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ABSTRACT

We develop techniques for calculating the ground state wave functional and

the geometric entropy for some simple field theories. Special attention is devoted

to fermions, which present special technical difficulties in this regard. Explicit cal-

culations are carried through for free mass bosons and fermions in two dimensions,

using an adaptation of Unruh’s technique to treat black hole radiance.
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1. Introduction

Recently there has been great interest in the concept of geometric entropy [1-9].

Almost all of the explicit work has been done for free scalar bosons, although one

can adapt conformal field theory arguments to cover some additional special cases.

Among several possible generalizations, perhaps the most interesting is to fermions.

Fermions play a role in several of the speculations regarding geometric entropy,

especially those involving its analogues in superstring theory. The ground state

wave functional and the path integral, fundamental objects from any perspective

and certainly central to any discussion of geometric entropy, have quite a different

character for fermions than for bosons. Whereas for bosons the states of the

quantum field theory can be labelled by classical field configurations, since the

field operators on a complete hypersurface constitute a complete set of commuting

observables, the corresponding structure for fermions is less transparent.

Let us recall the basic construction used to define geometric entropy. One

divides space into two regions, which we shall call inside and outside. We consider

a quantum field theory defined in all of space, and possessing a complete set of local

observables ξ(x). We divide these into two disjoint subsets according to whether

their argument x lies on the inside or on the outside. Any state may be labelled

by its amplitude as a function of the the eigenvalues ξin, ξout of the ξ(x) with x

lying on the inside or the outside respectively. Now consider a definite pure state

described by the wave functional Ψ[ξin, ξout]. In the body of this paper, we shall

be concerned with the ground state exclusively, and when we speak of geometric

entropy without further specification we shall have this case in mind. Then the

density matrix appropriate to an observer who only has access to the outside region

is obtained by tracing over the variables localized in the in-region:

ρ(ξ1out, ξ
2
out) =

∑

ξin

Ψ̄[ξin, ξ
1
out]Ψ[ξin, ξ

2
out] . (1.1)

This density matrix in general no longer describes a pure state, and one defines
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the geometric entropy relative to the given state and the given division of space as

Sgeom = −Trρlnρ . (1.2)

This S is a measure of the strength of the correlations between the inside region

and the outside region, information concerning which is lost in the process of trac-

ing over the inside region. It has several qualitative properties that are rather

different from those of thermodynamic entropy; notably it is not extensive, and its

value is invariant under interchange of “inside” with “outside”. In field theories

with sufficiently singular ultraviolet behavior (that is, in essentially all ordinary –

non-topological – field theories) the geometric entropy is dominated by short-range

correlations. In the ultraviolet limit all theories look scale invariant, and further-

more the important correlations arise from field fluctuations in the direction of the

normal at the boundary. As a matter of technical convenience, rather than concep-

tual necessity we shall, below, often use free massless fields in 1+1 dimensions as

our working material. Due to the considerations just mentioned, this specialization

is less severe than might appear at first sight. (In this regard, the interested reader

might like to refer to Equation 36 of [4] as an illustration of the special significance

of the 1+1 dimensional massless theories. Such theories, of course, also occupy

center stage in superstring theory.)

Although we will not pursue it much further in this paper, let us briefly note

that one can also define the geometric entropy for mixed states, e.g. thermal states.

In that context several of the points made above require modification. In particular,

there is no longer symmetry between inside and outside; futhermore, the difference

between the thermal geometric entropies at different temperatures is not expected

to be dominated by ultraviolet behavior, and it should be approximately extensive

for large volumes – the bulk geometric entropy density coincides with the bulk

thermodynamic entropy.

We have considered the geometric entropy in general conformal field theories

previously, and obtained quantitative results which coincide with the ones pre-

sented here [8]. The goal of the present work is, in a sense, to do it again the hard
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way – working with field variables (especially, fermion field variables ) directly,

without invoking conformal symmetry. Our goal is, by being very pedestrian and

explicit, to sharpen our understanding of the technical issues involved, particularly

in defining the wave functionals and the path integrals.

As an example of the sort of subtlety that arises, consider the following. In

their standard formulation, relativistic fermions obey a linear equation, arising from

a quadratic action. One is accustomed to evaluating quadratic path integrals by

substituting the solutions of the classical equations of motion (with the appropriate

boundary conditions) back into the action. But here the action will simply vanish,

and by proceeding naively one obtains a trivial – wrong – answer.

Below, by exercising more care, we shall be able to obtain meaningful, useful

expressions in this and similar contexts. Having these in hand, we will proceed

to evaluate the density matrix and geometric entropy for free massless bosons

and fermions in 1+1 dimensions. When the dust settles, we are left with a very

convenient formalism that treats bosons and fermions on an equal footing. Here,

as in most other work on geometric entropy, the insight that allows us to pursue

matters to the very end is an inspired choice of variables, first used by Unruh [10],

who used it in a different but related context. But there are some small surprises

in the details: our generalization of the Unruh ansatz contains a funny coefficient,

signs must be treated very carefully, and boundary conditions are nontrivial.

2. The Wave Functional

To discuss geometric entropy we need to describe our reference state in terms

of local variables. In ordinary quantum mechanics we can project on eigenstates

|q〉 of the position operator q̂, thus defining Ψ(q, t) = 〈q|Ψ(t)〉. For field theory, we

want to choose a complete set of local variables generalizing q̂. The field operators

φ̂(x) form a natural choice, but it is by no means unique. We might, for example,

choose instead to diagonalize the canonical momenta π̂φ(x). It is by no means
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obvious at first sight what constitutes the “natural” choice is for fermions; we shall

see it is in a sense a linear combination of the two just mentioned.

2.1. Schrödinger Equation and Path Integral

Although the definition of geometric entropy does not refer explicitly to dynam-

ics, we will find it useful to consider solutions to the time-dependent Schrödinger

equation

i
d

dt
|Ψ〉 = Ĥ|Ψ〉 (2.1)

where Ĥ is the Hamiltonian operator. The formal solution is

|Ψ(tf )〉 = Te−iĤ(tf−ti)|Ψ(ti)〉 (2.2)

where T denotes time-ordering. Time-ordering is an essential requirement, because

the Hamiltonian is an integral over objects that do not mutually commute.

The formal expression (2.2) for the wave function is difficult to evaluate explic-

itly for specific field theories, and the time-ordering obscures the Lorentz invariance

of the theory. Indeed, the Hamiltonian as well as the time-ordering procedure de-

pend explicitly on the choice of reference frame. Fortunately, one has the identity

Ψ[φf ] = 〈φf |Te−iĤ(tf−ti)|φi〉 =
∫

Dφ eiA(φ) . (2.3)

In this path integral, one integrates over all field configurations for which the

field is a prescribed value φi at some early time ti and equal to φf at the final

time tf . The field configuration at the early time selects a specific state. The

measure will be constructed below. If the action A(φ) and the measure Dφ are

Lorentz invariant, the transformation law for the wave functional is simply given

by appropriate change in boundary conditions.
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2.2. Symmetry and the Geometric Derivation

We recall a recent simple derivation [11] of (2.3), that is very instructive for

our purposes. The Hamiltonian expression satisfies a simple first order differential

equation. Since both expressions reduce to 1 for tf = ti, to prove their identity

it suffices to show that the Lagrangian expression satisfies the same differential

equation. Thus we must evaluate

δ

∫

Dφ ei
∫ tf

ti
L(φ) ddx

where the variation is a change in tf to tf + δtf .

The definition of the energy momentum tensor Tµν is

dA = − 1

4π

∫

Tµνdg
µνddx (2.4)

under a change dgµν in metric. The variation δ may be implemented by choosing

a new g00 = (1 + 2 δtf
tf−ti + const) . Following [11] (using, in essence, a special case

of the Schwinger action principle), we require the expression to be invariant under

changes in coordinates, thus deriving

δ

∫

Dφ eiA ≃ i

4π

∫

DφeiA
∫

Tµνdg
µνddx (2.5)

for true changes in geometry. Notice the sign of this expression. Next, we can use

conservation of (integrated!) energy-momentum to put this in the form

δ
∫

Dφ eiA
δtf

= − i

2π

1

tf − ti

∫

Dφ(
∫

T00d
dx) eiA = −iĤΨ[φ] , (2.6)

which establishes (2.3). The action of Hamiltonian operator Ĥ on the wave func-

tional is defined by the last equation, i.e. it is found by evaluating the operation

occurring in (2.6) on the final slice of the functional integral.
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For the preceding derivation, the crucial property of the path integral mea-

sure employed is invariance under time dilation. We will also require invariance

under translation with a function. A measure satisfying these properties will be

constructed in the next sections, and will involve some surprising subtleties.

To motivate the detailed investigation, let us elaborate further upon an dif-

ficulty with with the näıve application of the path integral for fermions, that we

already touched on briefly. For simplicity, we consider a Weyl fermion in two di-

mensions. On shell this can be represented as a function of (say) x + t, or in

complex variables as a holomorphic function of z. The action is A = 1
2π

∫

ψ∂̄ψ.

Now it appears that, at the saddle point, this action vanishes, since the equation

of motion is simply ∂̄ψ = 0. One the other hand, consider the Hamiltonian expres-

sion for the wave functional: the Hamiltonian Ĥ = i
4π

∫

ψ∂σψ certainly does not

vanish for holomorphic ψs. How, then, can the two expressions (2.3) for the wave

functional possibly agree?

To address this question recall that in the derivation of the path integral for-

mula for the wave function we exploited the feature that the measure is invariant

under a rescaling of the time variable. But under such a rescaling, z mixes with z̄.

It is therefore important that, as intermediate configurations in the path integral,

we use a set of states that is closed under time translations. That means that

even for chiral particles such as Weyl fermions, one cannot impose the equation

of motion on intermediate states. To get a simple path integral we must allow

both right and left movers in intermediate states, even for a Weyl particle. Once

we do that, it becomes less mysterious why the action does not necessarily vanish.

Note that in this reasoning we tacitly assumed that a stationary phase method is

applicable and exact for the quadratic action, or in other words that by imposing

the equations of motions found by varying the action with respect to the field, we

find a field ψcl that saturates the functional integral. In the next sections we will

construct the path integral that has this desirable feature explicitly, and verify that

indeed such a classical field exists even for chiral fermions – but the classical field

will include both left and right movers.
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2.3. The Holomorphic Path Integral

A popular modern way to construct path integrals uses the holomorphic repre-

sentation, also called the Bargmann-Fock representation [12–13]. In this represen-

tation we work in bases that diagonalize the positive and negative frequency parts

of the field, rather than the Hermitean operators φ̂ and π̂ ∝ ∂tφ̂ which are perhaps

more natural from an intuitive standpoint. In the holomorphic representation we

diagonalize the φ̂(x)+ iπ̂(x) and thus also their Fourier transforms, denoted φ̂k. It

is in terms of the these latter operators that the free Hamiltonian can be expressed

as a sum of fundamental harmonic oscillators, i.e. Ĥ =
∫

dk
2πωkφ̂

†
kφ̂k. In principle

all we need for the calculation of the geometric entropy (or anything else) is the

ability to evaluate a complete set of commuting local variables, so either choice

will serve.

For a boson field φ we use the coherent ket states

|φ〉 =
∏

k

e−
1
2
φ̄kφkeφ̂

†

kφk |0〉 . (2.7)

This state is an eigenfunction of the positive frequency part of the field operator,

i.e. φ̂k|φ〉 = φk|φk〉. The index k labels the degrees of freedom which, for a

free scalar field, can be identified with the momentum. For massless fields in two

dimensions k may be restricted to take either only positive or only negative values,

if one of these restrictions is imposed the field is chiral. The bras are obtained by

complex conjugation of the kets. They diagonalize the negative frequency part of

the field to the acting to the left: 〈φ|φ̂†k = 〈φ|φ̄k. There is a completeness relation

∫

∏

k

dφ̄kdφk |φ〉〈φ| = 1 , (2.8)

which implicitly normalizes the measure.
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Now we can evaluate the evolution operator, as follows:

U(φ̄f |φi) ≡ 〈φ̄f |Te−iĤt|φi〉

=

∫

∏

k

(

n−1
∏

j=1

dφ̄jdφj)

n−1
∏

j=0

〈φ̄j+1|e−iωkφ̂
†

kφ̂k∆tj |φj〉

=

∫

∏

k

(

n−1
∏

j=1

dφ̄jdφj)

n−1
∏

j=0

〈φ̄j+1|e−iωk∆tjφj〉

=

∫

∏

k

(
n−1
∏

j=1

dφ̄jdφj)
n−1
∏

j=0

e
−[ 1

2
(φ̄j+1

φj+1−φj
∆tj

− φ̄j+1−φ̄j
∆tj

φj)+iωkφ̄j+1φj)]∆tj
.

(2.9)

In this manipulation, we handled the time ordering by inserting a sequence of

complete sets and used the fact that coherent states remain coherent under time

evolution. To avoid proliferation of indices, we suppressed indices k on φ and φ̄; the

remaining indices label the time slices, with the understanding that times 0 and n

replaces i and f . Taking ∆tj = tj+1 − tj → 0 and using the notation φ̇ = φj+1−φj
∆tj

we find

U(φ̄f |φi) =
∫

Dφ [e
1
2
(φ̄fφf+φ̄iφi)e−

∫

dt [ 1
2
(φ̄φ̇− ˙̄φφ)+iωφ̄φ]]e−

1
2
(φ̄fφf+φ̄iφi) (2.10)

in which, of course, we have introduced a new notation for the measure. The

purpose of the additional, vacuous exponentials will be explained shortly.

A Gaussian integral worthy of the name should be calculated exactly using

the stationary phase method. Here a first cut at such an evaluation would involve

imposing the equations of motion found by varying φ̄ and φ separately
⋆
. How-

ever to obtain a precise prescription the correct measure must be kept in mind.

That measure included only variables with indices 1 through n − 1, so in apply-

ing the stationary phase method we must not allow variations at the end points.

In the given variables this is an awkward constraint, because as we vary φ̄ with

⋆ We ignore the determinant, which does not depend on the boundary conditions
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φ̄f fixed we inevitably vary φ̄i, and similarly for the holomorphic variables. By

adjusting the boundary term appropriately, one is able to organize the expression

as in (2.10), where the expression in the square brackets allows the full variation.

Indeed, upon translating back to the discrete notation, one easily checks that the

bracketed expression contains neither φf nor φ̄i. Evidently the symbols with those

names should be considered functions of the other boundary conditions, not as

independent parts of the path integral. By way of contrast, in the factor outside

the brackets, the bar really does denote complex conjugation.

The expression in the square brackets is the standard expression for the evo-

lution operator in the holomorphic representation. Finding and integrating the

equations of motion, one readily calculates

U(φ̄f |φi) =
∏

k

[eφ̄f e
−iωk(tf−ti)φi]e−

1
2
(φ̄fφf+φ̄iφi) (2.11)

This expression could also be derived directly, using simple properties of coherent

states.

Taking the initial state to be vacuum, i.e. φi = 0, we find the vacuum

wave functional to be a simple normalized Gaussian. This final result should

come as no surprise, because the Hamiltonian is zero acting on the vacuum, so

U(φ̄f |0) = 〈φ̄f |0〉, leaving only the normalization of the coherent state. This sat-

isfying result exhibits also, unfortunately, the essential triviality of the procedure:

the insertion of intermediate states, and subsequent integration, is vacuous. The

entire calculation effectively occurs at one time slice, and one does not find the

Lorentz or conformal symmetries exhibited explicitly.
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2.4. Feynman’s Path Integral

To exhibit these symmetries, we would like to find a form of the path integral

that, written in real space, resembles the one derived from geometrical consider-

ations. For this purpose, we return to the original Feynman construction of the

path integral. The Hamiltonian is

Ĥ =

∫

dk

2π
ωkφ̂

†
kφ̂k =

∫

dk

2π

1

2ωk
(p̂2k + ω2

kq̂
2
k); (2.12)

where φ̂k = ωkq̂k+ip̂k√
2ωk

and φ̂
†
k = ωkq̂k−ip̂k√

2ωk
, so that [φ̂k, φ̂

†
k] = 2πδ(k − k′). As a

basis in the Hilbert space we introduce the overcomplete set |q〉 with the property

q̂k|q〉 = qk|q〉. From the commutation relations [p̂k, q̂k] = −2πiδ(k − k′) we derive

that p̂k act on such states as p̂k|q〉 = i d
dqk

|q〉. Introducing also eigenstates of

the momentum operator we find 〈p|q〉 = e−ipkqk . The operators q̂k and p̂k are

Hermitean so their eigenvalues are real. From the Hamiltonian we see that vacuum

is defined by φ̂k|0〉 = 0, and integrate to find

Ψ[q] = 〈q|0〉 ∝
∏

k

e−
ωk
2
q2k (2.13)

Normalizing the measure so
∫

dqk e
−ωq2k ≡ 1,

∫

dq |q〉〈q| = 1 =

∫

dp |p〉〈p| (2.14)

(we omit the indices and denote the numbers qk collectively as q, and similarly for
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pk), we are ready to derive the path integral:

U(qf |qi) ≡ 〈qf | Te−iĤt|qi〉

=

∫ n−1
∏

j=1

dqj

n−1
∏

j=0

dpj〈qj+1|pj〉〈pj |e−iĤ∆tj |qj〉

=

∫ n−1
∏

j=1

dqj

n−1
∏

j=0

dpj e
ipj(qj+1−qj)e−

i
2
(p2j+ω

2
kq

2
j )∆tj

≡
∫

Dq
∏

k

ei
∫

dt 1
2
(q̇2k−ω2

kq
2
k)

=

∫

Dφ ei
∫

dt 1
2
(φ̇2−(∇φ)2)

(2.15)

In this expression, we have defined tn = tf , t0 = ti, and ∆tj = tj+1 − tj , and used

a continuum notation.

We have gone into some detail here so that the main point comes out clearly and

unambiguously, as follows. By construction, the variables qk are real. This property

must hold even it the field is chiral, that is if the k are restricted to be positive

(or negative). The classical field includes both components nevertheless, because

that is the only way it can be real. All this conforms with our earlier remarks on

the geometric derivation of the path integral. We realised in that context that one

must allow both left and right movers in the intermediate configurations, so as to

work in a set that is closed under dilation of time.

To evaluate the integral, we write φ = φcl + δφ where φcl is a solution of the

equation of motion with the specified boundary conditions, while δφ vanishes on

the boundary but is otherwise arbitrary. Inserting this decomposition in the path

integral, one easily sees that the cross terms disappear. Hence the path integral

factorizes, with only one factor depending on the boundary conditions. And that

factor is simply the integrand in the path integral, i.e. exponential of the classical

action, evaluated for the field φcl.

It is easy to calculate the classical field even for general boundary conditions,

i.e. φ fixed to be φf at tf and φi at ti. We are especially interested in the special
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case where the initial state is the vacuum. This case is most easily handled by

noticing that taking tf − ti → −i∞ the Hamiltonian projects on to the ground

state. Indeed, finding the classical field and taking this limit, with φi fixed at

some finite value, has the same effect as removing the components that approach

∞ in the limit, or alternatively requiring that the classical field satisfies φ → 0 in

this limit. Hence the wave functional for the vacuum state is calculated simply by

imposing φ → 0 as t→ −i∞ on the classical field.

To tie up this discussion let us relate this careful explicit evaluation, with an

identified measure
∏

k dqk and a definite prescription for calculation of the path

integral, to the heuristic (2.3). We shall illustrate this by reference to the wave

functional for a chiral field in 1+1 dimensional Euclidean space. We find the

classical field that satisfy the equations of motion and the appropriate boundary

conditions, and calculate the path integral for that one configuration. The vacuum

state is identified by the boundary condition φ → 0 as t → −i∞ or, in Euclidean

space, φ→ 0 as τ → −∞. Imposing the reality condition, we write

φcl =

∞
∫

−∞

dk
√

4π|k|
[φk e

kz + φ̄ke
kz̄ ] . (2.16)

Now we select the vacuum by restricting the integral to positive k. Calculating the

action for this field configuration, we find

Acl(φcl) =
1

2π

∫

∂φcl∂̄φcl =
1

2

∞
∫

0

dk

2π
φ̄kφk (2.17)

The action integral was over the τ < 0 half plane. Finally we write the wave

functional

Ψ[φ] =
∏

k

e−
1
2
φ̄kφk , (2.18)

a result that coincides with the one found above in other ways.
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2.5. The Path Integral for Fermions

With these experiences in mind, let us turn to the question of finding a useful

prescription for the fermion path integral. For free fermions the Hamiltonian is

again of the form Ĥ = ωa†a, but the creation and annihilation operators satisfy

anticommutation relations {a, a†} = 1. Introducing hermitean variables q̂ = a+a†√
2

and p̂ = i(a†−a)√
2

, we find {p̂, q̂} = 0. This relation does not allow for a realization

wherein q̂ is diagonal and p̂ is expressed as a derivative operator. That would

require a nontrivial (anti)commutation relation. Thus the road leading to the

Feynman path integral appears to be closed, and we must fall back on a version

of the holomorphic integral. Indeed, one can introduce a basis that diagonalize

a and represent a† as an anticommuting derivative. This leads us to the holo-

morphic representation of the path integral, with the additional subtlety that the

holomorphic variables are anticommuting, so that in manipulating the expressions

we must take care of their order. In the bosonic (second-order) case this form of

the path integral was rather trivial and unsatisfying geometrically, but as we shall

now demonstrate the situation is quite different in the fermionic (first-order) case.

As usual, we consider a massless field in two dimensions. Introducing coherent

states

|ψ〉 =
∏

k

e−
1
2
ψ̄kψkeψ̂

†
kψk |0〉 (2.19)

we preserve the normalization of the state 〈ψ|ψ〉 and the resolution of the identity

∫

∏

k

dψ̄kdψk |ψ〉〈ψ| = 1 . (2.20)
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Since the Hamiltonian remains Ĥ =
∫

dk
2π |k|ψ̂

†
kψ̂k we find as before

U(ψ̄f |ψi) =
∫

∏

k

(
n−1
∏

j=1

dψ̄jdψj)e
−[ 1

2
(ψ̄j+1

ψj+1−ψj
∆tj

− ψ̄j+1−ψ̄j
∆tj

ψj)+i|k|ψ̄j+1ψj)]∆tj

≡
∫

Dψ
∏

k

e
∫

dt 1
2
[ ˙̄ψψ−ψ̄ψ̇]+i|k|ψ̄ψ

≡
∫

Dψ e−
1
4π

∫

dtdσ ψ(∂t−∂σ)ψ .

(2.21)

In transforming back to real space we have introduced

ψ =

∫

dk

2π
[ψke

−ikσ + ψ̄ke
ikσ ] (2.22)

which by construction is real. We see that for fermions, unlike for bosons, the

holomorphic path integral leads to the invariant form that we know from the ge-

ometrical derivation. However here as before these expressions are a little subtle.

In particular, in deriving and interpreting them one may be tempted to give up

the reality condition on the field, in which case one must take boundary terms

carefully into account in evaluating them, and a trivial integral is found.

To evaluate the path integral without giving up the reality condition we proceed

as for bosons and write the most general field ψ = ψcl+ δψ, where ψcl satisfies the

boundary conditions on ψ while δψ is 0 on the boundaries, that is the initial and

final time slices. Finally, choose ψcl to be the unique real field that satisfies the

boundary conditions, as well as the Klein-Gordon (not the Weyl-Dirac) equation.

(Any field with the proper boundary conditions might have been used; the Klein-

Gordon equation is imposed only to insure uniqueness!). Now note that in

1

4π

∫

ψ(∂t − ∂σ)ψ =
1

4π

∫

ψcl(∂t − ∂σ)ψcl +
1

4π

∫

δψ(∂t − ∂σ)δψ (2.23)

mixed terms do not enter, due to the reality condition on the field and the boundary

conditions on δψ. The path integral measure Dψ is invariant under translations
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with a fixed function ψcl, so we might as well take it to be Dδψ. Then the path

integral factorizes. The fluctuation part is independent of the boundary conditions

and can be omitted. We find that the path integral can be calculated by taking

the action of the field configuration ψcl, as advertized. At no point in the present

derivation did we use a variational principle – specifically, we never found that we

should impose the equation of motion on the classical field.

We have found that the fermionic path integral is naturally expressed using

real classical fermion fields to parametrize the initial and final states, thus putting

them on an equal footing. The interpretation of such an amplitude between real

states is not a priori clear, because the original problem did not have real fields. It

is implicit in our derivation that the path integral expresses an amplitude between

coherent states. To find the ket-coherent state that corresponds to a given real

wave function, take the spatial Fourier transform. The components with positive

wave vector provides the eigenvalues of the elementary oscillators of the Weyl

field. Conversely, the real classical field corresponding to given eigenvalues of the

elementary oscillators is found by using the eigenvalues as Fourier components with

positive k-vectors, and their complex conjugates for the negative k-vectors. Thus

the amplitudes that are expressed by our unorthodox path integral are exactly

the same as those that are expressed by the more conventional holomorphic path

integral.

Just as for bosons, on taking ti → −i∞ with ψi fixed we find that ψi disappears

from the problem and is replaced by the requirement that ψcl → 0 as t → −i∞.

This is a very convenient characterization of vacuum. As a final step in elucidating

the fermionic path integral, let us Euclideanize the classical field and the action.

To obtain expressions that resemble those found previously for bosons, we require

that the Euclidean classical field is real; that is, that it is a sum of a holomorphic

function and an antiholomorphic one. We then have, finally,

Ψ[ψ] = e−
1
2π

∫

ψ∂̄ψ . (2.24)

It is easy to verify that the exponent is real. In this form, conformal invariance is
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manifest.

To exemplify the use of this machinery, let us calculate the vacuum wave func-

tional. We proceed as for bosons: write the classical field

ψcl =

∞
∫

0

dk√
2π

[ψke
kz + ψ̄ke

kz̄ ] (2.25)

where we have imposed the reality condition, and the condition that the field

vanishes at early times. Inserting this in the action we find

A(ψcl) =
1

2π

∫

ψcl∂̄ψcl =
1

2

∫

dk

2π
ψ̄kψk (2.26)

and for the wave functional

Ψ[ψ] =
∏

k>0

e−
1
2
ψ̄kψk . (2.27)

Thus this formalism indeed yields the expected 〈0|ψ〉.

3. Geometric Entropy of Free Bosons and Fermions in 2 Dimensions

3.1. Strategy

We now return to the problem that motivated the preceding ordeal. We will use

the formalism developed to carry out the calculation of the geometric entropy for

massless scalar bosons and spin 1
2 fermions in 1+1 dimensions. In this context, the

essential problem is the entropy associated with a half-line. We will demonstrate

that each step in the calculation of the entropy can be carried out very explicitly,

using the flexibility of the path integral expressions just developed. This may not

be the most efficient way to reach that specific goal, but it provides an explicit,

and hopefully transparent, derivation of the entropy in a manner that is parallel

for fermions and bosons, and capable of generalization.
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The first step is to calculate the vacuum wave functional

Ψ[R,L] ∝
∫

Dφ e−A(φ) . (3.1)

Here the path integral is over all fields that satisfy

φ(σ) = θ(σ)R(σ) + θ(−σ)L(σ) (3.2)

at a time slice taken to be τ = 0, and we also impose

φ(x) → 0 τ → −∞

to project onto the vacuum. In earlier sections we worked with the Fourier com-

ponents of the field but these are not localized to be either on the left hand side

of the axis, or on the right hand side. Hence we need to choose as a basis instead

functions that are partly localized, but still resemble Fourier modes sufficiently

to approximately diagonalize the action. Wavelets [14] are designed for exactly

this purpose, that is to provide wave-like functions with compact support. They

diagonalize the action approximately, and are likely to be of considerable use in

problems with more complicated structure
⋆
. For the present however, we will stick

to Fourier modes, and simply transform the argument of the fields R and L in-

stead. More precisely, we will introduce a convenient coordinate system that maps

both half lines to full lines, for which we can use the standard Fourier transform.

The density matrix will not quite diagonalize, but will break up into 2×2 blocks.

This trick is in essence due to Unruh [10]. The boundary conditions have a unique

⋆ There is also a more fundamental point that ought to be mentioned in this context. The

geometric entropy as defined corresponds to the density matrix for a hypothetical experi-

menter who has complete access to arbitrarily high frequency modes on the outside, but no

access to the inside. A more realistic idealization would be to allow access to low-frequency

modes on the outside only, tracing over both very high frequencies in general and also low

frequencies on the inside. These notions could be formalized using wavelets. The entropy

thus defined would be finite, diverging only as the limiting frequency is taken to infinity.
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solution among fields that are the sum of a holomorphic and an anti-holomorphic

piece. That field is the classical field and the path integral is calculated by find-

ing the action of the classical field. This is true, as we have seen, for bosons and

fermions alike.

Having obtained the wave functional in a convenient basis, the next step is

to sum over the left variables, and then to find the entropy corresponding to the

resulting density matrix. This will be done using a replica trick, as in [4].

We will use the complexification z = σ + iτ and z̄ = σ − iτ . Since τ is the

Euclidean time this amounts simply to the light cone coordinates. This conven-

tion interchanges τ and σ compared to the one conventional in the string theory

literature.

3.2. Classical Fields

First we calculate the classical field for bosons. φ(x) is specified at τ = 0; our

task is to determine φ(x) in the entire lower half plane. We write

φ(z, z̄) =
i

2π

∞
∫

−∞

dw(
1

w − z
− 1

w − z̄
)φ(w) . (3.3)

In the integral w is a real variable. This integral equation is clearly valid on the

real line, and extends by regularity to the entire negative half-plane (it is just the

usual Poisson integral for this problem). We change of variables according to

w = sign(w) ex, z = eη, z̄ = eη̄ , (3.4)

leaving the field untouched. The field is defined in the lower half plane, so in

inverting z = eη we must choose Imη ≤ 0. Thus the positive half-axis is mapped to

the entire real axis, and the negative half-axis is mapped to the line with imaginary
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part −iπ. We write

R(x) =

∫

dω
√

4π|ω|
e−iωxrω L(x) =

∫

dω
√

4π|ω|
e−iωxlω , (3.5)

thus parametrizing the functions R and L by their Fourier components in the

transformed variable. The reality condition on the field φ is expressed as rω = r̄−ω

and lω = l̄−ω. Now we have

φ(η) =
i

2π

∫

dω
√

4π|ω|

∞
∫

−∞

dx[(
e−iωx

1− eη−x
rω − e−iωx

1 + eη−x
lω)− h.c.] ,

and calculating the integrals over x by contour integration and recalling imη ≤ 0

we find

φ(η) =

∫

dω
√

4π|ω|
[e−iωη

1

2shπω
(eπωrω − lω)− e−iωη̄

1

2shπω
(e−πωrω − lω)] . (3.6)

It is easy check that indeed (3.2) is satisfied, i.e. that φ = R for η ∈ R and

φ = L for η ∈ R − iπ. Indeed, this expression could easily have been found by

writing the general form of the wave function and determining the coefficients from

the boundary conditions. In this reasoning, the boundary condition that φ → 0

at early times, that is the choice of vacuum, is expressed by imposing regularity

throughout the strip. The present, constructive approach has the advantage that

it is easily generalized to the case of fermions.

Indeed, let us write

ψ(z, z̄) =
i

2π

∞
∫

−∞

dw(
1

w − z
− 1

w − z̄
)ψ(w) . (3.7)

Let us again introduce the left/right split (3.2), and the change of variables (3.4).

Now, however, we transform the fermion field according to

ψ(z, z̄) = e−
1
2
ηψ(η, η̄), z = eη, z̄ = eη̄ . (3.8)

The necessity to transform ψ, in contrast to φ, ultimately reflects the non-trivial

conformal weight of ψ. The original ψ was real and that transforms to a real ψ on
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the real axis but to a purely imaginary ψ onR−iπ. Introducing Fourier transforms

R(x) =

∫

dω√
2π
e−iωxrω, L(x) =

∫

dω√
2π
e−iωxlω ,

this is expressed by r̄ω = r−ω and l̄ω = −l−ω. We have chosen a different normal-

ization here than in (3.5) for bosons, in order that the Fourier components rω and

lω have mass dimension −1
2 for fermions, as it did bosons. Collecting formulae, we

have

ψ(η, η̄)e−
1
2
η = i

∫

dω√
2π

∞
∫

−∞

dx

2π
e−iωxe

1
2
x[(

rω

ex − eη
− ilω

ex + eη
)− (η → η̄)] .

The extra factors of e
1
2
x and e

1
2
η compared to the boson case come from the trans-

formation of the fermion fields as a (12 , 0) field. This is also the origin of the extra

i in the second term. Upon performing the integrals we find

ψ(η, η̄) =

∫

dω√
2π

[e−iωη
1

2chπω
(eπωrω+ lω)+e

η−η̄

2 e−iωη̄
1

2chπω
(e−πωrω− lω)] (3.9)

In principle this decomposition could have been found by writing the ansatz,

ψ(η, η̄) =

∫

dω√
2π

[e−iωηψω + e
η−η̄

2 e−iωη̄ψ̄ω]

and determining the coefficients from the boundary conditions. However this ansatz

is non-trivial, the e
η−η̄

2 being due to the conformal dimensions of the fields. In

the present, constructive approach it is well motivated from the transformation

properties of the fermion field.
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3.3. Wave Functionals

Having found the classical field for both bosons and fermions we proceed to

find the wave function. The classical actions are

Aboson
cl =

1

2π

∫

∂φcl∂̄φcl =
1

2

∞
∫

0

dω

2π
[
chπω

shπω
(r̄ωrω + l̄ωlω)−

1

shπω
(r̄ωlω + l̄ωrω)]

and

Afermion
cl =

i

2π

∫

ψcl∂̄ψcl =
1

2

∞
∫

0

dω

2π
[
shπω

chπω
(r−ωrω + l−ωlω) +

1

chπω
(r−ωlω − l−ωrω)]

In the fermion case we avoid the l̄ω notation to prevent confusion due to the relation

l̄ω = −l−ω. In evaluating these expressions we have used the integrals

∫

∂e−iω
′η∂̄e−iωη̄ = 2πδ(ω + ω′)ωeπωshπω

∫

e−iω
′η∂̄e

η−η̄

2 e−iωη̄ = 2πδ(ω + ω′)eπωichπω

∫

e
η−η̄

2 e−iω
′η̄∂̄e

η−η̄

2 e−iωη̄ = 0 .

The wave functionals are simply

Ψ[R,L] = e−Acl

It is a good check, to verify some of their necessary qualitative properties. In the

limit ω → ∞ the wave functionals reduce to the results found with no left/right

split, that is, Gaussians with the same normalization. This occurs because excita-

tions that are almost localized do not mix with excitations on the other half line.

At finite frequencies, there is overlap. We note however that the operator in the
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exponent has the same determinant as previously, as indeed it must for a unitary

change of basis. This feature is easily checked using the path integral measure
∏

ω dl−ωdlωdr−ωdrω, and the useful integral formula

∫

dz̄dz e−z̄Mz+z̄j+j̄z = (detM)∓
1
2 ej̄M

−1j

where the upper and lower signs refer to bosons and fermions respectively.

3.4. Geometric Entropy

To calculate the entropy from the wave functional we must first calculate the

density matrix

ρ[R,R′] =
∫

DL Ψ̄[R,L]Ψ[R′, L] .

The measure in the integral is simply
∏

ω dl−ωdlω, which we have normalized so

that a Gaussian gives unity. The wave functional Ψ is normalized by requiring

Trρ = 1 with respect to the same measure. We find

ρ[R,R′] =
∏

ω>0

shπω

chπω
exp{− 1

2sh2πω
[ch2πω(|rω|2 + |r′ω|2)− (r̄ωr

′
ω + r̄′ωrω)]} (3.10)

for fermions as well as for bosons. We have defined |rω|2 = r−ωrω, and use again

r−ω ≡ r̄ω. In verifying this expression it is important to recall that integrals

over Grassmann variables gives a determinant in the numerator rather than in the

denominator.

Next we want to use the replica trick

Sgeom = −(1 − d

dn
)lnTrρn , (3.11)

so we need to calculate ρn. The result is

ρn[R,R′]
Trρn

=
∏

ω>0

shnπω

chnπω
exp{− 1

2sh2πnω
[ch2πnω(|rω|2 + |r′ω|2)− (r̄ωr

′
ω + r̄′ωrω)]}

(3.12)
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where

Trρn =
(2shπω)2n

(2shnπω)2
(bosons)

Trρn =
(2chnπω)2

(2chπω)2n
(fermions) (3.13)

These formulae can be verified inductively. The difference between bosons and

fermions is two-fold. First: Grassmann integrals, as mentioned above, give deter-

minants in the numerator rather than in the denominator. Second: in taking the

trace for bosons we simply identify rω = r′ω and do the dr−ωdrω integral, but for

fermions we must take rω = −r′ω instead. This difference has been explained in

an elementary way by Soper [15]. We can also understand it simply in our frame-

work, as follows. In the holomorphic formalism the typical bilinear operator can

be expanded as a string of variables in the form anti-holomorphic, holomorphic,

anti-holomorphic, etc. In taking the trace, however, we pair the last holomorphic

variable in a string like this with the first anti-holomorphic variable. For Grass-

mann variables this operation must be accompanied by a change of sign, which is

most easily handled by changing the sign on one of the variables. This accounts

for the antisymmetric boundary conditions.

With these expressions the replica trick (3.11) can be carried through to yield

Sgeom = ±2

∫

dω

2π
(1− ω

dω

dω
)ln(1∓ e−2πω) = 4

∫

dω
ω

e2πω ∓ 1
(3.14)

for the entropy. The upper sign refers to boson and the lower to fermions. These

are simply the thermodynamic expressions for the entropy of a 1–dimensional gas

of (spinless) bosons or fermions respectively. So far, the possible values of ω have

been specified informally as
∫

dω
2π , and strictly speaking expressions such as

∏

ω

did not make sense without regularization. At this point we impose periodic (or

anti-periodic) boundary conditions in a box of length L, thus arriving at

Sgeom =
c

6
L (3.15)

with c = 1
2 , 1 for fermions and bosons, respectively. In this formula the length L is
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the length as measured in the transformed coordinate system. Transforming back

to the original coordinates and introducing an ultraviolet cutoff ǫ and an infrared

cutoff Σ we can write L = ln Σ
ǫ . This result and the interpretation of the ensuing

divergence have been discussed extensively from another point of view in [8].

We have now accomplished the technical task we set ourselves, to obtain a path

integral sufficiently flexible to allow us to calculate wave functionals and geometric

entropy in a straightforward manner, applicable both to bosons and to fermions.

We were surprised, that to do so we had to forge some new tools.
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