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Optical nanoparticle sensors for
quantitative intracellular imaging

Yong-Eun Koo Lee* and Raoul Kopelman*

Real-time measurements of biological/chemical/physical processes, with no
interferences, are an ultimate goal for in vivo intracellular studies. To construct
intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem
to be most promising, because of their small size and excellent engineerability.
This review describes the development of NP-based opical sensors and their
intracellular applications. The sensor designs are classified into two types, based
on the sensor structures regarding analyte receptor and signal transducer. Type
1 sensors, with a single component for both receptor and transducer, work by
mechanisms similar to those of “‘molecular probes’. Type 2 sensors, with a separate
component for receptor and transducer, work by different mechanisms that require
the presence of specific NPs. A synergistic increase in optical signal or selectivity
has been reported for these second type of NP sensors. With ongoing rapid
advances in nanotechnology and instrumentation, these NP systems will soon be
capable of sensing at the single-molecule level, at the point of interest within the
living cell, and capable of simultaneously detecting multiple analytes and physical

parameters.
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ntracellular imaging of the biochemistry and

biophysics of live cells has been of prime interest for
decades. Numerous approaches have been proposed
to achieve real-time, noninvasive analysis of chemical
and physical properties at unperturbed cellular
physiological status. Significant progress in the
visualization of biological processes has been achieved
by the dramatic advances in imaging processing
technologies with high-performance computer systems
as well as by the continuous development of new
analyte-specific fluorescent molecular probes. These
molecular probes, however, have several drawbacks
that limit the indicator dyes available for reliable
intracellular measurements. The indicator molecules
have to be in a cell-permeable form, which often
requires properly derivatized indicator molecules.
The measurement is often skewed by intracellular
sequestration to specific organelles inside the cell,
or by nonspecific binding to proteins and other cell
components. The cytotoxicity of the available dyes
is sometimes a problem, as the mere presence of
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these dye molecules may chemically perturb the cell.
Furthermore, the dye is usually not ‘ratiometric’, i.e.,
has only a single spectral peak, which then requires
technologically more demanding techniques, such
as picosecond lifetime resolution or phase-sensitive
detection. We note that just loading into the cell a
separate reference dye, for ratiometric measurements,
is not a solution, because of the aforementioned
sequestration and nonspecific binding.

In an attempt to solve these problems, while
maintaining minimal physical interference, a new type
of sensor has been developed, utilizing nanoparticles
(NPs) as platforms for immobilizing the sensor
chemistry. The NP sensor is physically noninvasive
owing to its small size. An NP sensor of 20-600 nm
in diameter takes up only 1 ppm to 1 ppb of a
mammalian cell’s volume.! There are also standard
methods for delivery of NPs into cells, such as via a
gene gun, pico-injection, liposome incorporation, or
endocytosis. This prevents unnecessary modification
(derivatization) of the indicator dyes. The inert
protective matrix of the NPs eliminates interferences
such as protein binding and/or membrane/organelle
sequestration.”? The NP matrix also obviates the
toxicity problem by protecting the cellular contents
from the indicator dyes and vice versa. The cell
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viability after NP sensor delivery is about 99%,
relative to control cells,® indicating negligible physical
and chemical perturbation to the cell. Moreover, a
ratiomentric sensor can be easily constructed by co-
loading of the indicator and reference components
within the NP matrix. We note that the NP sensors
can also be attached with specific molecular targeting
moieties, enabling the measurements of analytes at
specific cells or organelles of the cells.*

The NP has a high surface-to-volume ratio that
allows high accessibility of analytes to the indicator
dyes/receptors as well as targeting factors towards
specific cells or components of cells. Each NP can
be loaded with a high amount of components (single
or multiple) within the NP matrix as well as on
the surface. High loaded amounts of dyes in close
proximity to each other either within the restricted
NP volume or on the NP surface allow multiple
interactions with the sensing components, resulting
in signal amplification.® It is noteworthy that similar
amplification effects have been reported for targeting
efficiency by NPs with multiple targeting moieties on
the surface.®

Since the first NP sensor called PEBBLE (Pho-
tonic Explorer for Biomedical use with Biologically
Localized Embedding) was reported by Kopelman and
colleagues,’”® a number of possibilities have been pro-
posed for immobilizing the sensor chemistry within
various kinds of NP matrixes, so as to construct
NP sensors for specific intracellular applications. It
is also noted that optical detection has remains the
most widely used method for sensing and imaging of
biological systems.

This review focuses on the uses of synthetic
NPs of 1-1000 nm in diameter for the design of
optical sensors and their applications to intracellular
measurements. It covers only untethered, that is free,
NP sensors which are suitable for iz situ measurements
in three dimensions; it does not cover mechanically
fixed sensors like fiber-tip or film on glass slide, even
when they utilize NPs.

OPTICAL NP SENSOR DESIGN

The basic structure of a sensor requires two
components: an analyte recognizer that binds the
target analyte, and a transducer that signals binding.

Optical Transduction Modality

Fluorescence is a highly sensitive, specific means for
monitoring cell activity, and a number of fluorescent
reporters can be analyzed simultaneously. Fluores-
cence has been and will be a major transduction
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modality but has limiting factors such as photobleach-
ing and interference due to autofluorescence from
cellular components.

Surface-enhanced Raman scattering (SERS) is
a recently evolving optical modality for intracellular
NP sensors and is complementary to fluorescence.”>!°
It was found that the SERS effect is provided by a
very small number of molecules located at special
sites in the gap between two nearly touching gold
nanocrystals.!! Because of the high specificity of
a Raman spectrum, minute amounts of chemicals
inside living cells might be identified by their unique
fingerprint spectra.'> SERS requires the so-called
‘SERS-active substrates’ such as nanometer-sized silver
or gold structures, which target molecules that
get attached to them. Surface plasmon resonance
(SPR) is another metal NP-based optical transducer
that draws much interest in biological detection,
including immunoassay.'> SERS and SPR are free
from photobleaching and self-quenching of the marker
molecule. However, their sensitivity/reproducibility
still needs validation.

NP Matrix

NP matrices should exhibit excellent chemical stability
and biocompatibility. A variety of NP matrices have
been utilized for the design of optical nanosensors, as
listed in Table 1.

Polymeric NPs of various matrices and sizes
with surface-located reactive functional groups can
be prepared by various synthetic methods.’3** The
sensor components can be loaded into the NP
matrix by various methods, including encapsulation,
covalent linkage, physical adsorption, etc. The matrix
for polymeric NP-based sensors is selected by the
accessibility of an analyte to a recognition element
and the loading efficiency, within NP matrix, of
indicator/receptor and signal transducer.

Liposomes or micelles present limited utility for
biological sensing within the membrane-rich cellular
environments, as they tend to mix with the native cell
membranes, degrading the sensor structure. However,
polymer-capped stabilized liposomes or micelles have
been utilized for designing sensors for intracellular
measurements, *0:#!

Semiconductor quantum dots (QDs) are brighter
and more stable against photobleaching than organic
fluorophores, allowing real-time and continuous
monitoring.”> A study shows that the fluorescence
emission of QDs remains bright and stable inside cells
for at least 14 days.’® The biosensing applications
of QDs are usually based on fluorescence resonance
energy transfer (FRET).%5-37>38
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TABLE 1| Matrices for Optical NP Sensors
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NP type Optical transduction  Matrix References
modality

Polymeric NP Fluorescence Poly(acrylamide) 3,8,14-20
Poly(decylmethacrylate) 21-24
Poly(ethylene glycol) 25
Poly(methacrylate) 26
Poly(n-butylacrylate) 27
Polystyrene 28-30
Dendrimer 31
Latex 32
Organically modified silica 33,34
Silica 35-39

Polymerized liposome Fluorescence 1,2-Dioleoyl-sn-glycero-3-phosphocholine 40
(DOPC) liposome with polymethacrylate shell

Plymerized micelle Silane-capped (polymerized) mixed micelle 41

Quantum dot Fluorescence CdsS 42,43
ZnS-coated CdSe 44-46

Metal SERS, fluorescence Gold 47-49

SERS Silver 50
Metal/polymer hybrid SERS, SPR Gold nanoshell over silica 51,52

NP, nanoparticles; SERS, surface-enhanced Raman scattering; SPR, surface plasmon resonance

In a metallic or metal-coated polymer NP,
incident light can couple to the plasmon excitation of
the metal.>® This leads to enhanced optical detection
schemes utilizing SERS and plasmon resonance.
These metal (gold, silver, or gold-coated silver)
NPs have been utilized to detect a wide range of
biological molecules through binding events involving
interactions with surface-coated specific molecules
that offer distinct SERS*$:5%:91:60 and SPR.52 Gold
NPs have also been utilized to construct an optical
biosensor for DNAs.*”

Sensor Classification
The NP optical sensors that have been developed so
far for intracellular measurements can be classified
into two types (see Figure 1): (1) Type 1 sensor
where the incorporated single component, usually
fluorescent molecular probe, serves as an analyte
recognizer as well as an optical signal transducer;
(2) Type 2 sensor where the analyte recognizer and
optical transducer are distinct. Type 2 sensors enable
a synergistic signal and selectivity enhancement as
well as sensitivity control that cannot be achieved
with free molecular probes.

In a Type 1 sensor, fluorescent or Raman-
active dyes are either encapsulated in or covalently
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linked to polymeric or metallic NPs. Upon binding
with the analyte, the spectral change (fluorescence
quenching/enhancement, fluorescence lifetime change
or fluorescence peak shift, SERS) of the indicator dyes
occurs. The sensitivity and selectivity of the sensor
mostly depend on the incorporated indicator dye but
are also affected by the NP matrix.

In a Type 2 sensor, nonfluorescent selective
analyte-recognition elements or receptors (enzymes,
antibodies, ligands, or aptamers) are either encap-
sulated in or covalently linked to the polymeric or
metallic NPs. Binding of a specific analyte to the
receptors produces an effect on the optical reporters
that consist of co-loaded fluorescent dyes or the NP
themselves (as for QDs or metallic NPs).

Both Type 1 and 2 sensors have been developed
to detect a variety of intracellular analytes, as
exemplified in the following sections.

NP SENSORS FOR ION SENSING

Type 1 Sensors
Fluorescent Sensors
Type 1 fluorescent sensors, also called direct ion

measurement PEBBLEs, have been developed for
sensing H*, Ca’?t, Mg?*, Zn?*, Cut/?*, and
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FIGURE 1| Schematic presentation of two kinds of nanoparticles
(NP) sensors: (a) Type 1 where a single component serves as receptor
and transducer; (b) Type 2 where receptor and transducer are separated
but they communicate in order to produce optical signal change upon
binding.

Fe3+.3:8:14-18,61,62 The design includes a fluorescent
indicator and a reference dye entrapped in or
covalently linked to an NP. The polyacrylamide
NP has been used exclusively for this type of ion
sensor because of its neutral and hydrophilic nature,
which allows ions to readily permeate the NP matrix
and interact with the indicator dye. The indicator
dyes are mostly fluorescent molecular probes, but
analyte-sensitive biological molecules, such as a red
fluorescent protein, have also been used.'” Type
1 ion PEBBLEs have been applied successfully for
intracellular measurements of pH, Mg?*, and Ca’*.
As an example, ratiometric calcium nano-PEBBLEs,
containing the ‘Calcium Green- 1’ (‘Molecular

FIGURE 2 | Confocal microscope image (time snapshot) of
three human C6 glioma cells that contain Calcium
Green/sulfarhodamine Photonic Explorer for Biomedical use
with Biologically Localized Embeddings (PEBBLEs) (with 72—
dinitrobenzene (DNB) toxin dffusing from left to right).
(Reprinted, with permission, from Ref. 64. Copyright 2003
Taylor & Francis Group).
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Probes’) dye as sensing component and the sulforho-
damine dye as reference, have been used to measure
calcium release from mitochondria upon introduction
of toxins.®® Figure 2°* shows a confocal microscope
image of C6 glioma cells containing these PEBBLEs,
after their selective delivery by liposomes (to the
cytosol only). The sulforhodamine fluorescence is red
(reference peak) in the image, while that of Calcium
Green is yellow/green. The ratio of the Calcium
Green/sulforhodamine intensity gives a good indica-
tion of cellular (cytosolar) calcium levels, regardless
of dye or PEBBLE concentration, or fluctuations in
light source intensity. The toxin, m-dinitrobenzene
(DNB), was introduced on the left side of the sample
(microscope slide) and allowed to diffuse to the right.
The effect of DNB is a severe disruption of the mito-
chondrial function, followed by uncontrolled release
of calcium (onset of a mitochondrial permeability
transition). This caused calcium PEBBLEs inside the
cytosol of different cells to ‘light up’ from left to right
as a function of time. As a result, high resolution in
both the spatial and temporal domains was obtained.

Another interesting intracellular application
of Type 1 PEBBLE sensors was made with the
Mg?>* PEBBLEs, to study the chemical changes
induced inside human macrophage cells by invading
salmonella bacteria.®® The Mg>* measurements by
the PEBBLE sensors showed conclusively that Mg?*
is not an important contributor in the control
of pathogens by macrophages, in contradiction to
previous reports.®®

A different kind of direct ion NP sensor was
designed using additional layers of polyelectrolytes on
the surface of NPs for immobilizing indicator dyes.®”
In this work, the potassium ion indicator, potassium-
binding benzofuran isophthalate, was immobi-

lized within poly(styrene sulfonate)/poly(allylamine
hydrochloride) films assembled on the surface of flu-
orescent europium NPs. The fluorescence from the
(commercial) core nanoparicle serves as reference for a
ratiometric measurement. The indicator retains its sen-
sitivity to potassium ions after immobilization within
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the films and exhibits sensitivity toward increases in
potassium concentration over a broad range.

SERS Sensors

An SERS pH sensor was developed with silver
NPs (50-80 nm in diameter) functionalized with
para-mercaptobenzoic acid (4-MBA).> The SERS
spectrum from the functionalized silver NPs shows
a characteristic response to the pH 6-8 of the
surrounding solution. There was a large variability in
the measured pH, as the SERS spectrum was observed
only from aggregated particle clusters. These sensors
were delivered into living Chinese Hamster Ovary
(CHO) cells by passive uptake. The NP sensors
retained their robust signal and sensitivity to pH
within a cell. The spectrum indicates that the pH sur-
rounding the NP is below 6, which is consistent with
the particles being located inside a lysosome (pH 5).

A similar SERS pH sensor was designed on the
basis of a gold nanoshell/silica core NP coated with a
layer of para-MBA.3? The nanosensor was capable of
measuring pH in its local vicinity continuously over
the range of 5.80-7.60 pH units.

Type 2 Sensors

Type 2 NP sensors for cobalt, copper, hydrogen,
nickel, potassium, silver, sodium, zinc, and chloride
ions have been developed.

NP sensors called ion-correlation PEBBLEs have
been developed for Na*, K*, and CI~ ions.?!=%3 The
sensor is made of poly(decylmethacrylate) (PDMA)
NPs embedded with three components: a nonfluores-
cent ionophore that binds selectively to the ion of
interest, a fluorescent hydrogen ion—selective dye that
plays the role of a reporter, and a lipophilic additive
that maintains ionic strength. The operation of the
entire system is based on having a thermodynamic
equilibrium that controls ion exchange (for sensing
cations) or ion co-extraction (for sensing anions), i.e.
an equilibrium-based correlation between different
ion species. The degree of protonation measured from
the fluorescence change of the hydrogen ion—selective
dye is related to the concentration of the analyte ion
by the theory developed for optical absorption—based
ion- correlation sensors.®%¢? The hydrophobic PDMA
matrix is selected to ensure a local chemical equilib-
rium among embedded components within NPs in the
aqueous phase. The composition of the matrix, i.e. the
cross-linker-to-monomer ratio, was found to affect the
dynamic response range. Intracellular measurements
of K* and CI~ ions were made by this type of PEBBLE
sensors. The PDMA K+ PEBBLE sensors, as an exam-
ple, were introduced into rat C6 glioma cells using

102 © 2008 John Wiley & Sons, Inc.

www.wiley.com/wires/nanomed

a BioRad (Hercules, CA) Biolistic PDS-1000/He gene
gun system.?! The confocal images confirmed that the
sensors were localized in the cytoplasm of the cells.
The response of the PEBBLE sensors inside the cells
to the addition of kainic acid, a K*-channel-opening
agonist, indicated an increase in Kt concentration, the
expected trend. Another KT NP sensor based on the
same mechanism was designed with a different matrix,
i.e. a poly(n-butyl acrylate) (PnBA) nano sphere of
less than 200 nm in diameter.?” This study shows
that the composition of the three sensor components
(ionophore, hydrogen-sensitive dye, and lipophilic
additive) affects the characteristics of the sensors, such
as its dynamic range, selectivity, and response time. It
should be noted that the selectivity of these two Type
2 K* NP sensors?!?” is higher than that of Type 1 K*
NP sensor®” by a factor of 1000-10,000.

Several FRET-based Type 2 ion NP sensors have
been designed.

A Type 2 pH nanosensor was developed by
coating a pH-insensitive fluorescent polystyrene bead
(200 nm in diameter) with a layer of polyaniline
(PANI) of only a few nanometers thick.?® Plain
PANI films display no fluorescence in the visible
and near-IR range, but they do display characteristic
pH-dependent absorption spectra that are due to
protonation and deprotonation, respectively, of the
emeraldine form of the PANI. Because of the fluores-
cence spectra of the beads being overlapped with the
absorption spectra of PANI, the fluorescence intensity
changes in accordance with the changes in pH.

Silica NPs have been utilized for two different
designs of Type 2 fluorescence sensors for copper ions.
In one design, the surface of silica NPs was covalently
linked with a picolinamide subunit (selective Cu’*
ligand) and fluorescent dansylamide.3¢-38 The grafting
of the ligand and the dye subunits to the NP’s surface
not only ensures the intercomponent communication
in the sensor but also induces cooperative processes
in the binding of the substrate. The sensitivity of
the sensors was tuned by changing the ligand-to-dye
ratio. In another silica-based design, silica NPs were
prepared from a monomer containing chemosensor-
like unit (similar to a molecular probe) made by
coupling polyamine chains (receptor) and dansyl
units (fluorophore).’ These sensors may be classified
as Type 1.5 sensors. The sensors were selective
for copper, cobalt, and nickel ions and showed a
greatly improved sensitivity from the occurrence of
multicomponent cooperative photophysical processes.

Another Type 2 copper ion sensor was developed
utilizing latex NPs. The hydrophobic fluorophore
(BODIPY) is entrapped within the particle core, and
the copper-chelating receptor (cyclam) is covalently
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linked to the polymer backbone. The fluorescence of
the dye is quenched upon binding Cu?* to cyclam
because of FRET between the dye and copper cyclam
complexes. The response of the sensors is fast, with
90% quenching within 1 s5.3%7°

QDs have also been used for designing ion
nanosensors. The ligands coated on the surface of
QDs were found to have a profound effect on the
luminescence response of QDs to physiologically
important metal cations. L-Cysteine- and thioglycerol-
capped CdS QDs were used to detect zinc and copper
ions in physiological buffer samples, respectively. The
detection limits were 0.8 uM for zinc (II) and 0.1 uM
for copper (II) ions.** Pentapeptide Gly-His-Leu-Leu-
Cys-coated CdS QDs (2.4 + 1.5 nm by transmission
electron microscopy (TEM)) were designed to detect
Cu?* and Ag* selectively, with high sensitivity, below
0.5um®

It is noted that the copper ion nanosensor
has been the most studied among Type 2 NP
sensors. Table 2 compares Type 1 and 2 NP sensors
for copper ion that have been developed so far. It
should be noted that, none of them has been applied
for intracellular studies because the dynamic ranges of
the developed sensors are above the normal unbound
copper ion level, which is only femtomolar.”"7?
These sensors may be applied for cells under stressed
conditions that could increase the free copper ion con-
centration to micromolar levels.”®> In order to study
the copper ion homeostasis under normal conditions,
a sensor with higher sensitivity needs to be developed.

NP SENSORS FOR SMALL MOLECULES

Dissolved Oxygen Sensor
All the NP sensors that have been developed for
detecting dissolved oxygen belong to Type 1. The

TABLE 2| Copper lon® NP Sensors

Optical nanoparticle sensors for quantitative intracellular imaging

first NP sensor for dissolved oxygen was developed
using hydrophilic silica NPs paired with ruthenium
indicator dyes, and reference dyes.?* The sensor was
used successfully for the reliable oxygen imaging
done inside live cells. NP sensors with enhanced
sensitivity and dynamic range were developed using
the more sensitive platinum-based oxygen-sensitive
dyes and reference dyes, embedded in a hydrophobic
matrix, organically modified silica (ormosil),? or
PDMA.?* The hydrophobic matrix is usually better
suited for oxygen sensing than the hydrophilic one
because of its higher oxygen solubility. The embedded
platinum (II) octaethylporphine ketone, an oxygen-
sensitive dye, has infrared (IR) fluorescence and
makes the sensors work in human plasma samples,?*
unaffected by light scattering and autofluorescence.
These PEBBLE nanosensors exhibit a perfectly linear
Stern—Volmer calibration curve over the entire range
of dissolved oxygen concentration, an ideal but
previously unachieved goal for any fluorescent oxygen
sensors. The sensitivity was very high with Opo of
97-97.5% is the quenching response to dissolved
oxygen, defined by

Opo = (In, — Io,)/In, x 100 (1)

where Iy, is the fluorescence intensity of the indicator
dye or the indicator/reference intensity ratio in
fully deoxygenated water, and Io, is that in fully
oxygenated water.

These oxygen nanosensors were also successfully
applied for real-time imaging of oxygen inside live
cells, monitoring metabolic changes inside live C6
Glioma cells.®?

Oxygen sensors with additional layers of poly-
electrolytes on the NP surface have been developed.
The polyelectrolyte layers are used either to con-
trol the dye loading or to systematically assemble

Sensor type  Matrix NP size (nm)  Recognition Signal  pro- Optical signal  Detectable References
component ducer range
Type 1 Poly (acrylamide) 85 DsRed DsRed Fluorescence ~ 200-5000 nM 17
Type 2 Silica 18-75 Picolinamide  Dansylamide  Fluorescence ~ 4.7-200uM 36-38
Silica 30 Polyamine Dansyl unit Fluorescence ~ 50-1000uM 5
Latex 16 Cyclam BODIPY Fluorescence 1 nM-5uM 32,70
derivative
Cds QD 35 Thioglycerol QD Fluorescence  0.1-1600uM 42
CdS QD 24 Peptide QD Fluorescence 100 nM-2uM 43
(Gly-His-Leu-
Leu-Cys

aType 1 NP sensor based on DsRed is designed to sense both Cu? and Cu2™", while all Type 2 NP sensors are made for Cu2* only.

NP, nanoparticles; QD, quantum dots
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the sensors on the cell membranes. In one realiza-
tion, commercial fluorospheres (100 nm) are coated
with a multilayer of polyelectrolytes via layer-by-
layer self-assembly, and then a ruthenium-based
oxygen-sensitive fluorophore, (tris(4,7-diphenyl-1,10-
phenanthroline)ruthenium(II), is post-loaded within
the deposited polyelectrolyte multilayers.”* The fluo-
rescent NPs act as physical scaffolds and provide a
reference peak for a ratiometric measurement. The
sensitivity was medium level, with Opo of 60%.
The sensors were successfully delivered to the inte-
rior of human dermal fibroblasts via endocytosis with
no apparent loss in cell viability. In another design,
the same ruthenium-based dye is entrapped in com-
mercial polystyrene beads of 100 nm in diameter,
and poly(ethyleneimine) (PEI) is covalently linked to
the NP surface via glutaraldehyde chemistry.?’ These
nanosensors were assembled on individual Saccha-
romyces cerevisiae cells via electrostatic interactions
between the positively charged PEI and negatively
charged cell surfaces. This work demonstrates a proof
of concept for self-assembly of nanosensors onto
individual cell surfaces in a controlled manner for
noninvasive examination of the oxygen concentration
in the proximity of individual yeast cells.

Oxygen nanosensors were also developed
on the basis of a nanometer-sized, polymerized
phospholipid vesicle (liposome).** The liposomes
of 150 nm diameter were prepared from 1,2-
dioleoyl-sn-glycero-3-phosphocholine  (DOPC) or
DOPC doped with small (< 1%) mole percentages of
1,2-dioleoyl-sn-glycero-3-phosphoethanol amine-N-
(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE). These
vesicles were then stabilized via a cross-linking poly-
merization of hydrophobic methacrylate monomers,
partitioned into the hydrophobic interior of the
DOPC bilayer. For oxygen detection, a ruthenium-
based dye was encapsulated into the aqueous interior
of the polymerized liposome. NBD-PE was used as
a reference dye for ratiometric measurements. The
Stern—-Vomer plot provides a straight line over the
entire dissolved oxygen range and the Opo is 76 %.

The oxygen NP sensors described above
have all utilized fluorescence intensity for measure-
ments. Lifetime measurement based oxygen sensors
were also constructed by encapsulating Pt(II)-tetra-
pentafluorophenyl-porphyrin (PtPFPP) in polystyrene
beads of 0.3—1um in diameter.3® The sensors were
injected into plant cells using glass microcapillar-
ies, and an optical multifrequency phase-modulation
technique was used to discriminate the sensor signal
from the strong autofluorescence of the plant tis-
sue. The same sensors were injected into the salivary
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glands of the blowfly to quantify the changes in oxy-
gen content within individual gland tubules during
hormone-induced secretory activity.”*

The NP sensors for dissolved oxygen are
summarized in Table 3.

NP Sensors for Reactive Oxygen Species

NP sensors have been developed for two molecular
reactive oxygen species (ROS) (singlet oxygen and
hydrogen peroxide) and one radical ROS (hydroxyl
radical). These sensors were designed to show
irreversible responses towards ROS, due to high
reactivities and short lifetimes of the ROS.

Singlet Oxygen Sensor

Ratiometric NP sensors for singlet oxygen have been
developed using ormosil NPs.?* These sensors incor-
porate the singlet oxygen—sensitive 9,10-dimethyl
anthracene as an indicator dye and a singlet oxy-
gen—insensitive dye, octaethylporphine, as a reference
dye for ratiometric fluorescence-based analysis. The
encapsulation of these dyes into the hydrophobic
ormosil matrix results in a higher specificity toward
singlet oxygen, as the matrix blocks the entry of short-
lived polar ROS, such as OH and superoxide radicals.
These nanoprobes have been used to monitor the
singlet oxygen produced by ‘dynamic nanoplatforms’
that were developed for photodynamic therapy.”®

OH Radical Sensors

The hydroxyl radical is the most reactive ROS,
presenting two problems for the construction of
sensors: (1) inability to penetrate significantly into
any matrix without being destroyed; (2) ability to
oxidize (and photobleach) most potential reference
dyes. A sensor was designed to get around these
problems by attaching the hydroxyl indicator dye
coumarin-3-carboxylic acid (CCA) onto the NP sur-
face, while encapsulating the reference dye deep inside
it.2% The detection of this probe was based on the
irreversible hydroxylation of a nonfluorescent form of
CCA, resulting in a fluorescent product (7-hydroxy-
coumarin-3-carboxylic acid). This nanoprobe demon-
strates a proof of principle of a ratiometric hydroxyl
radical probe, with good sensitivity and reversibility.

Hydrogen Peroxide Sensor

A poly(ethylene glycol) (PEG) hydrogel nanosphere
(250-350 nm) with the encapsulated enzyme
horseradish peroxide (HRP) was prepared and
utilized as a sensor for hydrogen peroxide, based on
the Amplex Red assay.”’ In the presence of HRP,
Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine)
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TABLE 3| Dissolved Oxygen NP Sensors

Optical nanoparticle sensors for quantitative intracellular imaging

Sensor type Matrix NP size Oxygen indicator Optical signal Qpo (%) References
Type 1 Silica 20-300 nm Ru(ll)- tris(4,7-diphenyl- Fluorescence 80 35
1,10-phenanthroline) intensity
dichloride
Ormosil 120 nm Pt(ll) octaethylporphine Fluorescence 97 33
ketone intensity
Ormosil 120 nm Pt(ll) octaethylporphine Fluorescence 97 33
intensity
Poly(decyl 150-250 nm  Pt(ll) octaethylporphine Fluorescence 97.5 24
methacrylate) ketone intensity
Commercial 100 nm Ru(ll)- tris(4,7-diphenyl- Fluorescence 60 74
fluorophore 1,10-phenanthroline) intensity
with multilayer dichloride
of polyelec-
trolytes
Polystyrene with 100 nm Ru(ll)- tris(4,7-diphenyl- Fluorescence ~ Not available 29
covalently 1,10-phenanthroline) intensity
linked dichloride
polyethylen-
imine
Polymerized 150 nm Ru(ll)- tris(4,7-diphenyl- Fluorescence 76 40
liposome 1,10-phenanthroline) intensity
dichloride
Polystyrene 300 nm—1um  Pt(ll)-tetra- Fluorescence  Not available 30,75
pentafluorophenyl- lifetime
porphyrin

reacts with HyO», in a 1:1 stoichiometry, to produce
the red fluorescent oxidation product, resorufin. The
response of the HRP-loaded PEG NPs changed as a
function of HyO; concentration in the presence of
externally introduced Amplex Red, indicating that the
enzyme activity of HRP was still maintained within
the NPs. The HRP-loaded NPs were introduced via
phagocytosis inside macrophages and were found
to respond to exogenous H, O, (100um) as well as
endogenous peroxide induced by lipopolysaccharide
(1 pg/mL).

Glucose Sensor

A poly(acrylamide) NP-based fluorescent glucose
sensor was developed by incorporating glucose
oxidase (GOx), an oxygen-sensitive ruthenium-based
dye, and a reference dye.!” This is a Type 2 sensor in
which the enzymatic oxidation of glucose to gluconic
acid results in the local depletion of oxygen, which
is measured by the oxygen-sensitive dye. It should be
noted that the traditional ‘naked” molecular probes
cannot be used to achieve this kind of synergistic task.
The dynamic range was found to be ~ 0.3-8 mM,
with a linear range between 0.3 and 5§ mM.
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Maltose Sensor

Three different designs of QD-based maltose sensors
have been reported with maltose-binding proteins
(MBPs) as maltose receptors. Two of them utilize the
B-cyclodextrin-acceptor dye conjugates that are capa-
ble of binding within the saccharide-binding pocket
of MBP and thus compete effectively with maltose,
the MBP’s preferred substrate.** In one configuration,
a B-cyclodextrin—-QSY9 conjugate is bound to an
MBP located on the QD surface, resulting in FRET
quenching of the QD photoluminescence. Added mal-
tose displaces the B-cyclodextrin—-QSY9, and the QD
photoluminescence increases in a systematic manner.
In another configuration, QDs were coupled with
Cy3-labeled MBPs bound to B-cyclodextrin-Cy3.5.
In this case, the QD donor drives the sensor function
through a two-step FRET mechanism that overcomes
inherent QD donor-acceptor distance limitations. A
ratiometric measurement was made on the basis of
the emission peaks of Cy3 and Cy 3.5. In these two
designs, the loss of displaceable quenchers may cause
errors. A QD-MBP-based maltose sensor was devel-
oped without quencher molecules.*># In this design,
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a ruthenium complex ([(tetraamine)(5-maleimido-
phenanthroline)ruthenium]-[PF4]2) is  covalently
linked to MBP. The interaction (distance) between
the Ru complex and QD changes in accordance with
the conformational change of MBP upon binding
with maltose, resulting in a concentration-dependent
increase in QD fluorescence.

Metronidazole Sensor

A Type 1 nanosensor for detecting metronidazole,
a drug for the treatment of anaerobic protozoan
and bacterium infections, was developed by cova-
lent immobilization of indicator dye, 3-amino-9-
ethylcarbazole (AEC), in poly(methacrylate) NP of
the size less than 100 nm in diameter.?® The obtained
sensors have higher photostability and lower toxicity
in comparison with free AEC. The results revealed that
the probe showed good selectivity and had a linear
response to the analyte in the range from 2.0 x 107>
to 1.0 x 1073 mol L~! with a detection limit of
9.0 x 107® mol L1

NP SENSORS FOR LARGE BIOLOGICAL
MOLECULES

NP sensors have been used for detecting large biolog-
ical molecules such as DNAs and proteins. The basic
design is composed of NPs functionalized with recep-
tors (antibodies,”> DNAs,*® or aptamers””) for target-
specific detection. The analysis was done with various
approaches including optical methods such as fluores-
cence, SERS, and SPR. These sensors have been devel-
oped for diagnostic assay, i.e. laboratory measure-
ments of the analytes in biological samples like blood,
which is not really relevant for this review article
focused on direct intracellular measurements. Readers
interested in these sensors are referred to the literature
for reviews on NP-based diagnostic assay.*%78-80

NP SENSORS FOR CELLULAR
ACTIVITY

Apoptosis Sensor

A nanosensor for detecting apoptosis of cells was
developed by conjugating a caspase-specific FRET-
based apoptosis reagent (PhiPhiLux G1D2) to the G5
poly(amidoamine) (PAMAM) dendrimer for apopto-
sis detection and folic acid for specific targeting.3! The
nanosensors were applied for apoptosis measurements
in two different cell lines: KB cell (folate receptor pos-
itive) and UMSCC-38 cell (folate receptor negative).
The cells were first incubated with either 0.45uM NP
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sensors or phosphate-buffered saline (PBS) (untreated
cells) for 30 min, added with either the apoptosis-
inducing agent staurosporine at a concentration of
0.5uM or PBS (control), and incubated again for an
additional 3 h. The apoptosis was observed on the
basis of the fluorescence of the detached cells using a
flow cytometer. The cell death by apoptosis was not
monitored. The apoptotic KB cells increased the fluo-
rescence intensity to a much greater degree, while the
apoptotic UMSCC-38 cells did not show any increase
in fluorescence intensity over the background fluores-
cence of stained control cells. These results suggest
that the sensor can measure the intracellular activi-
ties or analytes in the specific location selected by the
targeting moieties linked to the NP surface.

NP Sensor for Lipid Peroxidation

A nanosensor for detecting lipid peroxidation by
chemiluminescence was designed by conjugating
Coumarin C343 (C1sH15NOy) to silica NPs (15 nm)
and then entrapping these dye-linked silica in a
sol-gel silica NP (~ 100 nm).3° Coumarine C343
is known to enhance the weak chemiluminescence
associated with lipid peroxidation. The produced
nanosensor enhanced low-level chemiluminescence by
approximately 100%.

NP SENSORS FOR INTRACELLULAR
PHYSICAL PROPERTIES

NP Sensors for Electric Field

Intracellular electric fields have been measured by
voltage dyes or patch/voltage clamps. These tech-
niques frequently require lengthy calibration steps for
each cell or cell type measured, and the measurements
are confined to cellular membranes. A nanodevice to
determine electric field inside any live cell or cellular
compartment, called E-PEBBLE, was developed using
polymerized micelles.*! The E-PEBBLE is prepared
by encasing the fast-response, voltage-sensitive dye
di-4-ANEPPS inside the hydrophobic core of a
silane-capped (polymerized) mixed micelle, which
provides a uniform environment for the molecules
and therefore allows for universal calibration.

The E-PEBBLEs are calibrated externally and
applied for in vitro E-field determinations, with
no further calibration steps. The PEBBLEs were
introduced into immortalized rat astrocytes, DITNC
cells, by endocytosis and enabled, for the first time,
complete three-dimensional electric field profiling
throughout the entire volume of living cells (not
just inside membranes). This new ability is expected
to greatly enhance the understanding of the role

Volume 1, January/February 2009



;"’ WIREs Nanomedicine and Nanobiotechnology

of cellular E-fields in influencing and/or regulating bio-
logical processes, with wider implications for cellular
biology, biophysics, and biochemistry.

NP Sensor for Local Viscosity Measurements
A new type of sensors for local viscosity measure-
ments has been developed with so called ‘MOONSs’
(MOdulated Optical Nanoprobes). The MOONSs are
half-metal-capped fluorescent NPs whose fluorescence
signals can be modulated according to their orienta-
tions, as the metal-coated side reflects the excitation
light. The Brownian rotation or the rotational behav-
iors of the MOONSs under an external magnetic field
have been utilized to measure the local viscosity, which
affects the rotation rate of the MOONSs.81:82 We note
that the same rotational behavior of MOONSs also
allows the sensor’s signal-to-noise (background) ratios
(SNR) to be enhanced by up to 4000 times.?3 So far,
MOON:-based sensors have been developed using a
micron size particle owing to the size-related diffi-
culties for efficient magnetization or high fluorescent
intensity of individual sensor particle. With recent
progress on nanotechnology and coating technol-
ogy, such as molecular beam epitaxy, nanometer-sized
MOONSs are being developed. This sensor design is
quite attractive, as adding a metal coating on one
hemisphere of any NP sensor containing a fluorescent
indicator allows the simultaneous measurement of the
local viscosity as well as the concentration of a chemi-
cal analyte. It also increases tremendously the SNR of
the chemical sensing part.

CONCLUSION

A variety of NP-based opical sensors have been devel-
oped in concurrence with advances in nanomaterials.
These sensors provide minimal physical as well as
chemical interferences owing to the combination of
their small size and their protective NP matrix, or
surface coatings. Some, but not all of these NP sensors
have been successfully utilized for real-time measure-
ments of important intracellular analytes. It has been
reported that single-cell analysis has the potential for
diagnosing diseases at an early stage, at which changes
on a tissue level are not yet evident but chemical
changes within cells are observable.?* Getting chem-
ical or physical information from a single cell or a

NOTES

Optical nanoparticle sensors for quantitative intracellular imaging

specific location within a single cell would be one
of the important future applications of NP sensors.
The following issues must be considered in order to
improve the performance of the NP sensors for wider
and more effective future intracellular applications:

Sensitivity and Signal-to-Noise

The goal will eventually be to enable single analyte
molecule (ion) detection, in a single cell, in vitro or
in vivo, despite the large background. Owing to the
limited numbers of analyte molecules (ions) within a
small volume single cell, instrumentation and sensing
technology must meet stringent detection limits. One
of the promising future sensor designs for enhanced
sensitivity may be based on ‘MOONS’ that provide
a background-free detection. This technique can be
useful for samples with highly scattering and/or fluo-
rescent backgrounds, or for experiments with several
fluorescent probes.

Selectivity

The selectivity of the sensors toward the analytes of
interest is mainly determined by that of the molecu-
lar probes or receptors. A higher level of selectivity
can be obtained by locating the NP sensors at a spe-
cific location in a live cell, either through molecular
targeting groups conjugated to the NP surface, or
through remote steering means such as magnetic or
laser tweezers. A recent study demonstrates the poten-
tial use of magnetic tweezers for remote control of the
orientation and position of the NP sensors.?’

Multiplexing Capability

Detection of multiple analytes can be made possi-
ble by a properly designed single NP sensor. An NP
sensor containing multiple molecular probes or recep-
tors that are specific to different analytes could be,
for example, one in which the various optical sig-
nals are well resolved. The MOON-based fluorescent
NP sensors provide another example of multitask-
ing sensors that can measure the chemical property
simultaneously with a physical property, such as local
temperature or viscosity.”>/#8182° A third example
could be given in which confocal microscopy resolves
the individual signals from a number of cell-embedded
Nanosensors.
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