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Topical and mucosal liposomes
for vaccine delivery
Eder Lilia Romero∗ and Maria Jose Morilla

Mucosal (and in minor extent transcutanous) stimulation can induce local or distant
mucosa secretory IgA. Liposomes and other vesicles as mucosal and transcuta-
neous adjuvants are attractive alternatives to parenteral vaccination. Liposomes
can be massively produced under good manufacturing practices and stored for long
periods, at high antigen/vesicle mass ratios. However, their uptake by antigen-
presenting cells (APC) at the inductive sites remains as a major challenge. As
neurotoxicity is a major concern in intranasal delivery, complexes between archaeo-
somes and calcium as well as cationic liposomes complexed with plasmids encoding
for antigenic proteins could safely elicit secretory and systemic antigen-specific
immune responses. Oral bilosomes generate intense immune responses that
remain to be tested against challenge, but the admixing with toxins or derivatives
is mandatory to reduce the amount of antigen. Most of the current experimental
designs, however, underestimate the mucus blanket 100- to 1000-fold thicker than a
100-nm diameter liposome, which has first to be penetrated to access the underlying
M cells. Overall, designing mucoadhesive chemoenzymatic resistant liposomes, or
selectively targeted to M cells, has produced less relevant results than tailoring the
liposomes to make them mucus penetrating. Opposing, the nearly 10 μm thickness
stratum corneum interposed between liposomes and underlying APC can be sur-
passed by ultradeformable liposomes (UDL), with lipid matrices that penetrate up
to the limit with the viable epidermis. UDL made of phospholipids and detergents,
proved to be better transfection agents than conventional liposomes and niosomes,
without the toxicity of ethosomes, in the absence of classical immunomodulators.
© 2011 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 DOI: 10.1002/wnan.131

INTRODUCTION

In first place, a brief overview on the anatomical
and phenomenological constraints for mucosal

and transdermal delivery of particulate material to
antigen-presenting cells (APC) will be presented. Later
selected results upon administration of intranasal,
oral, and transdermal liposomes and other vesicles
as adjuvants will be critically discussed. On those
basis, a relationship between structure and function
of liposomes and immune response will be elaborated.

Intramuscular (i.m.) and subcutaneous (s.c.)
administration are the two most widely used vacci-
nation routes.1 Briefly, immune responses are trig-
gered after delivered antigens (Ag) are captured by
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APC and processed through different intracellular
pathways. Ag processed via cytoplasm are expressed
via MHC-I molecules, while those processed via the
endo-lysosomal system are expressed via MHC-II
molecules. The interaction between MHC-I and co-
stimulatory molecules from APC with CD8+ T lym-
phocytes generates cytotoxic T lymphocytes (CTL)
and memory cells, whereas the interaction between
MHC-II and co-stimulatory molecules from APC with
CD4+ T lymphocytes generates T helper lympho-
cytes and antibodies producing B cells. The adaptive
immune responses are favored under inflammatory
contexts induced by cells of the innate immunity. The
i.m. route, however, is not optimal for Ag delivery
to APC. The muscle content of APC is poor and
the expression of MHC class II and co-stimulatory
molecules is absent in myocytes which cannot directly
prime T cells. Mucosal and transcutaneous are alter-
natives to parenteral administration that present a
series of advantages. In first place, the problems
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associated with the use of injectables are avoided2,3

and self-administration is feasible bringing higher
patient compliance.

Other unique properties of nonparenteral vias
are better understood after a closer look to the orga-
nization of the immune system, which is divided into
inductive and effector sites. In the former areas, the
Ag sampling leads to initial activation of immune
cells, whereas in the latter the antibodies and cells
of the immune system perform their specific func-
tion upon activation.4 The inductive sites in mucosa
are region specific lymphoid tissues and their sur-
rounding regional lymph nodes, composed of B-cell
follicles, APC, and T lymphocytes, known as mucosa-
associated lymphoid tissue.5 The two main inductive
sites in mucosa- are the gut-associated lymphoid tis-
sue (GALT) in the gastrointestinal tract (GIT) and the
nasopharynx-associated lymphoid tissue (NALT) in
the nose.6 Both are similarly organized, with follicle-
associated epithelium containing cells (M cell in GALT
and M-like cells in NALT), specialized in take up
and transport particulate Ag and organisms from the
lumen to the underlining APC in the follicles, across
the epithelial barrier (transcytosis).7–10 The inductive
sites in the skin (2 m2 surface area in humans) lie
between 10 and 200 μm below the stratum corneum
(SC).11 Keratinocytes, Langerhans cells, dermal den-
dritic cells, subsets of T lymphocytes, and lymph
nodes constitute the skin-associated lymphoid tissue
(SALT).12–14

Mucosal immunization is the only way to induce
an effective B cells class switching and production
of secretory IgA (sIgA),15 both in local and dis-
tal mucosa.16 It also induces Ag-specific serum IgA
and IgG antibodies and favors cell-mediated immune
response.17,18 Mucosal immunity may be less affected
by aging than that induced by parenteral route.19

Immunization by the intranasal (i.n.) route (160 cm2

surface area in humans)20 offers a series of advantages
over other mucosal routes: (1) it requires less amount
of Ag than by oral route, (2) it is optimal to generate
secretory immunity against pathogens transmitted via
aerosols in the respiratory mucosa,21–23 (3) it induces
sIgA in saliva, urine, and rectum,24 (4) it induces
sIgA and CTL in female genital tract,25 in a more
predictable way and with major compliance than by
vaginal route,26 (5) it produces greater systemic anti-
body responses than immunization by other mucosal
routes,27 and (6) it can be used for vaccination of large
populations within a short period of time in case of a
sudden epidemic. On the other hand, the oral route is
of major relevance in pediatric vaccination.28,29

The high density of APC, laying several microm-
eters under the body surface or beneath the GIT

and nose mucosa, however, is only available for Ag
delivery if a series of physical and phenomenological
constraints can be surpassed. Soluble Ag, for instance,
are sensitive to degradation in GIT. In general, solu-
ble Ag are unsuitable to generate protective immunity
upon oral or i.n. administration and in some cases can
induce systemic tolerance.30 Large doses of oral Ag
can lead to a short-lived secretion of Ag-specific IgA,
without the induction of a serum antibody response. It
was observed that nearly 100-fold higher Ag amounts
have to be given orally to induce a 100-fold lower
response as compared to s.c. administration.31–33 To
surpass this problem, oral vaccination requires the
coadministration of high doses of powerful adjuvants.
For instance, ADP-ribosylating enterotoxins from
Escherichia coli (thermolabile enterotoxin, LT) and
from Vibrio cholerae (CT), responsible for fulminant
gastrointestinal losses of water and electrolytes which
accompany clinical infection, bind to ganglioside
GM1 receptors present on enterocytes, dendritic cells,
macrophages as well as B and T lymphocytes.34 When
coadministered with soluble Ag, CTL, Ag-specific
sIgA, serum IgG, and long-term memory are
induced.35–37 The adjuvant activity of these toxins
may result from improved Ag uptake as well as
the induction of secretion of various cytokines.34

Other powerful mucosal adjuvants are CpG-DNA
(synthetic unmethylated CpG dinucleotide, which is
a ligand of toll-like receptor 9 on cells of the innate
immunity) and monophosphoryl lipid A (a ligand
of the toll-like receptor 4), a nontoxic derivative of
the lipopolysaccharides from Salmonella minnesota.
CpG-DNA and monophosphoryl lipid A lead to the
release of various pro-inflammatory cytokines that
can influence adaptive immune responses and B-cell
activation. Mucosal adjuvants, however, have to be
given orally to mice in high doses in the presence
of bicarbonate to prevent intragastric degradation. In
humans, oral and i.n. administration of CT and LT is
associated with diarrhea at doses as low as 5 μg38,39

and neurotoxicity.40,41 On the other hand, transcu-
taneous (topical) immunization requires the physi-
cal/chemical disruption of the SC42,43 and also the
use of immunomodulators such as LT,44 its mutants
(LTK63 and LTR7245), or CT.35,36,46 Upon applied
on hydrated skin, these immunomodulators induce
strong systemic and mucosal responses,47 posing risk
of autoimmune or inflammatory reactions.48 Transcu-
taneous application of mucosal immunomodulators
such as CpG-DNA, lipopolysaccharides, muramyl
dipeptide, alum, IL-2, and IL-12 generate weaker
and more transient responses than CT or LT.49 Cur-
rently no toxins or derivatives have been approved for
human use.50–53
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The induction of an immune response by
nonparenteral vias is extraordinarily depending on
the aggregation state of the Ag. Immature Langerhans
cells and dermal dendritic cells, as well as dendritic
cells in the basolateral pocket of the M cells readily
take up particulate material.16,54,55 As particles are
more efficiently taken up by APC than soluble
molecules, particulate Ag induces stronger immune
responses than soluble Ag, independently of the route
of administration.8,56 However, the architecture of
inductive sites in mucosa and skin interposes higher
physical constrains for delivery of particles to APC
than for soluble Ag. The structure of the SC (10- to
15-μm thick apposed layers of dead keratinized cells
embedded in a lipid matrix lacking phospholipids)
impairs the diffusion/penetration of transcutaneous
soluble or particulate Ag.11,44 In oral administration,
apart from dilution in a degradative chemoenzymatic
environment, the alimentary status and the tight
epithelial junctions, the delivery of particulate Ag
is mainly impaired by the mucus blanket.57 The
mucus (a viscous colloid containing antiseptic enzymes
such as lysozyme, proteins such as lactoferrin and
anionic glycoproteins known as mucins) from GIT,
respiratory and urogenital mucosa is specialized in
wrapping up particles, impairing their contact with
the epithelium.58 A nearly 10-μm thick mucus layer
is secreted by enterocytes at 1–100 μm/s consisting
of a luminal layer (rapidly cleared, within minutes
to hours) on the top on an adherent layer (slowly
cleared, within hours to days). A bed of 500-μm thick
glycocalyx covering the apical side of the enterocytes
that becomes considerably thinner (nearly 30 μm)
on the surface of M cells is an additional physical
barrier.59 The penetration of particles is effectively
impaired by the bulk viscosity of healthy human
mucus which is typically 1000–10,000 times higher
than the viscosity of water (at low shear rates).60

Theoretically, no particulate material could diffuse
across the mucus, neither virus nor small hydrophilic
molecules. In the less destructive environment of the
nose, the upper gel mucus layer is cleansed and
replaced within 10 min, whereas the underlying sol
mucus layer is slowly cleared. Particles trapped in
the upper mucus layer are removed from respiratory
epithelium to the nasopharynx and stomach by the
mucociliary escalator at 10–100 μm/s.61 Because of
the physical barrier of the mucus, only mucus-
penetrating infective agents such as wild or attenuated
microorganisms reach the underlying epithelia
and stimulate the mucosa.52 Live or attenuated
microorganisms, however, lead to risks of reactivation
especially in immunocompromised people.53 Hence,
in order to avoid rapid mucus clearance and to

reach the underlying epithelia, particles should quickly
traverse at least the outermost layer of the mucus
barrier (which are cleared most rapidly).59

It was recently demonstrated that properly engi-
neered particles up to 500 nm diameter can rapidly
enter and cross the human mucus, with diffusivities
as high as only fourfold reduced compared to their
rates in pure water.62 One of the reasons that allow
displacement of nanoparticles is the opening of low
viscosity aqueous channels (mesh spaces) caused by
the aggregation of mucin fibers into cables.63 As the
mucine concentration is increased, the probability of
formation of cables and of the number of freely dif-
fusive pathways (100- up to 500-nm mesh spacing)
becomes higher. Taking this fact into consideration,
it can be proposed that to reach the surface of M
cells, particles need to be mucus penetrating instead of
mucoadhesive.63,64 Determined structural character-
istics enable the particles displacement through the
channels. For instance, particles between 35 and
75 nm have the optimal diameter to fit into the
channels. The role of Z potential is more com-
plex. The mucoadhesivity of cationic particles such as
polyethylenimine, chitosan, and polylysine is caused
by the multiple contact points established with the neg-
atively charged mucins. Therefore, particles with low
cationic charge density surfaces stick to the luminal
layer of mucus and are rapidly removed. Hence, multi-
ple ionic interactions are useless to improve the mucus
penetration of particles. However, particles with high
cationic charge density surfaces or wrapped by highly
concentrated chitosan can induce the collapse of the
mucin cables, increasing the chances of penetration
of the particles. Indeed, a high number of particles
can saturate the binding points of mucus, which no
longer retain material into the mesh.65,66 Anionic par-
ticles, on the other hand, are repelled in the surface of
the anionic mucus, having lower chance of penetra-
tion across the low viscosity channels.67 Particles with
equal number of cationic/anionic charges and rela-
tively hidden hydrophobic sites have maximal chances
to penetrate. Finally, highly hydrophobic particles
[poly(lactide-co-glycolide and polyanhydrides)] also
establish multiple contact points with the mucin core,
and their penetration velocity is decreased. Hydropho-
bic particles establishing minimal contact points have
higher chances to penetrate.

Recent reviews have addressed the use of partic-
ulate Ag, specifically nanosized material.68–70 Ideally,
the structure of mucosal and transcutaneous particu-
late adjuvants must be suitable to cross the mucus and
SC barriers. By overcoming the physical impairments
(which are absent in parenteral administration) to
gain the APC, nonparenteral particle delivery should

© 2011 John Wiley & Sons, Inc.



Advanced Review www.wiley.com/wires/nanomed

diminish the Ag dose as well as the need for potentially
toxic immunomodulators coadministration.

Liposomes are nonimmunogenic vesicles made
of 1,2 sn-glycerophospholipids with or without
cholesterol.71 Virosomes, archaeosomes, niosomes,
bilosomes are also vesicles but their composition is
based on amphiphilic molecules other than 1,2 sn-
glycerophospholipids. For biological applications, any
vesicle under 200–300 nm is a nanoparticle.72 Lipo-
somes and other vesicles have a number of competitive
advantages over other nanoparticles. Liposomes, for
instance, can be prepared in a wide range of sizes and
compositions at high efficiency of Ag encapsulation
and with high stability of Ag association. Liposomes
between 20 and 100 nm diameter offer 0.2–2 μL/μmol
lipid encapsulation volume, with an encapsulation
efficiency of hydrosoluble active between 15 and
50%.73 Techniques for massive production under
good manufacturing practices74–77 to afford long
periods of storage78 are available, and different to
polymeric nanoparticles such as those made of poly-
lactide-co-glycolide no major concerns on Ag stability
are presented during storage.79 As the European
guidelines on adjuvants destined for human vaccines
recommend completing distribution studies,80 it is
important to stress that methods of double radioac-
tive labeling to follow Ag and lipids biodistribution
of liposomes are already available81 as well as to
identify optimal high-throughput industrial produc-
tion conditions for compositions of interest.82 Lipo-
somes are biodegradable and exhibit a huge record
of safety when repeatedly administered by parenteral
routes.

INTRANASAL ROUTE

Currently, an annual i.m. injection of a trivalent vac-
cine is generally used for protection against influenza
virus.83 However, the vaccine does not induce respi-
ratory mucosal immune response, which is important
in the first line of defense against influenza. The
only licensed commercial mucosal influenza vaccine
(FluMist) is live attenuated and quite effective, but
remains too expensive for poor societies. Production
of a nonliving vaccine would be cheaper.84

Until now, i.n. virosomes (that reached the mar-
ket) and liposomes (still in preclinic developments),
have been unable to replace conventional vacci-
nation. Virosomes are 100–200 nm mean diameter
vesicles85 containing immunogenic viral fusion pro-
teins in their membranes. In particular, influenza
virosomes contain viral membrane lipids, hemagglu-
tinin, and neuraminidase proteins.86 Neuraminidase
cleave N-acetylneuraminic acid from bound sugar

residues. The decreased viscosity of mucus allows
an easier access of virosomes to epithelial cells (note
that virosomes were the first mucus-penetrating
vesicles). Hemagglutinin has high affinity for
N-acetylneuraminic acid on APC surface, and has
got pH-sensitive fusogenic activity. As for the native
influenza virus, binding of virosomes to the sialic acid
residues on the surface of APC, will initiate uptake of
the virosomes through receptor-mediated endocytosis.
On the other hand, the immunostimulating reconsti-
tuted influenza virosomes (IRIVs) are vesicles of size
similar to virosomes, which contain nearly 70 mol%
of external lipids.87 The addition of external lipids
reduces the fusogenic activity of IRIVs that becomes
negligible at 75 mol%.86 Ag loaded in virosomes or
IRIVs induces an immune response that depends on
their intracellular processing pathway. Ag loaded in
fusogenic virosomes or IRIVs are delivered to the
cytoplasm, upon an acid-triggered fusion with the
membrane of endosomes, and presented by MHC class
I to induce CTL-mediated responses, which are opti-
mal to attack virus and cancer cells. On the other hand,
Ag in virosomes that do not fuse with endosomal mem-
branes, are processed via an endo-lysosomal pathway
and presented by MHC class II to induce either a B-
or T-cell response.88–90 Although lipids in virosomes
served as an inert matrix to include the enzymes,
the role of the optimal protein/lipid ratio is still
unclear.

Preclinical studies showed that i.n. influenza
virosomes or IRIVs require the coadministration
of immunomodulators like LT91 or lipopeptide
(N-palmitoyl-S-2,3(bispalmitoyloxy)-propyl-cysteinyl
-seryl-(lysil)3-lysine92 in two successive immuniza-
tions to enhance sIgA levels and hemagglutination-
inhibiting antibody response, which protected against
challenge. Effectively, upon twice i.n. administration
of NasalFlu®, a trivalent IRIV vaccine containing LT,
an almost total prevention of virus shedding in ferret
model of influenza was achieved,93 without systemic
or neurological adverse effects.94 Promising clinical
trials showed humoral- and cell-mediated responses,
with high mucosal sIgA neutralizing antibodies.94,95

NasalFlu® was marketed in Switzerland by Berna
in 2001. However, after an increased occurrence of
Bell’s palsy observed in people who had recently
received the vaccine, NasalFlu® had to be removed
from the market.41 IRIVs-based vaccine was the only
i.n. vesicular adjuvant achieving the market, and its
withdrawal underscores the dangers associated to the
administration of exogenous material by i.n. route.
Intranasal administration enables the direct contact
with primary olfactory neurons that communicate
through their axons with the olfactory bulb in the
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brain.96 This pathway leads to a direct nose-to-brain
delivery.97,98 For instance, accumulation of CT in the
olfactory nerve and bulb was observed after its i.n.
administration. This should occur upon its neuronal
uptake via GM1, abundantly expressed in the central
nervous system.36,99 On the other hand, recently two
cases of Bell’s palsy temporally associated with i.n.
administration of genetically detoxified LTK63 were
reported. This was possibly owed to a transient inter-
ference with peripheral nerve function, caused by the
accumulation of LTK63 molecules. Alternatively, it
could result from inflammation arising from immune
response to LTK63, after GM1 binding and retro-
grade neuronal transport.100 Clearly the induction of
immune responses in the absence of neurotoxicity is
the bottle neck for i.n. delivery.

Depending on their size and lamellarity
liposomes are classified as small unilamellar vesi-
cles (SUV, ≤50 nm), large unilamellar vesicles (LUV,
200–400 nm), and multilamellar vesicles (MLV, sev-
eral micrometers).101 Especially upon s.c., i.m., or
intraperitoneal (i.p.) administration, liposomes may
act as a depot for slow release of the Ag over extended
periods of time, to favor the Ag uptake by APC such
as dendritic cells and macrophages.102 In mucosal
administration, liposomes protect the entrapped Ag
against degradation or neutralization. An analysis of
the structure of liposomes employed as i.n. adjuvants
against influenza virus (Table 1) clearly indicated
that the lipid matrix was not responsible for the
elicited immune response. For instance, i.n. but not
s.c. liposomes bearing T cell epitopes admixed with
the immunomodulator anti-CD40 antibody protected
mice against challenge. Remarkably, the sole activ-
ity of the anti-CD40 monoclonal antibody was not
sufficient to replace the function of CD4+ T cells,
required for the induction of CTL activity to clear
the virus from the mucosal sites. In this case, lipo-
somes were used as an inert lipid matrix for ligand
attachment.103 In another work, the protective efficacy
elicited after i.n. liposomal CpG co-encapsulated with
hemagglutinin and neuraminidase influenza proteins
was higher as compared to free CpG, and simi-
lar to that of animals immunized with CT. Again
liposomes were used as inert lipid matrices to load
Ag and an immunomodulator.104 In the following
approach, i.n. cationic liposomes complexed with a
plasmid encoding influenza hemagglutinin withstand
a lethal challenge in mice, with a shift toward a Th1
response and involvement of B memory cell. Intramus-
cular naked or liposomal plasmid was also protective
against a lethal challenge, with increased serum IgG
but in the absence of sIgA. The intensity of the cell-
mediated response after i.n. and i.m. administration

was slightly lower for the liposomal formulation.105

This was an example of liposomes as cationic lipid
matrix to form a lipoplex with a plasmid.

The two followings works are examples of
liposomes used as inert lipid matrix carrying lipid
immunomodulators. In the first one, polycationic sph-
ingolipid (ceramide carbamoyl-spermine) containing
liposomes were highly efficacious following a sin-
gle or repeated (2×) i.n. administrations. Serum and
mucosal elicited antibodies were equivalent or supe-
rior to those obtained with commercial split virion
trivalent vaccine coadministered with CT. No sys-
temic adverse effects, only a mild local inflamma-
tory response, were observed in mice and rabbits
intranasally vaccinated with these liposomes. The
ceramide carbamoyl-spermine should be recognized as
a danger signal. A role for the size of the vesicles could
not be identified.106 In the second one, cationic choles-
terol derivative (a special lipid immunomodulator)
containing liposomes elicited similar serum responses
but higher mucosal hemagglutination-inhibiting activ-
ity to that induced after s.c. immunization with the
vaccine alone.107

Only one different approach relayed on the par-
ticular composition of a lipid matrix. Vesicles made
of the immunomodulator trehalose 6,6′dibehenate
and the cationic surfactant dimethyldioctadecylam-
monium bromide elicited both significantly higher
IFN-γ and serum IgG levels than i.n. immunization
with the commercially available influenza vaccine.
Surprisingly, the induction of sIgA production was
not reported. In vitro assays demonstrated that these
liposomes enhanced Ag transport through the mucus
layer on polarized Calu-3 cells and did not produce
changes in epithelial integrity and viability.108

As exogenous Ag are mainly presented by B
cells through the MHC class II pathway to Th2
cells, the current recombinant vaccine against hep-
atitis B provides humoral but no cellular immunity.
This is not suitable as therapeutic vaccine in the treat-
ment of chronic hepatitis B.138 Moreover, the number
of hepatitis B virus, hepatitis C virus, and human
immunodeficiency virus infections among health care
professionals attributable to sharps injuries are esti-
mated to 83,000 incidences per year,139 a good reason
to search for alternatives to parenteral vaccination.
Only two preclinical studies using liposomes as proofs
of principle were carried out to date, and again lipo-
somes were used as inert lipid matrices. In the first
of them, i.n. glycol chitosan modified liposomes con-
taining a plasmid encoding hepatitis B surface small
protein (HBsAg), generated serum anti-HBsAg titers
that were lower than those elicited by i.m. naked
plasmid and alum adsorbed HBsAg (alum-HBsAg)

© 2011 John Wiley & Sons, Inc.
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but higher than those obtained with i.n. naked
plasmid. Cytokine levels were lower than those pro-
duced by naked plasmid but higher than the induced
by alum-HBsAg. The mice were seroprotective within
2 weeks. Glycol chitosan liposomes also elicited
sIgA but the i.m. administrations did not.109 How-
ever, though the authors stated the formulation was
pH-sensitive because of the presence of DOPE, the
composition of the lipid matrix did not correspond
to a pH-sensitive vesicle.140 In the second work from
the same group, i.n. liposomes called in situ gelling
system elicited serum anti-HBsAg titers comparable to
those achieved upon i.m. alum-HBsAg. Additionally,
these liposomes produced sIgA and cellular immune
responses (measured by cytokine level) meanwhile
alum-HBsAg did not.110 Authors claim that this sys-
tem possesses a 100% efficiency of Ag entrapment.
At the pH of nasal mucosa (7.4–6.8), the polyacrylic
acid solution becomes gel and a depot is created
at the site of administration. The entrapped Ag is
said to be released in three steps: (1) release of Ag
from polyacrylic acid hydrogel, (2) release of lipo-
somes from polyacrylic acid hydrogel, and (3) release
of Ag entrapped in gel core liposomes. Hepatitis B
has not been convincingly shown to be transmitted
via feco-oral route. Therefore, the relevance of the
observed mucosal immune response is debatable. But
such a response may be useful in other forms of
viral hepatitis (A, E, etc.) which are predominantly
transmitted feco-orally.141

Finally, three recent works employed liposomes
as inert lipid matrix as proof of principles for different
applications. In the first one, liposomes containing a
mannotriose neoglycolipid (a ligand of the mannose
receptor on APC) induced an immune response in mice
that resulted in 5- to 10-fold increased serum IgG and
IgA upon an i.n. boost with bare ovoalbumin.111

The second one used anionic liposomes covered by
low concentration of the mucoadhesive polymer chi-
tosan. Coating of liposomes by chitosan failed to
increase both the residence time of liposomes in nasal
cavity and systemic responses. Conversely, coated
liposomes could not induce the mucosal responses
as efficiently as noncoated liposomes.112 As predicted,
the mucoadhesivity of coated liposomes was respon-
sible for its removal and of its poor performance as
adjuvant. The third one used proteoliposomes, vesicles
containing major bacterial outer membrane proteins,
lipopolysaccharide/lipooligosaccharide and phospho-
lipids. Proteoliposomes contain multiple pathogen-
associated molecular patterns as immunopotentiators
as well as Th1 polarization activity.142 The protection
of i.n. Neisseria meningitides proteoliposomes con-
taining glycoprotein D of herpes simplex virus type 2,
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against challenge was only partial. Cochleates (large,
continuous, solid, lipid bilayer sheet rolled up in a
spiral, with no internal aqueous space) prepared by
complex formation of proteoliposomes with Ca2+, on
the other hand, effectively protected against challenge
with genital herpes.113

Different to the previous approaches, the
following two works employed lipid matrices that
played an active role on the induction of the immune
response. In the first one, archaeal lipid mucosal
vaccine adjuvant and delivery (AMVAD), complexes
of archaeosomes made of lipids from Methanobre-
vibacter smithii with CaCl2 were used as proof
of principle. Archaeosomes are vesicles made of
polar lipids extracted from the Archaea domain of
life.143 Archaeal polar lipids contain ether linked
isoprenoid chains, mainly phytanyl (C20, archaeols)
and bysphythanediyl (C40, caldarchaeols), in sn-
2,3 enantiomeric configuration to glycerol moiety.144

Mice i.p. or s.c. immunized with archaeosomes from
M. smithii (40% archaeol, 60% caldarchaeol) con-
taining soluble Ag, elicited Ag-specific systemic anti-
body and cellular immune response, including CD8+
CTL responses.145,146 Intranasal AMVAD containing
ovoalbumin induced serum IgG and mucosal sIgA
responses similar to that obtained with CT, and
mucosal and systemic immune memory responses
in the absence of foreign immunomodulators.114

A suitable explanation on the action mechanism of
AMVAD, however, was not provided by the authors.
It is especially intriguing the fact that i.n. archaeo-
somes induced inferior responses than those elicited
with higher sized AMVAD. The Z potential of
archaeosomes is strongly negative, and in consequence
the archaeosomes should slip on the mucin layers. The
screening of the negative charges by the Ca2+ should
allow some vesicles to be mucus penetrating and that
should be the reason, instead of the increased size,
why these complexes functioned as better i.n. adju-
vants. In the second one, pH-sensitive liposomes were
also used as proof of principle. Similar to virosomes
or IRIVs, the bilayer of pH-sensitive liposomes expe-
riences an acid-triggered fusion with the membrane of
endosomes once endocytosed. In consequence soluble
Ag loaded in liposomes is released into the cytoplasm
and it is presented by the MHC-I type pathway,
responsible for cell-mediated responses.147 Liposomes
can be made pH-sensitive by wrapping inert lipid
matrices with pH-sensitive polymers such as carboxy-
lated polyglycidols. The hydrophobic/hydrophilic
balance of the carboxylated polyglycidol polymer
changes as the pH shifts from neutral (where the
hydrophilic COO− form predominates) to low (where
the more hydrophobic COOH form predominates).

Accordingly, the carboxylated polyglycidol polymer
conformation changes from an extended form at
neutral pH, to a collapsed form at low pH.148

Especially, 3-methylglutarylated polyglycidol which
has hydrophobic side chains, exhibited higher fusion
ability than succinylated polyglycidol. Intranasal 3-
methylglutarylated polyglycidol liposomes containing
ovoalbumin induced cellular immunity in the absence
of additional immunostimulating molecules, in a fash-
ion comparable to that of Freund’s complete adjuvant
(which is a toxic adjuvant used only in veterinary).115

Due to their large size, neither
MLV103,104,106,108,109,111 nor AMVAD114 are nano-
sized vesicles. However, probably both are reduced
to lower size/lamellarity structures during the transit
across the mucosa. Otherwise the mucus penetra-
tion and/or the fitting into an endocytic pocket
(two unavoidable steps previous to an efficient
uptake/transcytosis by M or M-like cells) would be
physically impossible. None of these formulations has
been tested for neurotoxicity yet.

ORAL ROUTE

The destructive environment of the GIT is a chal-
lenge for the maintenance of colloidal and chemical
stability of liposomes. One of the keys for oral, but
not for i.n. immunization is to count on structurally
stable liposomes against chemoenzymatic attack, in
order to be taken up by M cells and transcitosed
to APC of the GALT. Due to the weak structure of
the lipid matrix, the first liposomes used to stimulate
the GALT rendered lower antibodies titers than those
induced by free Ag. Later, it was observed that satu-
rated phospholipids of long acyl chain and high phase
transition temperature (e.g. distearoylphosphatidyl-
choline) as well as inclusion of cholesterol, made the
bilayers more resistant to hydrolysis. In this way lipo-
somes were also protected against the action of bile
salts, and their colloidal integrity was maintained.149

The inclusion of phosphatidylglycerol in liposomes
was observed to increase the liposomal capture by M
cells, whereas the inclusion of phosphatidylserine was
related to the induction of tolerance. In terms of size,
SUV were observed to raise systemic responses, while
LUV induced local response.150 A selection of the most
relevant results obtained with stable oral liposomes
(Table 1), showed for instance that the adsorption of
alum and admixed or included immunomodulators
[CT and the recombinant B subunit of CT (CTB)] into
the lipid matrix was required to generate mucosal and
systemic responses.116–118 Recently, oral liposomes
containing a fusion peptide of CTB and Helicobacter
pylori urease B subunit epitope elicited high protection
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(in terms of gastritis score and histological evaluation)
for both prophylactic and therapeutic vaccination
protocols.119 There is no further information on the
outcome of these formulations. However, shortly after
these works were published the induction of diar-
rhea was reported upon oral administration of toxin
derivatives to humans.38,39 On the other hand, the
selective targeting to human M cells as a mean to
increase immune responses, has generated inconclu-
sive results. Orasomes™ are polymerized liposomes
stable to detergent action due to the polymerization
of the monomer 1,2-di(2,4-octadecadienoyl)-glycerol-
3-phosphorylcholine (DODPC). Orasomes™ grafted
to the lectin Ulex europaeus 1 (UEA1) showed an
increased uptake by mouse intestine (with M cells
expressing receptors for UEA1) as compared to Ora-
somes grafted to the lectin wheat germ agglutinin.151

Later, an in situ assay using a gut loop model showed
that UEA1 grafted to Orasomes™ targeted the M
cells in mouse Peyer Patches’s, resulting in fourfold
enhancement of liposomal binding.152 However, the
existence of specific ligands for M cells in humans
remains to be demonstrated.31 There was no further
published information of Orasomes™. Recently, it
was found that ligands of claudin 4, an β integrin
that is over expressed in the surroundings of human
M cells, increased the binding and capture by human
M cells when attached to the surface of polymeric
nanoparticles.153

Liposomes covered by polymers had increased
structural stability but the immune responses were
not improved. Pullulan is a natural polysaccharide
that protects yeast plasma membrane against osmotic
pressure and ionic strength. Liposomes covered with
O-palmitoyl derivative from Pullulan exhibited an
increased stability in simulated gastric fluid. How-
ever, serum IgG and IgA titers were comparable
to those obtained by uncovered liposomes. IgG
titers were lower and IgA similar to those obtained
upon i.p. administration.120 The same occurred with
polyethylene glycol. Peguilated liposomes exhibited
an increased stability in GIT but were less cap-
tured by M cells.121 Niosomes, on the other hand,
are nonionic vesicles made of 0–50 mol% mixtures
of cholesterol with biodegradable and biocompatible
nonionic surfactants (diacyl or monoacyl polyglycerol
or poly(oxyethylene)). The high structural stability
of niosomes is due to their high surface density of
hydrated groups. Niosomes are more chemically sta-
ble and have lower cost than liposomes made of
phospholipids.154 Niosomes coated with O-palmitoyl
mannan (a ligand of the mannose receptor in APC)
containing HBsAg elicited Ag-specific antibodies
(serum and mucosal) and cellular response. However,

the serum titers were lower than those elicited by
i.m. naked plasmid or HBsAg.122 Finally, the advent
of bilosomes allowed the induction of more intense
immune responses than with other vesicles. Bilo-
somes are niosomes prepared by hydration of the
nonionic surfactant film with buffer solution con-
taining bile salts, in particular, deoxycholate.155,156

Deoxycholate-containing vesicles are of remarkable
stability against higher deoxycholate concentrations,
being stable against effects of bile acids in the GIT.155

Oral bilosomes induced Ag-specific antibodies in
serum and mucosa.123,124 The serum titers obtained
by oral bilosomes loaded with tetanus toxoid were
similar to those obtained upon s.c. administration.124

In a further work, it was observed that bilosomes
required five times higher dose of Ag (50 μg) to pro-
duce anti-HBsAg IgG titer similar to that elicited
upon 10 μg i.m. alum-HBsAg.125 To achieve an
equivalent immune response to the same amount of
Ag the addition of immunomodulators was needed.
For instance oral bilosomes covalently conjugated
to CTB and loaded with albumin induced similar
response than parenteral administration of albumin
with Freund’s complete adjuvant, in the absence of
adverse effects.126 Mice immunized with 20 μg HBsAg
loaded in bilosomes covalently conjugated with CTB,
induced anti-HBsAg IgG antibody titers comparable
to that elicited upon 10 μg i.m. alum-HBsAg. Also
measurable sIgA was induced, which was negligible
after i.m. administration.127 Nano- and microme-
ter sized bilosomes induced systemic humoral and
mucosal responses, but it was observed that size influ-
enced the balance of the response. Large bilosomes
entrapped influenza A antigens containing hemaglut-
tinin (two population 60–350 and 400–2500 nm,
Z-average 980 nm) induced higher IgG2a, significant
IFNγ production and greater protection than small
ones (single population range 10–100 nm, Z-average
250 nm) in ferret model of influenza. However, both
oral bilosomes were superior to i.m. commercial vac-
cine, in terms of higher antibody production, lower
temperatures, and reduced symptoms over time post-
infection.128 Authors attributed the differences to
the fusogenic activity of the hemagluttinin. Large
bilosomes are likely to have a greater entrapped
hemagluttinin containing volume compared to small
bilosomes, the amount of antigen capable of escap-
ing the endosomes after phagocytosis, to be processed
by the class I MHC pathway, and the induction of
cytotoxic CD8+ T cells would be greater.

TRANSCUTANEOUS ROUTE
The SC is the main impairment to transcuta-
neous penetration of molecules >500 Da157 and
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for transcutaneous delivery of vaccines.158 Ultrade-
formable liposomes (UDL) are liposomes containing
approximately 27mol% of border activators (small
hydrophilic molecules of high mobility such as sodium
cholate or detergents such as Span 80159). Border acti-
vators decrease the value of elastic energy (k) of UDL
to that of the room thermal energy (kT) (∼20 folds
lower than k of conventional liposomes). The bilayer
of UDL fluctuates at room temperature.160 Border
activators displace toward the zones under mechan-
ical stress in the bilayer.161,162 According to Cevc,
the transepithelial humidity gradient provides a loco-
motive force (1011 to 1012 N/mol vesicles of 60 nm
radii161), that impulse the locomotion of UDL across
the inter-corneocyte nanochannels in the SC without
coalesce nor collapse.163,164 Under nonocclusive con-
dition, UDL rapidly penetrate the SC (within 1 h)
and can be found at several microns depth, close to
the Langerhans cells.165–167 In contrast, conventional
liposomes dehydrate and fuse on the skin surface, and
accumulate in the upper layers of the SC, not deeper
than the first micron of the SC.164

Upon transcutaneous application on human skin
explants, the lipid matrix of UDL penetrates between
7 and 10 folds deeper the SC than conventional lipo-
somes. Besides, the hydrosoluble inner content of UDL
is shuttled up to 50 μm within the viable epidermis.168

UDL are capable of generating Ag-dependent systemic
immune reactions more efficiently that conventional
liposomes and niosomes. This could be owed to the
higher penetration of the lipid matrix/inner content,
to the neighborhood of skin APC. Up to date, how-
ever, a relation between amount and frequency of
doses, penetration depth, and immune response (trig-
gered by increased uptake by APC and/or release of
pro-inflammatory cytokines) has not been surveyed.

An early report in 1998 showed that UDL raised
Ag-specific IgG titers comparable to those obtained
upon i.m. immunizations as well as serum IgA; the
presence of the immunomodulator monophospho-
ryl lipid A did not improve the responses.129 Seven
years later, niosomes coated with O-palmitoyl man-
nan to target Langerhans cells elicited significantly
higher serum IgG titers as compared with transcu-
taneous alum-bovine serum albumin and uncoated
niosomes.130 Then a comparative study showed that
UDL produced higher serum IgG levels than nio-
somes and liposomes, with titers comparable to that
elicited by i.m. alum-tetanus toxoid.131 Fusogenic
vesicles called vesosomes (multi-compartment struc-
ture consisting of drug-loaded liposomes encapsulated
within another bilayer) elicited anti-tetanus toxoid
serum IgG titers comparable to or higher than those
obtained with i.m. alum-tetanus toxoid. Although

vesosomes produced higher IgG2a/IgG1 ratio, a pri-
mary i.m. immunization with alum-tetanus toxoid
was required.132 Overall, the preparation method at
laboratory scale of vesosomes is rather complex and
the feasibility of their scaling up is uncertain.

Topical neutral liposomes and niosomes con-
taining plasmid encoding for antigenic HBsAg elicited
similar anti-HBsAg IgG titers, which were higher than
topical but lower than i.m. naked plasmid. IFN-γ
and IL-2 levels in spleen homogenates were similar to
those raised by i.m. naked plasmid.133 Transfection
with topical UDL induced IgG titers comparable to
i.m. naked plasmid or HBsAg, as well as serum IL-4
and IFN-γ .134 Transfection with UDL required only
one-third the amount of DNA carried by liposomes
or niosomes.133

Ethosomes are liposomes that intercalate co-
solvents such as ethanol into the polar head group of
bilayers.169 Ethanol increases the membrane perme-
ability, making the vesicles soft flexible, which allow
them to more easily penetrate into deeper layers of
the skin. On the skin surface, ethanol causes a reduc-
tion in the phase transition temperature of the SC
lipids, increasing their fluidity. If well regular etho-
somes bear nearly 25% ethanol and most protein Ag
are quite stable below 50%, ethosomes bear the risk
of Ag degradation.170

Transcutaneous UDL135 and ethosomes136 con-
taining HBsAg raised similar levels of anti-HBsAg
serum IgG, those were in the order of that elicited
by i.m. alum-HBsAg. However, only UDL and etho-
somes generated significantly systemic and mucosal
IgA levels. Finally, UDL and ethosomes were shown
to be internalized fast by both murine171 and human
dendritic cells.172 Human dendritic cells pulsed with
UDL and ethosomes containing HBsAg stimulated T
lymphocytes proliferation and induced IL-2 and IFNγ

(Th1-type immune response). Ethosomes produced
higher dendritic cells’ toxicity than UDL. Finally, UDL
containing plasmid encoding virus surface glycopro-
teins of respiratory syncytial virus induced both spe-
cific mucosal antibody response and IFNγ producing
cells. Lungs from mice receiving topical vaccination
also had fewer histopathologic anomalies after virus
challenge than did mice receiving i.m. vaccination.137

CONCLUSION

Excepting the short period where the IRIVs achieved
the market for nasal immunization, the last 15 years
have witnessed the emergence of many types of vesi-
cles for oral and nasal immunization. Up to date, none
of those strategies evolved beyond preclinical studies.
A reason for this could be the absence of a rational
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design for the lipid matrix. Only in oral immuniza-
tion a precise role for the matrix could be partly
identified. The composition of oral vesicles was made
to protect the chemical structure of the Ag during
the transit by the GIT. To that purpose the Ag were
included in MLV, or in liposomes in gel phase, or
in niosomes/bilosomes (lacking of hydrolyzable ester
bonds). Bilosomes, a milestone in the development of
vesicles as oral adjuvants, are a simple matrix made of
nonionic surfactants added with bile salts. Nasal lipo-
somes were made mucoadhesive by wrapping them
up with polymers. Mucoadhesive liposomes, how-
ever, were useless to increase the immune response.
In that framework, a clear role for the size and the
Z potential was not found. Most of the liposomal
lipid matrices were simple inert platforms for ligand
attachment. Only recently, matrices with special prop-
erties such as the pH-sensitivity were exploited to raise
cell-mediated responses upon i.n. administration. In
sum, most of the strategies for mucosal immunization
focused not on lipid matrix design but on lab scale
preparation of liposomes bearing the ligand best suited
to increase (1) the binding to and subsequent uptake by
M cells at the Peyer Patches’s, (2) the binding to ente-
rocytes, or (3) the interaction with APC. But the same
as for polymeric particles, the feasibility of scaling
up such adhesins/lectins/antibodies grafted vesicles as
well as the absence of neurotoxicity upon i.n. admin-
istration remains to be demonstrated. Also antibodies
could be unstable in the GIT, lost its adequate con-
formation on the liposomal surface. An inadequate
target receptor expression in the FAE could occur.
Lectins have disadvantages in that their receptors tend
to be co-expressed in mucous and they have a ten-
dency to be immunogenic, which could impede repeat
immunization with the same or different antigens.8

Though a few intraepithelial APC in mucosa
are directly accessible to Ag in the lumen, most of
the APC lie under the mucosal epithelium. The M
and M-like cells in intestine and nose are responsible
for the transcytosis of particles straight to the fol-
licular APC. An alternative and almost unexplored
approach to increase the binding of adjuvants to APC
is the design of liposomes/vesicles passively targeted
to the transcytotic cells. A passive targeting does
not depend on a ligand–receptor interaction but on

the feasibility of a particle to remain close to a tar-
get cell. Passively targeted liposomes/vesicles do not
require the attachment of ligands and their scaling up
prospectives become more realistic. Designing mucus-
penetrating liposome/vesicle is a way of passively
targeting transcytotic cells. Note that targeted but not
mucus-penetrating liposomes/vesicles can be trapped
or wiped on the mucus blanket. In other words, the
presence of ligands does not guarantee the binding
of targeted liposomes/vesicles to transcytotic cells.
Moreover, some of the structural features of mucus-
penetrating particles are coincident with empirical
data on particle features needed for an increased cap-
ture by M cells, surveyed among others by Florence
in 200760: size below 1 μm, with negative or neutral
charge and relatively low hydrophobic surface. The
success of the AMVAD could be owed to their spe-
cial matrix made of glyco archaeolipids together with
mucus penetration, a combination capable of inducing
immune responses in the absence of targeting upon
nasal administration. A similar explanation should
account for the success of cochleates over the pro-
teoliposomes. Newly designed liposomes/vesicles for
oral adjuvancy should follow equivalent guidelines.

The rapid mucosal transport of large (200 and
up to 500 nm) particles has important implications in
therapeutics development, as larger liposomes/vesicles
afford substantially higher drug encapsulation as well
as reduced aggregation upon freeze drying. The endo-
cytic uptake could be diminished, however, beyond
an upper limit size of 200 nm. In the future, the engi-
neering of liposomes/vesicles to make them mucus
penetrating could help to increase the few mucosal
vaccines currently on the market.37,173

On the other hand, the unusual penetration of
UDL is responsible for its higher capacity to generate
serum Ag-specific responses as compared to liposomes
and niosomes, with no toxic or inflammatory reac-
tions. If well the conservation by dehydration of UDL
is more difficult than the usual procedures suitable for
conventional liposomes (UDL cannot be submitted
to lyophilization even in the presence of high sugar
ratios174) their lipid matrices can be prepared with
cheap raw material and their scaling up methods are
the same as those used for conventional liposomes.
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