcome by randomly
permuting the atom ordering at the beginning of the simulation, which is equivalent to permuting rows and
columns of F or G. This insures that every F, or G, will have roughly the same number of non-zeros even
if the atom density is non-uniform. A random permutation also has the advantage that the load-balance
will likely persist as atoms move about during the simulation. Note that this permutation need only be done
once, as a pre-processing step before beginning the dynamics.

In summary, the atom-decomposition algorithms divide the MD force computation and integration evenly
across the processors (ignoring the O(N) component of binned neighbor list construction which is usually
not significant). However, the algorithms require global communication, as each processor must acquire
information held by all the other processors. This communication scales as N, independent of P, so it limits
the number of processors that can be used effectively. The chief advantage of the algorithms is that of
simplicity. Steps (1}, (2), and (4) can be implemented by simply modifying the loops and data structures in
a serial or vector code to treat N/P atoms instead of N. The expand and fold communication operations
can be treated as black-box routines and inserted at the proper locations in steps (3) and (5). Few other

changes arc typically necessary to parallelize an existing code.

4 Force—~Decomposition Algorithm

Our next parallel MD algorithm is based on a block-decomposition of the force matrix F' ra_her than a row-
wise decomposition as used in the previous section. We term this a force~decomposition of the workload. As
we shall see, this improves the O(N) scaling of the communication cost to O(N/v/P). Block-decompositions
of matrices are common in linear algebra algorithms [8, 26] for parallel machines which sparked our interest in
the idea, but to our knowledge we are the first to apply this idea to short-range MD simulations [27, 36, 37].
The assignment of sub-blocks of F' to processors is depicted in Figure 7. We assume for ease of exposition
that P is an even power of 2 and that N is a multiple of P, although again it is straightforward to relax
these constraints. The block owned by each processor is thus of size (N/A/P) x (N/V/P). We use the Greek
subscripts a and 3 to index the row and column blocks of F running from 0 to VP —1. A sub-block of F is
denoted as F,3, and the processor owning it is P,5. We note that a and # also index sub-vectors of z and
f of length N/\/F. To compute the matrix elements in F,p, processor P,s must know the z, and x5 pieces

of z. As these elements are computed they will be stored in local copies of the force sub-vectors, namely fu

13

and f3.

Figure 7: The division of the force matrix among processors in the force-decomposition algorithm. Processor
P, is assigned a sub-block Fgp of size N/v/P by N/\/P. Likewise it stores the corresponding length N/VP

pieces of the position and force vectors.

In addition to computing the matrix elements in F,g, each processor will be responsible for updating
the porsitions and velocities of N/P atoms, as in the atom—~decomposiiion algorithm. These atoms are a
sub-vector of z,; that is, the /P processors in row a divide z4 among them, so each is responsible for
a contiguous piece of length N/P. Numbering these pieces with the column index # of the processor, we
denote each processor’s piece with a superscript, 28. Similarly, the total force acting on these atoms is the
N/P-length sub-vector f2. As in the atom-decomposition case, an element of f# is the sum of all the
matrix elements across the corresponding row of F.

Our first force-decomposition algorithm F1 is outlined in Figure 8. As before, each processor has updated
copies of the needed atom positions at the beginning of the timestep. In this case it is the current sub-vectors
zo and zg. In step (1) neighbor lists are constructed. Again, for small problems this is most quickly done
be checking all N2/P possible pairs in Fop. For large problems, the N/v/P atoms in z are binned, then
the 27 surrounding bins of each atom in z, is checked. The total number of interactions stored in each
processor’s lists is still O(N/P). The scaling of the binned neighbor list construction is thus N/P + N/v/P.
In step (2) the neighbor lists are used to compute the inatrix elements in F,3. As before the elements are
summed into a local copy of f, as they are computed, so F,s need never be stored in matrix form. In

step (3) a fold operation is performed within each row of processors so that processor Pnp obtains the total

14

forces on its N/P atoms, f2. Although the fold algorithm used is the samme as in the preceding section,
there is a key difference. In this case the vector f, being folded is only of length N//P and only the /P
processors in one row are participating in the fold. Thus this operation scales as N/\/P instead of N as in
the atom-decomposition communication steps.

In step (4), f2 is used by Pag to update the N/P atom positions in zf. Steps (5a-5d) share these updated
positions with all the processors that will need them for the next timestep. These are the processors which
share a row or column with Pyp. First, in (5a), the processors in row o perform an expand of their 28 sub-
vectors so that each acquires the entire x,. As with the fold, this operation scales as the N//P length of z,
instead of as N as it did in algorithms A1 and A2. In step (5b), each processor exchanges its updated atom
positions with processor Ps, which owns the block of F' in the transpose position of the matrix. The cost
of this operation scales as the N/P length of the data being exchanged. Finally, in step (5c), the processors
in each column g perform an expand of the received sub-vector &J. As a result they all acquire 25 and are

ready to begin the next timestep.

(1) Construct neighbor lists of non-zero interactions in Fop
(D < 4r,) All pairs LVPi
(D > 4r,) Binning E+ VNT"
(2) Compute elements of F,g, storing results in f, %
(3) Fold f, within row a, result i= f8 VNF
(4) Update atom positions in z8 using f7? %
(5a) Expand z# within row a, result is z4 VN?
(5b) Exchange atom positions with transpose processor Py, 7"}
Send xﬁ to Psa
Receive ;cg from Psq
(5c) Expand z§ within column g, result is x4 VNF

Figure 8: Single timestep of force-decomposition algorithm F1 for processor Pqg.

As with algorithm A1, algorithm F1 does not take advantage of Newton’s 3rd law; each pairwise force
interaction is computed twice. Algorithm F2 avoids this duplicated effort by using the same checkerboarded
matrix GG that was defined in the preceding section. Note that now the total force on atom i is the sum of
all matrix elements in row i minus the sum of all elements in column i. The modified force-decomposition
algorithm F2 is outlined in Figure 9. Step (1) is the same as in F1, except that half as many interactions
are stored in the neighbor lists. Likewise, step (2) requires only half as many matrix elements be computed.
For each (ij) element, the computed force components are now summed into two force vectors instead of

one. The force on atom 1 is summed into f, in #he location corresponding to row i. The same force on atom

15

j is also summed into fg in the location corresponding to column j. Steps (3a-3d) accumulate these forces
so that processor Pap ends up with the total force on its N/P atoms. First, in step (3a), the VP processors
in column 3 fold their local copies of fz. The result is 7; Each element of this N/P-length sub-vector is
the sum of an entire column of G. In step (3b) this sub-vector is exchanged with the transpose-position
processor Pso. The values in the sub-vector each processor receives in this transpose operation are the
column contribution to the forces on its N/P atoms. Next, in step (3c), the row contributions to the forces
are summed by performing a fold of the f, vector within each row a. The result is _j_'g, each element of
which is the sum across a row of G. Finally, in step (3d) the column and row contributions are subtracted
element by element to yield the total forces f2 on the atoms owned by processor P,3. The processor can

now update the positions and velocities of its atoms; steps 4 and 5 are identical to those of F1.

(1) Construct neighbor lists of non-zero interactions in Gap
(D < 4r,) All pairs Lo
(D > 4r,) Binning 5 + 7"%
(2) Compute elements of G,
storing results in local copies of f, and f5 a_,-’\;',
(3a) Fold fs within column g, result is _fg VN'F
(3b) Exchange column forces with transpose processor Fsq %—
Send Tg to Pga
Receive 7?, from Pga
(3¢c) Fold f, within row a, result is iﬁ VNT"
(3d) Subtract received ng from folded i‘;, result is total f2 A
(4) Update atom positions in z2 using f? e
(5a) Expand z# within row a, result is z, %
(5b) Exchange atom positions with transpose processor Psq -’,V,-
Send z# to Psq
Receive zj from Pj,
(5¢) Expand z3 within column 3, result is zg 7“;—,-

Figure 9: Single timestep of force-decomposition algorithm F2 for processor P,s, which takes advantage of
Newton’s 3rd law.

In the force-decomposition algorithms, exploiting Newton’s 3rd law again halves the computation required
in steps (1) and (2). However, the communication cost in steps (3) and (5) does not double. Rather there are
4 expands and folds required in F2 versus 3 in F1. There are also two transpose operations instead of one.

Thus, in practice, it is usually faster to use algorithm F2 with its reduced computational cost and slightly

16

increased communication cost rather than F1. The key point is that all the expand and fold operations in
F1 and F2 scale as N/V/P rather than as N as was the case in algorithms A1 and A2. As we shall see, when
run on large numbers of processors this significantly reduces the time the force-decomposition algorithms
spend on communication as compared to the atom-decomposition algorithms.

Finally, the issue of load-balance is a more serious concern for the force-decomposition algorithms.
Processors will have equal work to do only if all the matrix blocks Fog or Gap are uniformly sparse. If
the atoms are ordered geometrically this will not be the case even for problems with uniform density. This
1s because such an ordering creates a force matrix with diagonal bands of non-zero elements. As in the
atom-decomposition case, a random permutation of the atom ordering produces the desired effect. Only
now the permutation should be done as a pre-processing step for all problems, even those with uniform atom
densities.

In summary, algorithms F1 and F2 divide the MD computations evenly across processors as did the
atom-decomposition algorithms. But the block-decomposition of the force matrix means each processor
only needs O(N/+/P) information to perform its computations. Thus the communication and memory costs
are reduced by a factor of /P versus algorithms A1 and A2. Thé force~decomposition strategy retains the
simplicity of the atom-decomposition technique; F1 and F2 can be implemented using the same “black-
box” communication routines as A1 and A2. The force-decomposition algorithms also need no geometric
information about the physical problem being modeled to perform optimally. In fact, for load-balancing

purposes the algorithms intentionally ignore such information by using a random atom ordering.

5 Spatial-Decomposition Algorithm

In our final parallel algorithm the physical simulation domain is subdivided into small 3-D boxes, one for
each processor. We call this a spatial-decomposition of the workload. Each processor computes forces on
and updates the positions and velocities of all atoms within its box at each timestep. Atoms are reassigned
to new processors as they move through the physical domain. In order to compute forces on its atoms, a
processor need only know positions of atoms in nearby boxes. The communication required in the spatial-
decomposition algorithm is thus local in nature as compared to global in the atom~ and force-decomposition
cases.

The size and shape of the box assigned to each processor will depend on N, P, and the shape of
the physical domain, which we assume to be a 3-D rectangular parallelepiped. Within these constraints
the number of processors in each dimension is chosen so as to make each processor’s box as “cubic” as
possible. This is to minimize communication since in the large N limit the communication cost of the
spatial-decomposition algorithm will turn out to be proportional to the surface area of the boxes. An
important point to note is that in contrast to the link-cell method for conventional MD described in Section
2, the box lengths may now be smaller or larger than the force cutoff lengths r. and r,.

Each processor in our spatial-decomposition algorithm maintains two data structures, one for the N/P

17

atoms in its box and one for atoms in nearby boxes. In the first data structure, each processor stores complete
information — positions, velocities, neighbor lists, etc. This data is stored in a linked list to allow insertions
and deletions as atoms move to new boxes. In the second data structure only atom positions are stored.
Interprocessor communication at each timestep keeps this information current.

The communication scheme we use to acquire this information from processors owning the nearby boxes
is shown in Figure 10. The first step (a) is for each processor to pair up with an adjacent processor in the
cast/west dimension, 2 pairs with 1 for example. Processor 2 fills a message buffer with atom positions it
owns that are within a force cutoff length r, of processor 1’s box. (The reason for using r, instead of r,
will be made clear below.) If d < r,, where d is the box length in the east/west direction, this will be all of
processor 2’s atoms; otherwise it will be those nearest to box 1. Now proressors 2 and 1 exchange messages.
Processor 2 puts the information it receives into its second data structure. Now the processors pair up
in the opposite east-west direction, 2 with 3 in this case, and perform the same operation. If d > ry, all
needed atom positions in the east-west dimension have now been acquired by each processor. If d < »y, this
procedure is repeated with each processor sending more needed atom positions to its adjacent processors. For
example, processor 2 sends processor | atom positions from box 3 (which processor 2 now has in its second
data structure). This can be repeated until each processor knows all atom positions within a distance r, of
its box, as indicated by the dotted boxes in the figure. The same process is now repeated in the north/south
dimension; see step (b) of the figure. The only difference is that messages sent to the adjacent processor now
contain not only atoms the processor owns (in its first data structure), but also any atom positions in its
second data structure that are needed by the adjacent processor. For d = 7, this has the effect of sending 3
boxes worth of atom positions in one message as shown in (b). Finally, in step (¢) the process is repeated in
the up/down dimension. Now atom positions from an entire plane of boxes (9 in the figure) are effectively
being exchanged in each message.

There are several key advantages to this scheme, all of which reduce the overall cost. of communication in
our algorithm. First, for d > r,, needed atom positions from all 26 surrounding boxes are obtained in just 6
data exchanges. Moreover, as will be discussed in the results section, if the parallel machine is a hypercube,
the processors can be mapped to the boxes in such a way that all 6 of these processors will be directly
connected to the center processor. Thus message passing will be fast and contention-free. Even if d < 7, so
that atom information is needed from more distant boxes, this occurs with only a few extra data exchanges,
all of which are still with the 6 immediate neighbor processors. Second, the amount of data cominunicated is
minimized. Each processor acquires only the atom positions that are within « distance 7, of its box. Third,
all of the received atom positions can be placed as contiguous data directly into the processor’s second data
structure. No time is spent rearranging data, except to create the buflered messages that need to be sent.
Finally, as will be discussed in more detail below, this message creation can be done very quickly. A full
scan of the two data structures is only done once every few timesteps, when the neighbor lists are created, to

decide which atom positions to send in each message. The scan procedure creates a list of atoms that make

18

-

(a) east/west exchanges (c)

(b) north/south exchanges

up/down exchanges

Figure 10: Method by which a processor acquires nearby atom positions in the spatial-decomposition algo-
rithm. In 6 data exchanges all atom positions in adjacent boxes in the (a) east/west, (b) north/south, and

(¢) up/down directions can be communicated.

up each message. During all the other timesteps, the lists can be used, in lieu of scanning the full atom list,
to directly index the referenced atoms and buffer up the messages quickly. This is the equivalent of a gather
operation.

We now outline our spatial -decomposition algorithm S1 in Figure 11. Box z is assigned to processor P,
where z runs from 0 to P — 1 as before. Processor P, stores the atom positions of its N/P atoms in z,
and the forces on those atoms in f,. Steps (la-lc) are the neighbor list construction, performed once every
few timesteps. This is somewhat more complex than in the other algorithms because, as discussed above,
it includes the making of lists of atoms that will be communicated at every timestep. First, in step (la)
the positions, velocities, and any other identifying information of atoms that are no longer inside box z are
deleted from z, and stored in a message buffer. These atoms are exchanged with the 6 adjacent processors
via the communication pattern of Figure 10. As the information routes through each dimension, processor
P, checks for new atoms that are now inside its box boundaries, adding them to z,. Next, in step (1b), all
atom positions within a distance r, of box z are acquired by the communication scheme described above.
As the different messages are buffered by scanning through the two data structures, lists of included atoms
are made. The lists will be used in step (5). The scaling factor A for steps (1a) and (1b) will be explained
below.

When steps (1a) and (1b) are complete, both of the processor’s data structures are current. Neighbor

(1a) Move necessary atoms to new boxes A

(1b) Make lists of all atoins that will need to be exchanged A

(1c) Construct neighbor lists of interaction pairs in box z
(d < 2r,) All pairs E(fp+A)
(d > 2r,) Binning _TNF + A

(2) Compute forces on atoms in box =, doubly storing results in f, 72’—\';, + A

(4) Update atom positions r, in box z using f, -’,V,-

(5) Exchange atom positions across box boundaries
with neighboring processors -’;V;—(l -+ 21',/(!)3
(d < 75) Send N/P positions to many neighbors 7S
(d = ry) Send N/P positions to nearest neighbors -[,V;—
(d > ry) Send positions near box surface to nearest neighbors (f;’,-)‘")/3

Figure 11: Single timestep of spatial-decomposition algorithm S1 for processor P;.

lists for its N/ P atoms can now be constructed in step (1c). If atoms ¢ and j are both in box z (an inner- box
interaction), the (7j) pair is only stored once in the neighbor list. If i and Jj are in different boxes (a two-box
interaction), both processors store the interaction in their respective neighbor lists. If this were not done,
processors would compute forces on atoms they do not own and conununication of the forces back to the
processors owning the atoms would be required. A modified algorithin which perforis this communication
to avoid the duplicated force computation of two-box interactions is discussed below. When d, the length
of box z, is less than two cutoff distances, it is quicker to find neighbor interactions by checking each atom
inside box z against all the atoms in both of the processor’s data structures. This scales as the square of
N/P. If d > 2r,, then with the shell of atoms around box z, there are 4 or more bins in each dimension.
In this case, as with the other algorit.luns', it 1s quicker to perform the neighbor list construction by binning.
All the atoms in both data structures are hashed into bins of size r,. The surrounding bins of each atom in
box z are then checked for possible neighbors.

Processor P, can now compute all the forces ou its atoms in step (2) using the neighbor lists. When
the interaction is between two atoms inside box z, the resulting force is stored twice in f,, once for atom
¢t and once for atom j. For two-box interactions, only the force on the processor’s own atom is stored.
After computing f,, the atom positions are updated in step (4). Finally, these updated positions must be
communicated to the surrounding processors in preparation for the next timestep. This occurs in step (5)
using the previously made lists to create each message and the communication pattern of Figure 10. The
amount of data exchanged in this operation is a function of the relative values of the force cutofl distance
and box length and is discussed in the next paragraph. Also, we note that on the timesteps that neighbor

lists are constructed, step (5) does not have to be performed since step (1b) has the same effect.

20

The communication operations in algorithm S1 occur in steps (1a), (1b), and (5). The communication
in the latter two steps is identical. The cost of these steps scales as the volume of data exchanged. For step
(5), if we assume uniform atom density, this is proportional to the physical volume of the shell of thickness
r, around box z, namely (d 4 2r,)3 — d®. Note there are roughly N/P atoms in a volume of d3, since d® is
the size of box z. There are 3 cases to consider. First, if d < ry data from many neighboring boxes must
be exchanged and the operation scales as 87, . Second, if d & 7,, the data in all 26 surrounding boxes is
exchanged and the operation scales as 27N/ P. Finally, if d is much larger than »,, only atom positions near
the 6 faces of box z will be exchanged. The communication then scales as the surface area of box z, namely
()'7',(1\’/}’)")/3. These 3 cases are explicitly listed in the scaling of step (5). Elsewhere in Figure 11, we use
the term A to represent whichever of the three is applicable for a given N, P, and »,. We note that step
(1a) involves less commmunication since not all the atoms within a cutofl distance of a box face will move out
of the box. But this operation still scales as the surface area of box z, so we list its scaling as A.

The computational portion of algorithm S1 is in steps (l¢), (2), and (4). Al of these scale as N/P
with additional work in steps (l¢) and (2) for atoms that are neighboring box z and stored in the second
data structure. The number of these atoms is proportional to A so it is included in the scaling of those
steps. The leading term in the scaling of steps (1¢) and (2) is listed as N/2P as in algorithins A2 and
F2, since inner-box interactions are only stored and computed once for each pair of atoms in algorithm
S1. Note that as d grows large relative to r, as it will for very large simulations, the A contribution to the
overall computation time decreases and the overall scaling of algorithm S1 approaches the optimal N/2P.
In essence, each processor spends nearly all its time working in its own box and only exchanges a relatively
small amount of information with neighboring processors to update its boundary conditions.

An important feature of algorithm S1 is that the lists and structure of the data are only changed once
every few timesteps when neighbor lists are constructed. In particular, even if an atom moves outside box
z's boundaries it is not reassigned to a new processor until step (1la) is executed [45]. Processor P, can still
compute correct forces for the atom so long as two criteria are met. The first is that an atom cannot move
farther than d between two neighbor list constructions since this would cause problems for step (la). The
second is that all nearby atoms within a distance ry, instead of r., must be updated every timestep. The
alternative is to move atoms to their new processors at every timestep [34]. This has the advantage that
only atoms within a distance r, of box z need be exchanged at all timesteps when neighbor lists are not
constructed. This reduces the volume of communication since r. < r,. However, now the neighbor list of
a reassigned atom must also be sent. The information in the neighbor list is atom indices referencing local
memory locations where the neighbor atoms are stored. If atoms are continuously moving to new processors,
these local indices become meaningless. To overcome this, our implementation in [34] assigned a global index
(1 to N) to each atom which moved with the atom from processor to processor. A mapping of global index
to local memory must then be stored in a vector of size N by each processor or the global indices must be

sorted and searched to find the correct atoms when they are referenced in a neighbor list. The former solution

21

limits the size of problems that can be run; the latter solution incurs a considerable cost for the sort and
search operations. We found that implementing the Tamayo and Giles idea [45] in our algorithm S1 made
the resulting code less complex and reduced the computational and commmunication overhead. This did not
affect the timings for simulations with large N, but improved the algorithm’s performance for medium-sized
problems.

A modified version of S1 that takes full advantage of Newton’s 3rd law can also be devised, call it
algorithm S2. If processor P, acquires atoms only from its west, south, and down directions (and sends its
own atoms only in the east, north, and up directions), then each pairwise interaction need only be computed
once, even when the two atoms reside in different boxes. This requires sending computed force results back
in the opposite directions to the processors who own the atoms, as a step (3) in the algorithm. This scheme
does not reduce commuunication costs, since half as much information is communicated twice as often, but
does eliminate the duplicated force computations for two-box interactions. An algorithm similar to this
is detailed in [12] with excellent results for the Fujitsu AP1000 machine that we note in the next section.
Two points are worth noting. First, the overall savings of S2 over S1 is small, particularly for large N.
Only the A term in steps (1c) and (2) is saved. Second, as we mention in our conclusions, the real speed
to be gained in spatial-decomposition algorithms for large systems is by improving the single-processor
performance of force computation in step (2). As floating point processors in parallel machines become more
sophisticated more attention must be paid to data structures and loop orderings in the force and neighbor-
list construction routines to achieve high single-processor flop rates. Implementing S2 requires special-case
coding for atorns near box edges and corners to insure all interactions are counted only once [12] and thus
affects this optimization process.

Finally, the issue of load-balance is an important concern in any spatial-decomposition algorithm. Al-
gorithm S1 will be load-balanced only if all boxes have a roughly equal number of atoms (and surrounding
atoms). This will not be the case if the physical atom density is non-uniform. Additionally, if the physical
domain is not a rectangular parallelepiped, it can be difficult to split into P equal-sized pieces. Sophis-
ticated load-balancing algorithms have been developed [25] to partition an irregular physical domain or
non-uniformly dense clusters of atoms, but in general they create sub-domains which are irregular in shape
or are connected in an irregular fashion to their neighboring sub—domains. In either case, the task of assigning
atoms to sub-domains and communicating with neighbors becomes more costly and complex. If the physical
atom density changes over time during the MD simulation, the load-balance problem is compounded. Any
dynamic load-balancing scheme requires additional computational overhead and data movement.

In sunimary, the spatial-decomposition algorithm, like the atom- and force-decomposition algorithms,
evenly divides the MD computations across all the processors. Its chief benefit is that it takes full advantage
of the local nature of the interatomic forces by performing only local communication. Thus, in the large N
limit, it achieves optimal O(N/P) scaling and is clearly the fastest algorithm. However, this is only if good

load-balance is also achievable. Since its performance is sensitive to the problem geometry, algorithm S1

22

is more restrictive than A2 and F2 whose performance is geometry-independent. A second drawback of
algorithm S1 is its complexity; it is more difficult to implement efficiently than the simpler atom- and force -
decomposition algorithms. In particular the communication scheme requires extra coding and bookkeeping
to create messages and access data received from neighboring boxes. In practice, integrating algorithm S1

into an existing serial MD code can require a substantial reworking of data structures and code.

6 Benchmark Problem

The test case used to benchmark our three parallel algorithins is a MD problem that has been used extensively
by various researchers [12, 22, 28, 34, 41, 46, 45]. 1t models atom interactions with a Lennard-Jones potential
energy between pairs of atoms separated by a distance » as

o, 0.5

B(r) = de ()12~ (

(2)
T r

where ¢ and o are constants. The derivative of this energy expression with respect to r is the F; term in
equation (1); Fy and higher-order terms are ignored.

The N atoms are simulated in a 3-D parallelepiped with periodic boundary conditions at the Lennard
Jones state point defined by the reduced deusity g = 0.8442 and reduced temperature 7* = 0.72. This
is a liquid state near the Lennard-Jones triple point. The simulation is begun with the atoms on an fecc
lattice with randomized velocities chosen from a Boltzmann distribution. The solid quickly melts as the
system evolves to its natural liquid state. A roughly uniform spatial density persists for the duration of the
simulation. The simulation is run at constant N, volume V', and energy E, a statistical sampling from the
microcanonical ensemble. Force computations using the potential in equation (2) are truncated at a distance
r. = 2.50. The integration timestep is 0.0046%2 in reduced units. For simplicity we use a leapfrog scheme to
mtegrate equation (1) as in [2]. Other implementations of the benchinark [22] have used predictor-corrector
schemes; this only slows their performance by 2-3%.

For timing purposes, the critical features of the benchmark for a given problem size N are p* and r..
These determine how many force interactions must be computed at every timestep. The number of atoms
in a sphere of radius »* = r/o is given by 47p*(#7)3/3. For this benchmark, using r. = 2.5¢, each atom has
on average 55 neighbors. If neighbor lists are used, the benchmark also defines an extended cutoff length
ry = 2.80 (encompassing about 78 atowms) for forming the neighbor lists and specifies that the lists be created
or updated every 20 timesteps. Timings for the benchmark are usually reported in CPU seconds/timestep.
If neighbor lists are used then the cost of creating them every 20 steps is amortized over the per timestep
timing.

It i1s worth noting that without running a standard benchmark problem it can be difficult to accurately
assess the performance of a parallel algorithm. In particular, it can be misleading to only compare perfor-

mairce of a parallel version of a code to the original vectorized or serial code hecause, as we have learned from

23

our codes as well as other’s results, the vector code performance may well be far from optimal. Even when
problem specifications are reported, it can be difficult to compare two algorithm’s relative performance when
two different benchmark problems are used. This is because of the wide variability in the cost of calculating
force equations, the number of neighbors included in cutoff distances, and the frequency of neighbor list

building as a function of temperature, atom density, cutoff distances, etc.

7 Results

The parallel algorithms of Sections 3, 4, and 5 were tested on three parallel MIMD supercomputers, a nCUBE
2, an Intel iPSC/860, and the Intel Delta. The first two machines are at Sandia; the Delta is at Cal Tech.
The nCUBE 2 is a 1024-processor hypercube. Each processor is capable of about 2 Mflops and has 4 Gbytes
of memory. Sandia’s iPSC/860 has 64 1860 processors connected in a hypercube topology. Its processors
have 8 Mbytes of meinory and are capable of about 60 Mflops, but in practice 5-10 Mflops is the typical
compiled Fortran performance. The Intel Delta has 512 processors configured as a 2-D mesh. The individual
processors have 16 Mbytes of memory and are identical to those in the iPSC/860, ihough the communication
network is somewhat faster.

Because the algorithms were implemented in standard Fortran with calls to vendor-supplied message-
passing subroutines, only minor changes were required to implement the benchmark codes on the different
machines. The algorithms as described do not specify a mapping of processors to the computational elements
(force matrix sub—blocks, 3-D boxes, etc.). The mapping could potentially be tailored for a particular
machine architecture to minimize message contention (multiple messages using the same communication
wire) and the distance messages have to travel between pairs of processors that are not directly connected
by a communication wire. We chose mappings that are simple and good choices for hypercubes. For code
portability we used the same mappings on the mesh-architecture Delta.

For the atom-decomposition algorithm we simply assign the processors in ascending order to the row-
blocks of the force matrix in Figure 1. The expands and folds then take place exactly as in Figure 2. For
the force-decomposition algorithm we use a natural calendar ordering of the processors to the force matrix
in Figure 7. On a hypercube this means each row and column of the matrix is a sub~cube of processors so
that expands and folds within rows and columns can be done optimally. However, the transpose operations
in algorithms F1 and F2 now require communication between pairs of processors that are architecturally
distant. Thus with this mapping there will be some message contention during the transposes as multiple
messages route to their distant destinations simultaneously. Since the transpose operations scale as the
volume of data exchanged or N/ P, even with some slow-down due to message congestion, the overall N/v/P
scaling of the communication portion of the force-decomposition algorithms is not affected. Although we did
not implement it for this work, a mapping of processors to the force matrix that produces contention-free
transposes for a hypercube is possible and is described in [27]. We have also recently developed a modified

force~decomposition algorithm that does not require transpose operations and thus runs slightly faster on

24

mesh-architecture parallel machines [35].

For the spatial-decomposition algorithm, we use a processor mapping that essentially configures a hy-
percube as a 3-D mesh. Such a mapping is done using a Gray-coded ordering [19] of the processors. This
insures each processor’s box in Figure 10 has 6 spatial neighbors (boxes in the east, west, north, sou.h, up,
down directions) that are assigned to processors which are also nearest neighbors in the hypercube topol-
ogy. Communication with these neighbors is thus contention-free and as fast as possible. Gray—coding also
provides naturally for periodic boundary conditions in the MD simulation since processors at the edge of
the 3-D mesh are topological nearest neighbors to those on the opposite edge. The only restriction the
Gray-coding imposes is that the number of processors assigned to each dimension of the 3-D mesh be a
power—of-two. For the Intel Delta there is no obvious best way to map a 3-D problem to its 2-D mesh of
processors. We use the same 3-D Gray-coding assignment scheme for code portability.

Timing results for the benchmark problem on the different parallel machines are shown in Tables I, II,
and II1 for the atom-, force , and spatial-decompuosition algorithms. A wide range of problem sizes are
considered from N = 500 atoms to N = 107 atoms. The lattice size for each problem is also specified; there
are 4 atoms per unit cell for the fec lattices. Entries with a dashed line are for problems that would not fit
in available memory. The last entries in each table are roughly the largest problem sizes for this benchmark
that can be run with each algorithm due to memory restrictions on the three parallel machines.

For comparison, we also implemented the vectorized algorithm of Grest, et. al. [22] on single processors
of Sandia’s Cray Y-MP and a Cray C90 at Cray Research. Our version is slightly different from the original
Grest code, using a simpler integrator and allowing for non-cubic physical domains. The timings in reference
[22] were for a Cray X-MP. We believe these timings for the faster Y-MP and C90 architectures are the
fasiest that have been reported for this benchmark problem on a single processor of a coi :ntional vector
supercomputer. They show a C90 processor to be about 2.5 times faster than a Y-MP processor for this
algorithm. The st..rred Cray timings in the tables are estimates for problems too large to fit in memory on
the machines accessible to us. They are extrapolations of the N = 10° system timing based on the observed
linear scaling of the Cray algorithm. It is also worth no.ing that ideas similar to those used in the parallel
algorithms of ihe previous sections could be used to create efficient parallel Cray codes for multiple processors
of a Y-MP or C90. For example, a speed-up of 6.8 on a 8—processor Cray Y-MP has been achieved by
Kremer with the Grest, et. al. algorithm {20].

The parailel timings in the three tables are all for single-precision (32-bit) implementations of the bench-
mark. The Cray tinungs are, of course, for 64-bit arithmetic since that is the only option. MD simulations
do not typically require doulle precision accuracy since there is a much coarser approximation inherent in
the potential model and the integrator. This is particularly true of Lennard-Jones systems since the ¢ and o
coefficients are only specified to a few digits of accuracy as an approximate model of the interatomic energies
in a real material. With this said, double precision timings can be easily estimated for the parallel algorithms.

The processors in all three of the parallel machines compute about 20-30% slower in double-precision arith-

25

| Intel

Problem Size C9%0 | Y-MP nCUBE 2 Intel iPSC/860 Delta
N Lattice P=1 =1 | P=512 | P=1024 | P=32 P=64 =256
500 5x5x5 .00373 | .00930 | .00724 --- 0111 .00880 | .00518

2048 8x8x8 .0154 | .0369 | .0252 0217 0446 0336 0172

4000 10x10x10 || .0232 | .0610 | .0458 0394 .0807 0616 0314

6912 12x12x12 || .0425 106 0780 .0669 138 103 0532
10976 | 14x14x14 || .0657 167 124 .106 220 164 0863
16384 | 16x16x16 || .103 250 182 155 .337 .249 130
32000 | 20x20x20 || .202 470 351 301 .635 474 .256
50000 | 20x25x25 || .286 733 .546 469 993 740 .399
100,000 | 25x25x40 || .592 1.47 1.09 935 1.98 1.48 .820

Table I: CPU seconds/timestep for the atom-decomposition algorithm A1 on several parallel machines for
the benchmark simulation. Single processor Cray Y-MP and C90 timings using a fully vectorized algorithm

are also given for comparison.

metic than single, so the time spent computing would be increased by that amount. Cominunication costs in
each of the algorithms would essentially double, since the volume of information being exchanged in messages
would increase by a factor of two. Thus depending on the fraction of time being spent in communication for
a particular N and P (see the scaling discussion below), the overall timings typically increase by 20-50% for
double-precision runs.

The tables show the parallel machines to be competitive with the Cray Y-MP and C90 machines across
the entire range of problem sizes for all three parallel algorithms. The force-decomposition algorithm is
fastest for the smallest problem sizes; spatial-decomposition is fastest for large N. The Intel Delta is the
fastest of the three parallel machines, up to 30 times faster than a single Y~-MP processor on the largest
problem sizes using the spatial--decomposition algorithm and 12 times faster than a C90 processor. The
nCUBE 2 and Intel Delta can perform million atom simulations of the benchmark problem at 1.17 and
498 seconds/timestep respectively. A surprising result is that the parallel machines are competitive with
a single processor of the Cray machines even for the smallest problem sizes. One typically does not think

of there being enough parallelism to exploit when there are only a few atoms per processor. The hardware

26

Problem Size C90 | Y-MP nCUBE 2 Intel iPSC/860 Intel Delta

N Lattice P=1 P=1 P=512 | P=1024 | P=32 P=64 | P=256 | P=512
500 5x5x5 .00373 | .00930 | .00592 - .00980 | .00695 | .00480 | .00455
2048 8x8x8 0154 | 0369 | .0110 | .00864 | .0359 0250 | .00894 | .00677

6912 12x12x12 || .0425 .106 .0245 0179 a12 0759 0250 | .0160
10976 14x14x14 || .0657 167 .0394 0277 .180 122 0399 | .0244

32000 20x20x20 ([.202 470 .0890 .0603 521 349 115 .0667
50000 20x25x25 .286 733 162 112 .828 544 179 103
100,000 | 25x25x40 || .592 1.47 251 171 1.75 1.10 .369 210
500,000 50x50x50 |} 2.86* | 7.33* 247 1.66 - 6.04 1.96 1.17
1,000,000 | 50xS50x100 || 5.92* | 14.7* - 3.29 --- - 4.04 241

Table II: CPU seconds/timestep for the force-decomposition algorithm F2 on several parallel machines and

the Cray Y-MP and C90.

performance monitor on the Cray also provides the useful metric that the vectorized algorithm runs at about
260 Mflops for large N on a C90 processor. Though the floating point operation count is not identical in the
parallel codes, this implies the 512-processor Intel Delta runs the spatial-decomposition algorithm at about
3 Gflops for the largest problem sizes, or about 6 Mflops/processor which is typical of i860 chip performance
on compiled Fortran code. However, since basic linear algebra subroutines (BLAS) run at 20-30 Mflops on
the 1860 (out of a peak speed of 60 Mflops), this indicates much higher performance could still be achieved in
parallel MD algorithms by writing code optimized for a particular parallel machine’s floating point processor.

Timings for this benchmark on other parallel machines are also discussed in {7, 12, 46, 45], all for spatial-
decomposition algorithms. Tamayo, et. al. [46] implemented several SIMD algorithms on a 32K—processor
CM-2 (1024 floating point processors). Their fastest algorithm ran at 0.57 sec/timestep for a N = 18000
atom system, about a factor of two slower than the single processor Y-MP timing in the tables here. More
recently, Tamayo and Giles [45] achieved a time of 0.4 sec/timestep on a N = 51,200 atom simulation on
256 processors of a CM--5. This is roughly a factor of two faster than a Y-MP processor and was for a
CM-5 without vector units programmed in MIMD mode with explicit message passing; the timings should
improve dramatically with the vector units. In other work on the CM-5, Beazley and Lomdahl [7] report a
time of 1.00 sec/timestep for a N = 10¢ atom simulation on 1024 processors, also without vector units. This
however, was for a shorter cutoff distance with only an average of 21 neighbors/atom instead of 55 as in this
benchmark. Finally, Brown, et. al. [12] detail an algorithm similar to the S2 algorithm discussed in Section

5. For a N = 729000 atom system (at a slightly smaller reduced density of p* = 0.8) run on 512 processors

27

Problem Size C90 Y-MP nCUBE 2 Intel iPSC/860 Intcl Delta

N Lattice P=1 =] P=512 | P=1024 | P=32 | P=64 | P=256 | P=512
500 5x5x5 .00373 | .00930 | .0130 0119 | .0129 | .0106 | .00706 | .00592
2048 8x8x8 .0154 | .0369 | .0173 0148 | .0321 | .0189 | .00837 | .00650
6912 12x12x12 0425 106 0374 0250 | .0768 | .0436 | .0159 0111
16384 16x16x16 .103 250 0650 | .0407 .161 0874 | .0275 | .0167
50000 20x25x25 .286 733 .160 0967 420 224 .0664 | .0380

100,000 25x25x40 .592 147 298 .165 798 418 119 .0678
500,000 50x50x50 2.86* | 7.33* 1.17 650 3.66 1.88 .501 261

1,000,000 50x50x100 5.92* 14.7* 2.23 1.17 --- 3.68 951 498
5,000,000 | 100x100x125 || 28.6* | 73.3* 10.2 5.28 - - 4.45 231
10,000,000 | 100x125x200 || 59.2* 147.* --- 10.2 - - -~ 4.60

Table ITT: CPU seconds/timestep for the spatial-decomposition algorithm S1.

of the Fujitsu AP1000 they report a time of 0.927 sec /timestep.

The timings in Table I show that communication ¢ ~s have begun to dominate in the atom-decomposition
algorithm by the time hundreds of processors are used. There is little speed up gained by doubling the number
of processors used. By contrast timings in Table Il show the force-decomposition algorithm is speeding up
by roughly 30% when the number of processors is doubled. The timings for the largest problem sizes in Table
IIT evidence excellent scaling properties. Doubling P nearly halves the run times for a given N. Similarly,
as N increases for fixed P, the run times per atom actually become faster as the surface~to-volume ratio
of each processor’s box is reduced. We note, however, that this scaling depends on uniform atom density
within a simple domain such as the rectangular parallelepiped of the benchmark problem.

A comparison of the different algorithm’s performance using data from all 3 tables can be better displayed
in graphical form. Figure 12 shows the nCUBE 2’s performance on the benchmark simulation on 1024
processors as a function of problem size. Single processor Y-MP timings are also included. The linear
scaling of all the algorithms when N is large is evident. Note that force-decomposition is faster than atom-
decomposition across all problem sizes due to its reduced communication costs. On this many processors, the
spatial~decomposition algorithm has significant overhead costs for small N. This is because the d/r, ratiois
so small that each processor has to communicate with a large number of neighboring processors to acquire

all its needed information. As N increases, this overhead is reduced relative to the computation performed

28

inside the processor’s box, and the algorithm’s performance asymptotically approaches its optimal O(N/ P)
performance. Thus there is a cross—over size N at which the spatial-decomposition algorithm becomes faster

than force—decomposition. We return to this point in the conclusions section.

10'F
F &— Cray Y-MP/1
[@—8 Atom-Decomposition
I ©——@® Force-Decomposition
— A—aA Spatial-Decomposition
o3 0
z 10°F
2 -
E |
B L.
Q i
.
) 1L
g 10¢
- :
D -
Q_ -
(& !
102k
-4.;....1 1 o aaaal " A2 41 iaal L ioa sl
10° 10* 10° 10°
N (atoms)

Figure 12: CPU timings (seconds/timestep) for the three parallel algorithms on 1024 processors of the

nCUBE 2 for different problem sizes. Single-processor Cray Y-MP timings are also given for comparison.

In Figure 13 we plot the Intel Delta’s performance on the N = 10976 atom benchmark as a function
of number of processors. The single-processor 1860 and Y-MP timings are also shown; the Y-MP is about
13.3 times faster than a i860 processor on this problem. The dotted line is the maximum achievable speed
of the Delta if any of the algorithms were 100% efficient. Parallel efficiency is defined as the run time on
1 processor divided by the quantity (P x run time on P processors). Thus if the 512-processor timing is
256 times as fast as the 1-processor timing, the algorithm is 50% efficient. On small nnmbers of processors
communication is not a significant factor and all the algorithms perform similarly. But as P increases, the
algorithms become less efficient. The atoni-decomposition falls off most rapidly due to the O(N) scaling
of its communication. On the Delta’s large 2-D mesh the all-to-all communication this algorithm requires

is particularly inefficient (because of message contention), causing a slow-down when going from 256 to

29

512 processors. Force-decomposition is next most efficient due to its O(N/v/P) communication scaling. It
remains competitive with the spatial-decomposition algorithm across a wide range of numbers of processors.
When hundreds or thousands of processors are used, even the spatial-decomposition algorithm becornes less
efficient since now the box size is small relative to the force cutoff distance for this N. It is worth noting
that the trends in the plots of Figures 12 and 13 are the same for the other machines and problem sizes
tested in this study. Though the absolute data values are functions of N, P, and the benchmark attributes,
the relative trade-offs between the various algorithms are consistently the same.

Using one—-node timings on the nCUBE and Intel machines as reference points, parallel efficiencies can be
computed for all the algorithms. The nCUBE 2 one-processor timing is 9.15 x 10~% seconds/timestep/atom.
Both Intel machines give a one-processor timing of 2.03 x 10~* seconds/timestep/atom. Because the algo-
rithms and codes scale so linearly, these values can be used to predict optimal timings for problems larger
than will fit on a single processor. For the million-atom simulation, the timings in Table 1I1 show the
spatial-decomposition algorithm S1 thus has a parallel efficiency of 76% on 1024 processors of the nCUBE
and 80% on 512 processors of the Intel Delta. The larger simulations approach roughly a 90% parallel effi-
ciency. To put these numbers in context, consider that on the nCUBE, the million-atom simulation means
each processor has about 1000 atoms in itw box. But the range of the cutoff distance in the benchmark is
such that about 2600 atoms from surrounding boxes are still needed at every timestep to compute forces.
Thus the spatial-decomposition algorithm S1 is 76% efficient even though two-and-a-half times as many
atom positions are communicated as are updated locally by each processor.

Finally, we discuss the scalability of the different parallel algorithms in the large N limit. Table IV shows
the overall scaling of the computation and communication portions of the 5 algorithms. This is constructed
from the scaling entries for the various steps of the algorithms in Figures 5, 6, 8 9, and 11, using large
N values when there is an option. Some coefficients are included to show contrasts between the various
algorithms. The amount of memory required per processor to store atom position and force vectors is also
listed in the table.

Computation in the atom-decomposition algorithm A1l scales as N/P + N where the second term is
for binned neighbor list construction. The coefficient on this term is small so it is usually not a significant
factor. The communication scales as N, as does the memory to store all atom positions. By contrast,
atom~-decomposition algorithm A2 implements Newton’s 3rd law so its leading computational term is cut in
half. Now the communication cost is doubled and the entire force vector must be stored on each processor
as well.

Force-decomposition algorithms F1 and F2 have the same computational complexity as A1 and A2
respectively except the binning for neighbor list construction now scales as N/\/_i;, again not typically a
significant factor. In F1 there are 3 expands/folds and one transpose operation for a total communication
cost of 3N/\/1_’+ N/P. Similarly F2 requires 4 expands/folds and 2 transposes. Implementing F1 requires

storing two atom position sub-vectors and one force sub-vector, all of length N/v/P. F2 requires an extra

30

10 F "y
0 s E—8 Atom-Decomposition
! @——® Force-Decomposition
- N &—A Spatial-Decomposition
& 10%F .
1] o O
@ s ~e
E [
S S~
8’ p ® Cray Y-MP/1
o 10 F
= :
}—
D =
C.
© 2
10°F
I i | i ! L I 1 1 1 1

1 2 4 8 16 32 64 128 256 512
P (processors)

Figure 13: CPU timings (seconds/timestep) for the three parallel algorithms on the Intel Delta for different
numbers of processors on a benchmark simulation with N = 10976 atoms. Single—processor 1860 and Cray

Y-MP timings are shown for comparison.

force sub-vector.

Computation in the spatial-decomposition algorithm S1 scales as N/2P since it implements Newton’s
3rd law for interactions between atom pairs inside a processor’s box. For large N problems there is an extra
factor for computations performed on nearby atoms within a distance r, of the box faces. The number of
these atoms is proportional to the surface area of the box face (N/Pz/a) times r, for each of the 6 faces.
The communication in algorithm S1 scales as the same factor as do the memory requirements for storing
the nearby atoms. Additionally, O(N/P) memory must be allocated for storing the atoms in a processor’s
box.

As mentioned above, the memory entries in Table IV are for the atomn position and force vectors used
in each algorithm. However, in all of the algorithms processors must store additional O(N/P) information
such as neighbor lists and velocities for the N/P atoms they own. In practice, for the force- and spatial-

decomposition algorithms, storage of neighbor lists is actually the dominant factor in limiting the size of

31

Algorithm Computation Communication Memory I

i
Al
¥+N N N

A2 N 2N 2N
2—13+N

F1 N N N N N
=+ —= 3—=+ = 3=
P Jp PP JP

F2 N N N
2P p Jp

S1 2/3

.+.

(o)}

~
—_
~—

NIz
]
|

Table IV: Scaling properties of all 5 parallel algorithms as a function of problem size N and number of
processors P. Run time scaling for the communication and computation portions of the algorithms as well

as their per-processor memory requirements are listed.

problem that can be run. For example, the 4-6 Gbytes of user memory available on the nCUBE 2 and Intel
Delta machines used in this study allows a 107 atom simulation to be run with the r. = 2.5¢ cutoff of the
benchmark problem. Using a shorter cutoff on the 1024 -processor CM~5 (which has more user mernory)
allowed Beazley and Lomdahl to run a 70-million atom 3-D simulation [7]. These figures are indicative of

the size of problems that can be run on current-generation parallel machines.

8 Application of the Algorithms

While the benchmark problem discussed in Sections 6 and 7 is relatively simple, the parallel algorithms
described in this paper can be used in a variety of more complex MD simulations with little modification.
We discuss the parallel implications of some common MD issues in the next several paragraphs.

(A) Force models more computationally expensive than Lennard-Jones potentials are often used in MD
simulations of various materials. Pairwise forces, even if they are very expensive, can often be pre-computed

once and then stored in table form or as a set of interpolating coefficients. Then they turn out to be litile

32

more expensive to compute with than 6-12 potentials. Modern parallel computers have ample memory for
storing quite large tables of force values and/or coefficients in duplicate on every processor.

(B) Force models that are functions of atom velocities, or other quantities besides just atom positions,
are sometimes used. An example is the embedded atom method (EAM) potentials [16] commonly used in
modeling metals and metal alloys where an atom’s energy is a function of electron density contributions from
neighboring atoms as well as conventional pair-potential interactions. A more general N-body simulation
example is vortex methods in fluid dynamics where “particles” of fluid interact via their vorticities. All of
the parallel algorithms described here can be augmented in steps (3) and (5) to communicate additional
atom-based quantities as needed [36] without affecting their overall parallel scaling.

(C) More sophisticated many-body force models are often used in MD simulations of covalently bonded
materials. Examples include angular (three-body) forces for silicon and torsional (four-body) forces for
organic polymers or proteins. These forces can be most easily computed in parallel if a single processor
knows the positions of all the atoms in a particular bond group. This is simple to implement in the atom-
decoriposition algorithm since each processor knows the positions of every atom. Likewise, the spatial-
decomposition algorithm can also be modified to insure each processor acquires enough information from
surrounding boxes to compute all the many-body terms its atoms are a party to, since the bond groups are
short-range in nature. However, the force-decomposition algorithm requires special care in this respect. This
is because a processor only knows the positions of 2N/v/P atoms that have no special spatial relationship to
each other. One solution is to perform a pre-processing step to reorder the atoms in such a way that one or
more processors will know the positions of all the atoms in each bond group. We have developed methods for
doing this in organic MD simulations where the connectivity of the bond groups is static [37, 35]. However,
we know of no simple way to use the force--decomposition idea for the more general case of dynamically
changing connectivities, such as for silicon three-body potentials.

(D) Though force calculation is the key computational kernel in MD simulations, the quantities of interest
are often global parameters like pressure, structure factors, and diffusion coefficients. These thermodynamic
and transport properties are often calculated once every 50 or 100 timesteps and add little to the overall
computational cost of a serial program. The same is true for the parallel case. In short-range MD each
processor can compute its partial contribution to one of these quantities from the atom information it already
knows. Then the local values can be accumulated quickly as a global sum across all the processors.

(E) In many MD codes, neighbor list construction is triggered by atom movement. For example, lists will
only be recreated when some atom has moved half the distance ry, —r.. Again, this can easily be implemented
in the parallel algorithms by having each processor check if any of its N/P atoms have met the criterion,
then exchanging a global flag to decide if the neighbor list routines should be called. If the list of interacting
neighbors is static in a particular MD simulation (e.g. atoms on a lattice), then step (1) in all of the parallel
algorithms becomes unnecessary. The remaining steps of the algorithms are still a fast way to parallelize the

necessary computation and communication for this special case.

33

(F) The benchmark problem implements a constant N, volume V, and energy E microcanonical ensemble.
Another common choice is to hold N, pressure P, and temperature T constant, sampling from the canonical
ensemble. This involves rescaling the simulation domain dimensions and velocities at each timestep (or every
few timesteps) to hold the pressure and temperature constant. In parallel this requires a small amount of
additional communication, a global summation or exchange of the rescaling parameters, similar to the eflort
involved in (D) and (E) above.

(G) A simple leapfrog integrator was used in our implementation of the benchmark problem. More
complex ODE integrators such as Runge-Kutta or predictor-corrector methods can easily be used in the
context of any of the parallel algorithms in step (4). These methods are perfectly parallel since they only
require information about the N/P atoms already owned by each processor. They may also require extra
O(N/P) memory to store old timestep values or work vectors.

(H) Multiple-timescale MD methods have been proposed [44], where work is done at staggered times on
different length scales to allow longer timesteps to be taken on average. Only very short-range information
is used to compute forces in the smallest timesteps. These schemes are an effort to include longer-range
effects while avoiding true long-range force computation. They are typically implemented by a hierarchy of
neighbor lists which store information for the different length scales. Since they are still inherently short-
range force models, they can be implemented within the general framework of any of the parallel algorithms
we have presented. In the limit that the force computation becomes truly long-range in nature, pairwise
forces are usually not the computational method of choice as discussed in Section 2. However, if long-range
pairwise forces are used, they can still be computed directly in the force-matrix formalism of the atom- and
force-decomposition algorithms [27]. By contrast the spatiai~decomposition algorithm would now require

long-range communication and become an inefficient solution.

9 Conclusion

We have detailed the construction and implementation of three kinds of parallel algorithms for MD simu-
lations with short-range forces. Each of them has advantages and disadvantages. The atom-decomposition
algorithm is simplest to implement and load-balances automatically, but because it performs ali-to-all com-
munication, its communication costs begin to dominate its run time on large numbers of processors. The
force-decomposition algorithm is also relatively simple, though it often requires some pre-processing to as-
sure load-balance. It also works well independent of the physical problem’s geometry. Its O(N/\/F) scaling
is better than that of the atom-decomposition algorithm, but is not optimal for large simulations. The
spatial-decomposition algorithm does exhibit optimal O(N/P) scaling for large problems. However it suffers
more easily from load-imbalance and is more difficult to implement efficiently.

In practical terms, how does one choose the “best” parallel algorithm for a particular MD simulation?
Assuming one knows the ranges of N and P the simulation will be run with, we find the following four

guidelines helpful.

34

(A) Choose an atom-decomposition algorithm only if the communication cost is expected to be negligible.
In this case simplicity outweighs the inefficient communications. Typically this will only be true for small P
(say P < 16 processors) or very expensive {orces where computation time dominates communication time.

(B) A force-decomposition approach will be faster than atorn-decomposition in all other cases. Both
the atom- and force-decomposition algorithms scale linearly with N for fixed P. This means for a given
P, the parallel efficiency of either algorithm is independent of N. Moreover, as P doubles, the efficiency
of the communication portion of the atom-decomposition algorithm goes down by a factor of 2, while the
force—decomposition algorithm'’s efficiency decreases by a factor of only V2. Thus, once P is large enough
that force-decomposition is significantly faster than atom-decomposition, it will remain faster as P increases,
independent of N. For the benchmark problem this was the case for P > 16 processors.

(C) For a given P, the scaling of the spatial-decomposition algorithm is not linear with N. For small
N communication and overhead costs are significant and the efficiency is poor; for large N the efficiency
is asymptotically optimal (100%). Thus when compared to a force-decomposition approach, there will be
some cross—-over point as N increases for a given P where a spatial-decomposition algorithm becomes faster.
In the benchmark the cross—over size was several thousands of atoms on hundreds of processors, as in Figure
12. In general, the cross—over size is a function of the complexity of the force model, force cutoff distances,
and the computational and communication capabilities of a particular parallel machine. It will also be a
function of P. For example, if the force cutoff distance is reduced (say to r. = 2'/%¢ as is common for
fluids modeled with purely repulsive forces), a spatial-decomposition algorithm will require less exchange
of information between processors assigned to neighboring boxes and the cross-over size will be reduced as
well. A rough estimate of a spatial-decomposition algorithm’s efficiency for a given N and P can be made
by noting each processor’s box has volume d* = N/P, but it computes and communicates information in an
extended volume of (d + 2r,)3. Comparing the extended volume to the box volume gives a rough measure
of the extra (ineflicient) work the algorithm is performing.

(D) The preceding paragraph assumes the computation in the spatial-decomposition algorithm is per-
fectly load-balanced. Load-imbalance imposes an upper bound on the efficiency a spatial-decomposition
algorithin can achieve. For example, biological simulations of proteins solvated by water often are performed
in a vacuum so that the atoms in the simulation fill a roughly spherical volume. If this domain is treated
as a cube and split into P pieces then the sphere fills only a x/6 fraction of the cube and a 50% parallel
inefficiency resuits. The net effect of load-imbalance is to increase the cross—over size at which a spatial-
decomposition algorithm becomes faster than a force-decomposition approach. In practice, we have found
the force decomposition algorithm can be faster or at least quite competitive with spatial-decomposition
algorithms for simulations of up to many tens of thousands of atoms [37)].

In Section 7 we discussed the performance of the parallel algorithms on three different parallel computers,
the nCUBE 2, Intel iPSC/860, and Delta. The results show that current-generation parallel machines are

competitive with multi-processor Cray-class vector supercomputers for short-range MD simulations. More

35

generally, these algorithms can be implemented on any parallel computer that allows its processors to execute
code independently of each other and exchanges data between processors by standard message-passing
techniques. This is the defirition of a multiple instruction/multiple data (MIMD) parallel architecture. Most
of the current- and next-generation parallel supercomputers support this mode of programming, including
the Intel Paragon, CM-5, and Cray MPP machines. Several features of the algorithms take advantage of
the flexibility of the MIMD paradigm, including the code to build and access variable-length neighbor lists
via indirect addressing, to select/pack/unpack data for messages, and to efficiently exchange variable-length
data structures between sub-groups of processors as in Figures 2 and 10.

Finally, we are confident these algorithms or versions based on similar ideas will continue to be good
choices for MD simulations on parallel machines of the future. Optimizing their performance for next-
generation machines will require improving their single-processor computational performance. As the indi-
vidual processors used in parallel machines become faster and more complex, high computational rates can
only be achieved by writing pipelined or vectorized code. Thus, many of the data reorganization and other
optimization techniques that have been developed for MD on vector machines [22] will become important

for parallel implementations as well.

10 Acknowledgments

I am indebted to Bruce Hendrickson of Sandia for many useful discussions regarding MD algorithms, par-
ticularly with respect to the force-decomposition techniques described here. Early ruuns of the algorithms
on the Intel iPSC/860 were performed at Oak Ridge National Labs; Al Geist was particularly helpful to
me in this effort. I also thank Gary Grest at Exxon Rescarch for sending me a copy of his vectorized Cray
algorithm and have benefited from discussions with Pablo Tamayo at Los Alamos National Labs concerning
parallel MD techniques. John Mertz at Cray Research performed the Cray C90 runs discussed in Section
7. Additionally, I thank all of these individuals for suggesting improvements to this manuscript. Work on
the Intel Delta was supported by the Concurrent Supercomputing Consortium at Cal Tech; I thank Sharon

Brunet of the CSC staff for timely assistance in this regard.

References

(1] F. F. Abraham. Computational statistical mechanics: methodology, applications and supercomputing.
Advances in Physics, 35:1-111, 1986.

[2] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.

(3] D.J. Auerbach, W. Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and F. F. Abraham. A special purpose

parallel computer for molecular dynamics: Motivation, design, implementation, and application. J.
Phys. Chem., 91:4881-4890, 1987.

[4] A.F.Bakker, G. H. Gilmer, M. H. Grabow, and K. Thompson. A special purpose computer for molecular
dynamics calculations. J. Comp. Phys., 90:313-335, 1990.

36

(5}

(6]

(8]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]
[19]

20]
21]

(22]

(23]

J. Barnes and P. Hut. A hierarchical O(N log N') force-calculation algorithm. Nature, 324:446-449,
1986.

M. Baskes, M. Daw, B. Dodson, and S. Foiles. Atomic-scale simulation in materials science. Malerials
Research Society Bulletin, pages 28-34, Feb 1988.

D. M. Beazley and P. S. Lomdahl. Message-passing multi-cell molecular dynamics on the Connection
Machine 5. Technical Report LA-UR-92-3158, Los Alamos National Laboratories, Los Alamos, NM,
1993.

R. H. Bisseling and J. G. G. van de Vorst. Parallel LU decomposition on a transputer network. In G. A.
van Zee and J. G. G. van de Vorst, editors, Lecture Notes in Compuler Science, Number 384, pages
61-77. Springer-Verlag, 1989.

B. M. Boghosian. Computational physics on the Connection Machine. Comp. in Phys., Jan/Feb, 1990.

L. L. Boyer and G. S. Pawley. Molecular dynamics of clusters of particles interacting with pairwise
forces using a massively parallel computer. J. Comp. Phys., 78:405-423, 1988.

B. R. Brooks and M. Hodogéek. Parallelization of CHARMM for MIMD machines. Chemical Design
Automation News, 7:16-22, 1992.

D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki. A domain decomposition parallelization

strategy for molecular dynamics simulations on distributed memory machines. Comp. Phys. Comm.,
74:67-80, 1993.

J. P. Brunet, A. Edelman, and J. P. Mesirov. Hypercube algorithms for direct N-body solvers for
different granularities. SIAM J. Sci. Dist. Comp., 1993. to appear.

J. P. Brunet, J. P. Mesirov, and A. Edelman. An optimal hypercube direct N-body solver on the
Connection Machine. In Proc. Supercomputing '90, pages 748-752. IEEE Computer Society Press,
1990.

T. W. Clark, J. A. McCammon, and L. R. Scott. Parallel molecular dynamics. In Proc. 5th SIAM
Conference on Parallel Processing for Scientific Computing, pages 338-344. SIAM, 1992,

M. S. Daw and M. 1. Baskes. Embedded-atom method: Derivation and application to impurities,
surfaces, and other defects in metals. Phys. Rev. B, 29:6443-6453, 1984.

H. Q. Ding, N. Karasawa, and W. A. Goddard 111. Atomic level simulations on a million particles: The
cell multipole method for Coulomb and London interactions. J. Chem. Phys., 97:4309, 1992.

D. Fincham. Parallel computers and molecular simulation. Molec. Sim., 1:1-45, 1987,

G. C. Fox, M. A. Johnson, Gi. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker. Solving
Problems on Concurrent Processors: Volume I. Prentice Hall, Englewood Cliffs, NJ, 1988.

G. S. Grest at Exxon Research, personal communication, 1993.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., 73:325-348,
1987.

G. S. Grest, B. Diinweg, and K. Kremer. Vectorized link cell Fortran code for molecular dynamics
simulations for a large number of particles. Comp. Phys. Comm., 55:269-285, 1989.

S. Gupta. Computing aspects of molecular dynamics simulations. Comp. Phys. Comm., 70:243-270,
1992.

(24)

[25)

(26]

[27]

(28]

[29]

[30)

31]

(32]

[33]

(34]

(35)

[36)

(37]

(38]

[39]
[40]

[41]

H. Heller, H. Grubmuller, and K. Schulten. Molecular dynamics simulation on a parallel computer.
Molec. Sim., 5:133-165, 1990.

B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel
computations. Technical Report SAND90-1460, Sandia National Laboratories, Albuquerque, NM, 1992.

B. Hendrickson and D. Womble. The torus-wrap mapping for dense matrix calculations on massively
parallel computers. Technical Report SAND92-0792, Sandia National Laboratories, Albuquerque, NM,
1992.

B. A. Hendrickson and S. J. Plimpton. Parallel many-body simulations without all-to-all communica-
tion. Technical Report SAND92-2766, Sandia National Laboratories, Albuquerque, NM, 1993.

D. M. Heyes and W. Smith. Inf. Q. Computer Simulation Condensed Phases (Daresbury Laboratory),
28:63, 1988.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Adam Hilger, New York,
NY, 1988.

R. W. Hockney, S. P. Goel, and J. W. Eastwood. Quiet high-resolution computer models of a plasma.
J. Comp. Phys., 14:148-158, 1974.

J. J. Morales and M. J. Nuevo. Comparison of link-cell and neighbourhood tables on a range of
computers. Comp. Phys. Comm., 69:223-228, 1992,

M. R.S Pinches, D.J. Tildesley, and W. Smith. Large-scale molecular dynamics on parallel computers
using the link—cell algorithm. Molec. Sim., 6:51-87, 1991.

S.J. Plimpton. Molecular dynamics simulations of short-range force systens on 1024-node hypercubes.
In Proc. 5th Distributed Memory Computing Conference, pages 478-483. IEEE Computer Society Press,
1990.

S.J. Plimpton. Scalable parallel molecular dynamics on MIMD supercomputers. In Proc. Scalable High
Performance Computing Conference-92, pages 246-251. IEEE Computer Society Press, 1992.

S.J. Plimpton and B. A. Hendrickson. A new strategy for parallelizing molecular dynamics simulations
of organic systems. In preparation.

S. J. Plimpton and B. A. Hendrickson. Parallel molecular dynamics with the embedded atom method.
In Materials Theory and Modeling, volume 291, pages 37-42. Materials Research Society Symposium
Proc., Fall 1992.

S. J. Plimpton, B. A. Hendrickson, and G. S. Heflelfinger. A new decomposition strategy for paral-
lel bonded molecular dynamics. In Proc. 6th SIAM Conference on Parallel Processing for Scientific
Computing, pages 178-182. STAM, 1993.

S. J. Plimpton and E. D. Wolf. Effect of interatomic potential on simulated grain-boundary and bulk
diffusion: A molecular dynamics study. Phys. Rev. B, 41:2712-2721, 1990.

D. C. Rapaport. Comput. Phys. Rep., 9:1, 1988.

D. C. Rapaport. Multi-million particle molecular dynamics. II. Design considerations for distributed
processing. Comp. Phys. Comm., 62:217-228, 1991.

M. Schéen. Structure of a simple molecular dynamics Fortran program optimized for Cray vector
processing computers. Comp. Phys. Comm., 52:175-185, 1989.

38

[42]
[43]
[44]

(45]

a6
(7
48]
49
50

(51]

H. Schreiber, O. Steinhauser, and P. Schuster. Parallel molecular dynamics of biomoleculer Parallel
Computing, 18:557-573, 1992.

W. Smith. Molecular dynamics on hypercube parallel computers. Comp. Phys. Comm., 62:229-248,
1+91.

W. B. Street, D. J. Tildesley, and G. Saville. Multiple timestep methods in molecular dynamics. Mol
Phys., 35:639-48, 1978.

P. Tamayo and R. Gil<s. A parallel scalabl. approach to short -range molecular dynamics on the CM-5.
In Proc. Scalable High Performance Computing Conference-92, pages 240-245. IEEE Computer Society
Press, 1992.

P. Tamayo, J. P. Mesirov, and B. M. Boghosian. Parallel approaches to short-range molecular dynamics
simulations In Proc. Supercomputing '91, pages 462-470. IEKE Computer Society Press, 1991.

P. A. Taylor, J. S. Nelson, and B. W. Dodson. Adhesion between atomically flat metallic surfaces. Phys.
Rev. B, 44:5834-5841, 1991.

R. van de Geijn. Efficient global combine operations. In Proc. 6th Disiributed Memory Cozaputing
Conference, pages 291-294. IEEE Computer Society Press, 1991.

L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones
molecules. Phys. Rev., 159:98-103, 1967.

M. S. Warren and J. K. Salmon. A paraiiel treecode for gravitational N-body simulations with up to
20 million particles. Bulletin of the American Astronomical Sociely, 23:1345, 1991.

A. Windemuth and K. Schulten. Melecuiar dynamics simulation on the Connection Machine. Molec.
Sim., 5:353-361, 1991.

39

Internal Distribution

Paul Fleury
Brian Dodson
Jeff Nelson

Ed Barsis

Sudip Dosanjh
Bill Camp
Grant Heffelfinger
Martin Lewitt
Steve Plimpton (15)
Mark Sears
Dick Allen
Bruce Hendrickson
Kevin McCurley
Art Hale

Rob Leland
Mike Proicou
Steve Attaway
Paul Taylor
John Curro
Mike Kent
Elizabeth Holm
Dona Crawford
Ray Cline
Randy Cygan
Gary Carlson
John Shelnutt
Mike Colvin
Richard Judson
Charles Tong
Joe Schoeniger
Murray Daw
Stephen Foiles
Carl Melius

Jim Plimpton

Technical Library (5)
Technical Publications
Document Processing for
DOE/OSTI (10)

Central Technical File

1000
1104
1112
1400
1402
1421
1421
1421
1421
1421
1422
1422
1423
1424
1424
1424
1425
1432
1702
1815
1831
1900
1952
6118
6211
6211
8117
8117
8117
8117
8341
8341
8353
9301

7141
7151

7613-2
8523-2

40

DATE
- FILMEL

