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1 Introduction

Recently, quantum corrections to the black hole entropy from matter fields have been

studied extensively [1-11]. One source of the quantum corrections may be understood

as entropy of entanglement, which arises when the density matrix of a pure quantum

field theoretic state is reduced because the quantum field is not observed in some

region of space. It is hoped that this concept provides a description for some of the

contributions to the black hole entropy, where the unobserved quantum field lies within

the black hole horizon.

In quantum field theoretic calculations, ultraviolet divergences appear due to the

infinite number of degrees of freedom at short distances. Such infinities arise in the

entanglement entropy because there is an infinite number of states near the bound-

ary between the observed and unobserved regions. This implies that there is a con-

flict between the entropy defined by the counting of quantum states and the finite

Bekenstein–Hawking thermodynamic entropy of a black hole.

In this paper we examine the possiblity of defining a finite entanglement entropy

of a nontrivial state by subtracting the one associated with the vacuum. We study

the entanglement entropy associated with coherent states and one–particle states in

a massless scalar field theory in (1 + 1)-dimensional Minkowski space–time. We find

that the entanglement entropy for the coherent states is the same as that for the

vacuum, a result that can be generalized to a space–time of arbitrary dimension, with

an unobserved region of arbitrary shape. For a restricted class of one–particle states

we calculate the entanglement entropy explicitly and show that, once the vacuum

expression is subtracted, the remainder is finite. We discuss possible divergences in the

entanglement entropy for more general states.
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We begin by presenting a brief review of the entanglement entropy associated with

the vacuum state, which arises when we trace over the fields in the negative x region

by considering an imaginary boundary at x = 0. The Hamiltonian of the system is

H =
1

2

∫

dxΠ2(x) +
1

2

∫

dxdy Φ(x)Ω2(x, y)Φ(y) (1.1)

where Π(x) is the canonical momentum of Φ(x) and Ω2(x, y) = −∇2δ(x − y). In the

functional Schrödinger representation, the vacuum wave functional has the form

〈φ|0〉M = Ψ0[φ] = det
1

4

(

Ω

π

)

exp
{

−1

2

∫

dxdy φ(x)Ω(x, y)φ(y)
}

(1.2)

where φ(x) is a c-number field at a fixed time (the label M indicates that this is the

Minkowski vacuum). By constructing the pure state density matrix and tracing over

the field in the negative x region, we obtain a reduced density matrix,

ρ0(φ
1
+, φ

2
+) =

∫

Dφ−Ψ0(φ
1
+, φ−)Ψ

∗
0(φ

2
+, φ−)

=

[

det Ω

det Ω−−

]
1

2

e−
1

2

∫

(φ1
+
A++φ1++φ2

+
A++φ2++2φ1

+
B++φ2+) (1.3)

where A++ and B++ are functions of the kernel entering in Eq. (1.2),

A++ = Ω++ +B++ ; B++ = −1

2
Ω+−Ω

−1
−−Ω−+ . (1.4)

[Throughout we use a self–evident functional/matrix notation, with φ− ≡ φ(x < 0),

φ+ ≡ φ(x>0), Ω+− ≡ Ω(x>0, y <0) etc., and
∫

φAφ ≡ ∫ ∫

dxdy φ(x)A(x, y)φ(y).] In

Eq. (1.4) Ω−1
−− is the inverse of the restricted kernel Ω−−. It has been shown first by

Bombelli et al. [2], that ρ0 may be diagonalized by solving the eigenvalue problem

∫ ∞

0
dz Λ++(x, z)ψ(z) = λψ(x) . (1.5)

where

Λ++(x, z) ≡ −
∫ 0

−∞
dy [Ω−1]+−(x, y)Ω−+(y, z) . (1.6)
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In this expression [Ω−1]+− is the inverse of the full kernel with argument restricted.

The eigenfunctions and eigenvalues of Λ++ are

ψ(x) ∝ exp(ik ln x) (1.7a)

λ(k) =
1

sinh2 πk
. (1.7b)

To calculate the entropy we must discretize the spectrum. We adopt the procedure

used in Ref [5]: we introduce an infrared cutoff L and an ultraviolet cutoff ǫ , i.e.

ǫ ≤ x ≤ L, and demand that ψ(x) vanish at x = L and x = ǫ,

ψ(x) = sin(kn ln x/ǫ) (1.8a)

kn =
πn

ln(L/ǫ)
, n an integer. (1.8b)

The vacuum entanglement entropy can be approximated as an integral,

S0 =
∑

n

S0(kn) ≈ 2

π
ln
L

ǫ

∫ ∞

0
dω S0(ω) (1.9)

where S0(ω) is the contribution of the eigenmode ω ≡ |k|,

S0(ω) = − ln(1− µ)− µ

1− µ
lnµ ; µ = e−2πω . (1.10)

This contribution is finite as ω → ∞, but diverges as ω → 0. The divergence is

integrable, however, and the integral in Eq. (1.9) is finite. As can be seen from Eq.

(1.9) S0 is infinite as ǫ → 0 due to the infinite density of states near the boundary at

x = 0.

2 Entanglement Entropy of a Coherent State

We consider a coherent state |Ψα〉, which is an eigenstate of the annihilation operator,

a(x) =
1√
2

[
∫ ∞

−∞
dy Ω

1

2 (x, y)Φ(y) + i
∫ ∞

−∞
dy Ω− 1

2 (x, y)Π(y)
]

(2.1a)
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〈φ|a(x)|Ψα〉 = α(x)Ψα[φ] (2.1b)

where α(x) is in general complex. The solution to Eq. (2.1b) is

Ψα[φ] = N exp
[

−1

2

∫ ∫

φΩφ+
√
2
∫ ∫

αΩ1/2φ
]

. (2.2)

For our calculation it is useful to write Ψα in terms of the real and imaginary parts of

its (functional) eigenvalue α ≡ αR + iαI :

Ψα[φ] = Nei
∫

πφe−
1

2

∫ ∫

(φ−φ)Ω(φ−φ) (2.3)

where

φ(x) =
√
2
∫ ∞

−∞
dy αR(y)Ω

− 1

2 (y, x) (2.4a)

π(x) =
√
2
∫ ∞

−∞
dy αI(y)Ω

1

2 (y, x) (2.4b)

and a factor exp(−1
2

∫

φΩφ) has been absorbed into the normalization. By tracing over

φ− we obtain the reduced density matrix for this state:

ρα(φ
1
+, φ

2
+) =

∫

Dφ−Ψα(φ
1
+, φ−)Ψ

∗
α(φ

2
+, φ−)

= ei
∫

π+(φ1
+
−φ2

+
)ρ0(φ

1
+ − φ+, φ

2
+ − φ+) (2.5)

where ρ0 is the reduced density matrix for the vacuum state given in Eq. (1.3), with

the argument φ1,2
+ translated by φ+. One can show that the phase appearing in ρα dis-

appears in the functional integration involved in the entropy calculation. It is straight-

forward to see that the eigenvalues of ρα are the same as those of ρ0, and one concludes

that the entanglement entropy arising from the coherent state is given by the vacuum

state entanglement entropy:

Sα = −Tr ρα ln ρα

= −Tr ρ0 ln ρ0

= S0 . (2.6)
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We can understand this result with the following argument. The relation between

ρα and ρ0 given in Eq. (2.5) reflects the fact that the coherent state labelled by α

is related to the vacuum state by a unitary transformation. This becomes clear if we

rewrite Eq. (2.3) in terms of the unitary operator constructed from Π and Φ,

Ψα[φ] = N〈φ|ei
∫

πΦei
∫

φΠ|0〉M . (2.7)

Moreover, when we factor the basis state into |φ〉 = |φ+〉 ⊗ |φ−〉, the unitary operator

factors into two pieces, one acting on |φ+〉 alone and the other acting on |φ−〉 alone,

due to the commutation relation [Π±,Φ∓] = 0:

ei
∫

πΦei
∫

φΠ =
(

ei
∫

π+Φ+ei
∫

φ+Π+

) (

ei
∫

π−Φ−ei
∫

φ
−
Π−

)

. (2.8)

Eqs. (2.7) and (2.8) then lead to Eq. (2.6).

Our result is rather surprising, since the entropy we calculate is determined by the

counting of quantum states, and there is no reason to expect that the entanglement

entropy arising from the two different pure states should be the same. This result may

be easily generalized to a spacetime of arbitrary dimension and to an unobserved region

of any shape.

3 Entanglement Entropy of One–Particle States

In this section we study the structure of the divergences of the entanglement entropy

arising from one–particle states. Calculation of the entanglement entropy associated

with one–particle states is in general extremely complicated due to the difficulty in

diagonalizing the reduced density matrix. We find that the calculation is much simpler

if we use an alternative quantization of Minkowski space, employing the Rindler space

mode functions [14]. Therefore, we shall first describe this formalism.
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3.1 Rindler Space Description of the Minkowski Vacuum

We introduce the familar two–wedge Rindler coordinates ξ and η, which are related to

the Minkowski coordinates x and t through the relations

x = ±a−1eaξ cosh(aη) (3.1a)

t = ±a−1eaξ sinh(aη) (3.1b)

where the parameter a is a positive constant, and the sign is taken to be positive and

negative in the right–hand and left–hand wedges, respectively. The Rindler coordinates

take all real values, −∞ < ξ, η <∞, and cover the two quadrants of Minkowski space

given by |x| > |t|. Due to the fact that the Rindler metric is conformal to all of

Minkowski space and the massless Klein–Gordon equation is conformally invariant in

(1 + 1)–dimensions, there exist mode solutions of the form

Ruk =

{

1√
4πω

ei(kξ−ωη) in right wedge
0 in left wedge

(3.2a)

Luk =

{

0 in right wedge
1√
4πω

ei(kξ+ωη) in left wedge (3.2b)

where ω = |k|. These mode functions can be analytically continued to the region

|x| < |t|, and together, Luk and Ruk are complete in all of Minkowski space [12]. The

field operator Φ, therefore, may be expanded in terms of these solutions, resulting in

an alternative Fock space;

Φ =
∫

dk
(

Lbk
Luk +

Rbk
Ruk + h.c.

)

(3.3)

The operators Rbk and Lbk annihilate the Rindler vacuum, |0〉Rind ≡ |0〉R ⊗ |0〉L,

Lbk|0〉Rind = Rbk|0〉Rind = 0 . (3.4)
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With this alternative formulation one can characterize the states of the quantum field

either as Minkowski particle states according to the usual quantization, in which the

field operator is expanded as

Φ =
∫

dp√
4πω

[

ape
i(px−ωt) + a†pe

−i(px−ωt)
]

(3.5)

with ω = |p|, or as Rindler particle states according to Eq. (3.3).

We note that at a fixed time t = η = 0 the Rindler mode functions in Eq. (3.2a,

3.2b), with a = 1, are precisely the eigenfunctions in (1.7a) that diagonalize the vacuum

reduced density matrix given in Eq. (1.3). When we write the instantaneous field

configuration as

φ(ξ(x)) = θ(x)
∫ ∞

−∞

dk

2π
φR(k)e

ikξ(x) + θ(−x)
∫ ∞

−∞

dk

2π
φL(k)e

ikξ(x) (3.6)

the Minkowski vacuum wave functional [Eq. (1.2)] has the following form in the basis

|φLφR〉 [13]:

Ψ0(φR, φL) = 〈φLφR|0〉M

∝ exp

{

−1

2

∫ ∞

−∞

dk

2π

[

k coth(πk/a)
(

|φR|2 + |φL|2
)

− 2kReφRφ
∗
L

sinh(πk/a)

]}

.

(3.7)

By constructing the density matrix for this state and integrating over the field config-

uration for x < 0, we obtain the reduced density matrix

ρ0(φ
1
R, φ

2
R) =

∫

DφLDφ∗
L Ψ0(φ

1
R, φL)Ψ

∗
0(φ

2
R, φL)

∝ exp

{

−1

2

∫ ∞

−∞

dk

2π

[

k coth(2πk/a)
(

|φ1
R|2 + |φ2

R|2
)

− 2kReφRφ
∗
L

sinh(2πk/a)

]}

.

(3.8)

This is precisely the density matrix of Eq. (1.3) when it is diagonalized using Eq.

(1.7a, 1.7b). The momentum variable k, which we shall call the Rindler momentum,
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labels the eigenmode with eigenvalue λ(k). Eq. (3.8) has the form of a thermal density

matrix at a temperature TR = a/2π.

It is clear from the above discussion that the entanglement entropy for the

Minkowski space geometry we are considering may be analyzed in the language of

Rindler space. In order to discuss the one–particle Minkowski states we introduce

the elegant formulation given in [14], where one constructs the Minkowski positive

frequency mode functions

f1 =
1

√

2 sinh πω/a

[

eπω/2a Ruk + e−πω/2a Lu∗−k

]

(3.9a)

f2 =
1

√

2 sinh πω/a

[

e−πω/2a Ru∗−k + eπω/2a Luk

]

(3.9b)

and expands the field as

Φ =
∫

dk
(

d
(1)
k f1 + d

(2)
k f2 + h.c.

)

. (3.10)

The operators d
(1,2)
k are then given by

d
(1)
k =

1
√

2 sinh πω/a

[

eπω/2a Rbk − e−πω/2a Lb†−k

]

(3.11a)

d
(2)
k =

1
√

2 sinh πω/a

[

eπω/2a Lbk − e−πω/2a Rb†−k

]

. (3.11b)

and they annihilate the Minkowski vacuum,

d
(1,2)
k |0〉M = 0 . (3.12)

This can be explicitly verified in the functional Schrödinger representation, where the

vacuum wave functional is given by Eq. (3.7), and L,Rbk and L,Rb†k have the following

form:

L,Rbk =
1√
2

[√
ωφL,R(k) +

1√
ω

δ

δφ∗
L,R(k)

]

(3.13a)

L,Rb†k =
1√
2

[√
ωφ∗

L,R(k)−
1√
ω

δ

δφL,R(k)

]

. (3.13b)
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Eq. (3.12) implies that d
(1,2)
k can be expressed as a superposition of the conventional

Minkowski space annihilation operators ap,

d
(1,2)
k =

∫ ∞

−∞

dp

2π
D(1,2)(k, p)ap . (3.14)

We find the expansion coefficients to be

D(n)(k, p) =

[

2k

|p| sinh(πk/a)
]

1

2

Γ(k/ia)|p|ik/a
{

θ(kp) , n = 1
θ(−kp) , n = 2

(3.15)

where Γ(x) and θ(x) are the gamma and step functions.

To calculate the entanglement entropy for a one–particle state, we find it convenient

to use an alternative representation of the Minkowski vacuum, constructed in Ref [14]:

from Eqs. (3.11a), (3.11b), and (3.12), we have

|0〉M =
∏

k,−k
Nk

∑

n

e−πnω/a|nk〉R ⊗ |n−k〉L

≡
∏

k,−k
|0〉kM . (3.16)

The normalization is Nk = (1−e−2πω/a)1/2. The product
∏

k,−k is taken over a complete

set of Rindler modes, and |nk〉R,L denotes right and left Rindler states with n particles

of Rindler momentum k. By tracing over the degrees of freedom in the left region, we

obtain the reduced density operator, ρ̂0; since it is diagonalized by the Rindler mode

functions, it may be written as a product of density operators, one for each Rindler

mode:

ρ̂0 ≡
∏

k,−k
ρ̂k0 (3.17)

where the contribution from each mode is given by

ρ̂k0 =
∑

m
L〈m−k|0〉kM k

M〈0|m−k〉L

= N2
k

∑

m

e−2πmω/a|m〉RR〈m| . (3.18)
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This is an alternative form of the density matrix given in Eq. (3.8). The entanglement

entropy can be calculated simply, and, upon discretizing the spectrum by demanding

that Ruk vanish at ξ(L) and ξ(ǫ), we find that it has the same form as Eq. (1.9). The

advantage of using this formalism is that it automatically gives the diagonal form of

the reduced density matrix for the one–particle state that we are going to consider.

3.2 Entanglement Entropy of a One–Particle State

We shall now compute the entanglement entropy of a one–particle Minkowski state with

a definite Rindler momentum k, by exciting the positive–frequency mode f1. This is a

particular superposition of Minkowski momentum eigenstates:

d
(1)†
k |0〉M =

∫ ∞

−∞

dp

2π
D(1)∗(k, p)a†p|0〉M . (3.19)

Using the notation of Eq. (3.16), we write this state as

d
(1)†
k |0〉M = |1〉kM

∏

ℓ 6=k
|0〉ℓM (3.20)

where

|1〉kM = N
∑

n

e−πnω/a
{√

n+ 1|(n+ 1)k〉R ⊗ |n−k〉L

− e−πω/a
√
n|nk〉R ⊗ |(n− 1)−k〉L

}

= N 2 sinh(πω/a)
∑

n

e−πnω/a
√
n|nk〉R ⊗ |(n− 1)−k〉L (3.21)

The normalization factor is singular:

N 2 = M〈0|d(1)k d
(1)†
k |0〉M = 2πδ(0) . (3.22)

The reduced density matrix, normalized to have unit trace, is then

ρ̂(k) =
1

2πδ(0)
Tr L

[

d
(1)†
k |0〉MM〈0|d(1)k

]

= ρ̂k1
∏

ℓ 6=k
ρ̂ℓ0 (3.23)
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where Tr L represents a trace over {⊗k,−k |nk〉L}, ρ̂ℓ0 is given by Eq. (3.18), and

ρ̂k1 = 4 sinh2(πω/a)
∑

n

ne−2πnω/a|nk〉RR〈nk| . (3.24)

The density operator is again diagonal, and the entanglement entropy is readily calcu-

lated:

S = S1(k) +
∑

ℓ 6=k
S0(ℓ) . (3.25)

(The summation reflects the fact that the spectrum must be discretized for this expres-

sion to be well–defined.) When we subtract the entanglement entropy of the vacuum

state, S0, from S, ∆S ≡ S − S0 reduces to

∆S = S1(k)− S0(k)

= − ln(1− µ)− µ

1− µ
lnµ− (1− µ)2

µ

∑

m

(m lnm)µm (3.26)

where µ = e−2πω/a as before. We have evaluated the last term in this expression

numerically: as shown in Fig 1, ∆S is finite for all values of ω. It can also be evaluated

analytically in the limits ω → 0 and ω → ∞ [15]:

lim
ω→0

∆S = γE ≈ 0.5772 (3.27a)

lim
ω→∞

∆S = 0 . (3.27b)

We emphasize that the density of states factor, which made the vacuum state entan-

glement entropy [Eq. (1.9)] diverge, does not enter into ∆S. Thus we have shown

that the entanglement entropy for a particular class of one–particle states can be made

finite by subtracting from it the vacuum entanglement entropy.

3.3 More General One–Particle States

We have computed the entanglement entropy associated with the one–particle state

given in Eq. (3.19) in closed form using the fact that the Rindler space formalism
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leads to a diagonal reduced density matrix arising from that state. More general one–

particle Minkowski states are created by operators corresponding to both the f1 and

f2 modes [see Eqs. (3.9a,3.9b)]:

|ψ〉 =
∫ ∞

−∞

dk√
2π

[

ψ1(k)d
(1)†
k + ψ2(k)d

(2)†
−k

]

|0〉M . (3.28)

Here ψ1,2(k) are smearing functions determining a superposition of momentum states.

With such states the problem of diagonalizing the reduced density matrix remains.

Already, for the simple choice ψ1(k) = ψ2(k) =
√
πδ(k − ℓ), i.e.

|ψ〉 = 1√
2

(

d
(1)†
ℓ + d

(2)†
−ℓ

)

|0〉M (3.29)

the reduced density matrix is not diagonal. However, we have computed the entan-

glement entropy numerically: when the vacuum contribution is subtracted off, the

entanglement entropy ∆S ≡ S − S0 is found to be finite (see Fig 2). Therefore, it is

reasonable to expect that, for well–behaved smearing functions that fall off sufficiently

fast at large k, the entanglement entropy arising from the state |ψ〉 is finite once the

vacuum contribution is subtracted.

In the appendix we provide a formal, but concrete, calculation that supports the

expectation that the entanglement entropy ∆S of one–particle states is finite for states

defined by well–behaved smearing functions.

Our calculation presented in this paper suggests that the difference between the

entanglement entropy arising from different states, but for the same unobserved region,

is finite for a given theory of matter fields. This is complimentary to another finite

quantity that has recently been studied in [8], where the excited state was produced

by a moving mirror.

Appendix
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We shall consider a one–particle state defined by

|ψ〉 =
∫ ∞

−∞

dk√
2π

ψ(k)d
(1)†
k |0〉M (A.1)

and discuss possible divergences in the entanglement entropy S(ψ) associated with

|ψ〉. First, using a variational principle, we show that S(ψ) is bounded by an entropy

defined by

Sb = Tr ρ̂b ln ρ̂b (A.2a)

ρ̂b =
∫ ∞

−∞
dk |ψ(k)|2ρ̂(k) (A.2b)

where ρ̂(k) is the reduced density matrix associated with the state d
(1)†
k |0〉M given in Eq.

(3.20). We can obtain an explicit expression for Sb due to the fact that ρ̂b is diagonal

in the basis of n-particle Rindler states. Then we shall study the divergence structure

of Sb, and show that ∆Sb ≡ Sb − S0 is finite for well–behaved smearing functions

ψ(k). Although the bound S(ψ) ≤ Sb (which we shall prove below) is a formal one,

in that both Sb and S0 are infinite, our calculation is interesting since we show that

the difference, ∆Sb, is finite for well–behaved smearing functions. The finiteness of the

difference supports the expectation that ∆S(ψ) ≡ S(ψ)− S0 is finite.

We first present a general extremum principle.

Lemma:

Let ρ̂(q) be a family of density operators labelled by a continuous parameter q, and

consider operators of the form

ρ̂[h] =
∫

dq h(q)ρ̂(q) . (A.3)

We guarantee that ρ̂[h] will be a density operator by demanding that h(q) > 0 and

∫

dq h(q) = 1. Subject to these constraints we extremize the functional

F [h] = −Tr ρ̂[h] ln ρ̂[h] + λ
(
∫

dq h(q)− 1
)

. (A.4)
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Upon setting δF [h]/δh(q) = 0 we find the extremum condition

− Tr ρ̂(q) ln ρ̂[h] = 1− λ . (A.5)

The right hand side of this expression is independent of q, so Eq. (A.4) is extremized

by the h(q) that makes the left hand side constant as well.

Next we construct a family of density operators ρ̂ψ(q) in the following way: define

a set of states generalizing Eq. (A.1),

|ψ, q〉 =
∫ ∞

−∞

dk√
2π

q−ikψ(k)d
(1)†
k |0〉M (A.6)

and compute the reduced density operator

ρ̂ψ(q) = Tr L|ψ, q〉〈ψ, q| . (A.7)

In the calculations that follow we shall use a scaling relation for the states |ψ, q〉 that is

manifest in the functional Schrödinger representation described in section (3.1). Under

the transformation φR,L → qikφR,L, the one–particle state

〈φLφR|d(1)†k |0〉M = Nk

[

φ∗
R(k)− e−πω/aφ∗

L(k)
]

Ψ0(φR, φL) (A.8)

(where Nk is a normalization constant) becomes

〈qikφL, qikφR|d(1)†k |0〉M = q−ik〈φLφR|d(1)†k |0〉M . (A.9)

Combining Eqs. (A.9) and (A.6), we find the scaling relation that we seek,

〈φLφR|ψ, q〉 = 〈qikφL, qikφR|ψ, 1〉 . (A.10)

Furthermore, the functional measures DφRDφ∗
R and DφLDφ∗

L are invariant under this

transformation.
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Now we use the lemma: consider the extremum condition Eq. (A.5), which we

write as

− Tr ρ̂ψ(q) ln
[
∫ ∞

0
dq′ h(q′)ρ̂ψ(q

′)
]

= constant . (A.11)

Using Eq. (A.10), and the invariance of the functional measure, we have

− Tr ρ̂ψ(q) ln
[
∫ ∞

0
dq′ h(q′)ρ̂ψ(q

′)
]

= −Tr ρ̂ψ(1) ln
[
∫ ∞

0
dq′ h(q′)ρ̂ψ(q

′q−1)
]

(A.12)

which is q-independent if dq′h(q′) = d(qq′)h(qq′). The normalized h(q) with this prop-

erty is

h(q) =
1

2πδ(0)

1

q
(A.13)

where we have written the singular normalization (
∫∞
0 dq q−1)−1 as (2πδ(0))−1. The

corresponding density operator ρ̂[h] is

ρ̂[h] =
1

2πδ(0)

∫ ∞

−∞
dk |ψ(k)|2 Tr L

[

d
(1)†
k |0〉MM〈0|d(1)k

]

=
∫ ∞

−∞
dk |ψ(k)|2ρ̂(k) (A.14)

where ρ̂(k) is given by Eq. (3.23). This density operator is our ρ̂b in Eq. (A.2b). It is

diagonal in the basis {⊗k,−k |nk〉R}.

We must show that the extreme value is a maximum for F [h], if it is to provide a

bound. We take the second functional derivative, evaluated at the extremum,

δ2F [h]

δh(q)δh(q′)
= −Tr

ρ̂(q)ρ̂(q′)

ρ̂b
. (A.15)

(We take the trace with respect to the basis in which ρ̂b is diagonal.) The functional

Hessian matrix, Eq. (A.15), is diagonalized by the set of basis functions qik−1:

−
∫ ∞

0
dq q−ik−1

∫ ∞

0
dq′ q′ik

′−1Tr
ρ̂(q)ρ̂(q′)

ρ̂b
= −2πδ(k − k′)

∫ ∞

0
dξ ξik

′−1Tr
ρ̂(1)ρ̂(ξ)

ρ̂b
.

(A.16)
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We clarify this expression by defining Ô(k) =
∫∞
0 dq qik−1ρ̂(q), and writing the diagonal

elements as −Tr Ô†(k)Ô(k)/ρ̂b. They are seen to be the negative trace of the ratio of

two positive operators, and are therefore negative. The eigenvalues of the Hessian

matrix are thus all negative, and the extremum is a maximum. We have therefore

established the formal bound S(ψ) ≤ Sb.

We shall now calculate Sb. We first discretize the spectrum by introducing infrared

and ultraviolet cutoffs as given in Eq. (1.8b). This leads to the following expression

for ρ̂b:

ρ̂b = lim
∆k→0

∑

n

∆k|ψ(kn)|2ρ̂(kn) (A.17)

where ∆k = π/ ln(L/ǫ), kn = n∆k, and ρ̂(kn) is given by (using Eqs. (3.18) and

(3.24)),

ρ̂(kn) = lim
∆k→0

1− µn
µn

∏

i



(1− µi)
∞
∑

mi=0

mnµ
mi

i |mi〉RR〈mi|


 (A.18)

with µn = e−2π|kn|/a. With the expression above for ρ̂b, the entropy Sb, when the

vacuum entanglement entropy is subtracted, reduces to

∆Sb ≡ Sb − S0

= −
∑

n

fn lnµn
1− µn

−
∏

i

(1− µi)
∞
∑

m1,m2,...=0

µmn

n F (f) lnF (f) (A.19)

where we have defined fn ≡ |ψn|2∆k, and

F (f) ≡
∑

n

1− µn
µn

fnmn . (A.20)

This gives an upper bound for ∆S(ψ):

∆S(ψ) = S(ψ)− S0 ≤ ∆Sb . (A.21)

Although ∆Sb cannot be evaluated exactly for arbitrary ψ(k), it provides the following

information: due to the normalization of ρ̂b, which implies the normalization of the

18



smearing function
∑

n∆k|ψ(kn)|2 = 1, the density of states does not appear in ∆S as

an overall factor. Thus the only possible source of divergence is the smearing func-

tion ψ(k). However, one can evaluate Eq. (A.19) for smearing functions that satisfy

ψ(k) = 0 for |k| > k0, where k0 ≪ a. In this limit, ∆Sb is well approximated by a

multidimensional integral: if we set yn = −mn lnµn, and dyn ∼ − lnµn, then

∆S ≈ 1−
∫ ∞

0
· · ·

∫ ∞

0
dy1dy2 . . . e

−
∑

n
yn

∑

n

ynfn ln
∑

n

ynfn

= 1− ‖f‖ ln ‖f‖ − ‖f‖(1− γE) (A.22)

where ‖f‖2 ≡ ∑

n |fn|2 ≤ 1. For any of the allowed values of ‖f‖ this expression is

finite and nonzero. It is reasonable to suppose that ∆Sb will remain finite for smearing

functions that drop off sufficiently fast at large k: this supports the expectation that,

for resonable values of the smearing function, the difference between the entanglement

entropy of the state given by Eq. (A.1) and that of the vacuum is finite.
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Figure Captions

Fig. 1: ∆S for the state in Eq. (3.19) as a function of k/a. The dashed line is γE.

Fig. 2: ∆S for the state in Eq. (3.29) as a function of ℓ/a.
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