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Abstract

Outcome reporting bias (ORB) is recognized as a threat to the validity of both pairwise and 

network meta-analysis (NMA). In recent years, multivariate meta-analysis (MMA) methods have 

been proposed to reduce the impact of ORB in the pairwise setting. These methods have shown 

that MMA can reduce bias and increases efficiency of pooled effect sizes. However, it is unknown 

whether multivariate NMA (MNMA) can similarly reduce ORB. Additionally, it is quite 

challenging to implement MNMA due to the fact that correlation between treatments and 

outcomes must be modeled, thus the dimension of the covariance matrix and number of 

components to estimate grows quickly with the number of treatments and number of outcomes. To 

determine whether MNMA can reduce the effects of ORB on pooled treatment effect sizes, we 

present an extensive simulation study of a Bayesian MNMA. Via simulation studies, we show that 

MNMA reduces the bias of pooled effect sizes under a variety of outcome missingness scenarios, 

including missing at random and missing not at random. Further, MNMA improves the precision 

of estimates, producing narrower credible intervals. We demonstrate the applicability of the 

approach via application of MNMA to a multi-treatment systematic review of randomized 

controlled trials of anti-depressants for the treatment of depression in older adults.
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1. Introduction

Network meta-analysis (NMA), often called mixed (or multiple) treatment comparisons 

(MTC) meta-analysis, has been increasingly studied in recent years.1 Interest is due to the 

fact that systematic reviews, which are considered the pinnacle of evidence-based medicine, 

often result in “networks of evidence” in which many different treatments have been 
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compared. 2,3 These evidence structures are composed of both direct evidence (e.g., B:C 

trials) and indirect evidence, which is obtained through a common comparator trials (e.g., 

evidence for B:C synthesized via trials comparing A:B and A:C). 2,4 NMA can be applied to 

these structures to generate pooled (weighted mean) estimates of effect sizes, even for 

treatments that have never been directly compared. To this end, several Bayesian and 

frequentist methods for NMA exist for analysis including arm-based parameterizations 5 and 

difference-or contrast-based parameterizations of pooled effect sizes. 2–4,6–8

Very recently, researchers have turned attention toward the issue of missing data in networks 

of evidence. Reporting bias (RB), including outcome reporting bias (ORB) and publication 

bias (PB), are particular challenges that have been discussed in pairwise meta-analysis, but 

less so in network settings. 9–20 Outcome reporting bias occurs when an outcome is not 

published based on its significance or direction in a given study. A study is subject to 

publication bias (PB) when none of the outcomes in the study is reported based on some 

characteristic, usually the significance, direction, or size of the study (i.e., the entire study is 

unreported). In a univariate analysis, ORB is essentially equivalent to PB. The focus of the 

current paper is the setting of ORB.

To exemplify the extent of the problem that ORB presented in network meta-analysis, a 

study in Journal of the American Medical Association (JAMA) Psychiatry estimated that 

33% of trials of second-generation anti-depressants registered with the Food and Drug 

Administration (FDA) are either not published, or do not publish all pre-specified outcomes. 
12 A number of other publications have also drawn attention to the statistical bias that afflicts 

mental health research, though the issue is certainly not confined to this field. 21–24 The 

issue is of particular concern when only aggregate data (versus patient-level data) are 

available, the most common setting where meta-analysis is applied.

In the pairwise treatment setting, multivariate meta-analysis (MMA) has been shown to 

reduce bias and increase efficiency of pooled effect sizes for outcomes subject to ORB. 24–27 

However, a principled way to apply multivariate NMA (MNMA) to mixed treatments 

comparisons in a network of trials has not been well-studied. A procedure must model the 

covariance between treatments within studies, and outcomes within and between studies. Liu 

et al 8 recently presented a multivariate NMA model that uses a Clayton copula distribution 

to model correlated binary outcomes and show via simulation studies that modeling 

correlated outcomes reduces bias in pooled log odds ratios (LORs). Two recent papers 

presented bivariate NMA approaches applied to the same network of acute mania, 28,29 

while a third applied multivariate NMA to a systematic review of poison prevention 

strategies with 3 outcomes. 30 Specifically, Efthimiou et al 29 extensively investigated 

approaches to decompose the complex variance-covariance matrix required for modeling 

treatment and outcome correlation, essentially minimizing the number of parameters in the 

matrix to ease computational burden. Very recently, Jackson et al 31 proposed a MNMA 

model which uses a matrix-based method of moments estimators, which is advantageous for 

relatively fast computation time, compared with other models based on MCMC and REML. 

Unlike other approaches, Hong et al 5,32 employed an arm-based NMA model, in which the 

absolute rather than relative treatment effects are pooled, and extend this approach to 

accommodate multiple outcomes. In the current paper, we use the contrast-based approach 
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due to the fact that the arm-based approach could violate the randomization principle and 

bias the estimates of relative treatment effects with inflated posterior variance, as discussed 

by Dias and Ades.33

Given the computational and programming burden of fitting a multivariate NMA, it is 

important to determine their practical value for researchers; however, few studies have 

assessed the utility and robustness of MNMA to ORB, thus its practical value remains 

unstudied and leaves researchers with many meta-analytic tools from which to choose 

without guidance. A comprehensive simulation study supported by case studies are needed 

to determine whether MNMA is capable of mitigating effects of ORB in the network setting 

and are the focus of this paper.

We apply the method of Efthimiou et al 29 to consider “true” multivariate outcomes (i.e., > 2 

outcomes) and perform an extensive simulation study testing the ability of MNMA to reduce 

ORB in a variety of missingness settings where outcomes (L) > 2. As a case study, we 

consider a mental health application – a systematic review of randomized controlled trials 

assessing the effect of anti-depressants for treatment of depression in older adults. 34

The rest of the paper is outlined as follows. In Section 2, we present the multivariate NMA 

of Efthimiou et al 29 which encompasses three outcomes. In Section 3, we assess the 

robustness of MNMA to ORB. Using the nomenclature of Rubin,35 we consider 3 outcome 

missingness scenarios; missing completely at random (MCAR), missing at random (MAR), 

and missing not at random (MNAR), under different outcome correlation structures. In 

Section 4, we apply the method to a systematic review of antidepressants used in the 

treatment of major depressive disorder for older adults. In Section 5, we conclude with a 

discussion.

2. Methods

We first briefly review a multivariate meta-analytic model for two treatments. We 

specifically present Riley’s “reduced” MMA model where a single correlation coefficient is 

specified for within- and between- studies correlations. We then introduce the multivariate 

NMA model of Efthimiou et al,29 which generalizes Riley’s model for mixed treatments 

comparisons. Throughout, “multivariate” refers to bivariate or trivariate models while, 

“univariate” refers to models with a single outcome. Since the outcomes of interest are 

binary, the treatment effects are parameterized as log odds ratios (LORs), though the 

approaches are generalizable to continuous, time-to-event, or mixed outcomes. 29

2.1. Multivariate meta-analysis model

Assuming all studies report all 3 outcomes with complete data (no missing outcomes 

reported), the MMA model is,
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y1, 1
y1, 2
y1, 3
y2, 1

⋮
yNs, 3

=

1 0 0
0 1 0
0 0 1
1 0 0
⋮ ⋮ ⋮
0 0 1

×
β1
β2
β3

+

γ1, 1
γ1, 2
γ1, 3
γ2, 1

⋮
γNs, 1

+

∈1, 1
∈1, 2
∈1, 3
∈2, 1

⋮
∈Ns, 1

, (1)

where yi,j is an observed relative effect (e.g., the log odds ratio) of the ith observation from 

total Ns number studies on outcome j, and the parameters β1,β2, and β3 represent pooled (or 

mean) relative effects for each outcome. Equation (1) can be rewritten in matrix notation as, 

Y = Xβ + γ + ε, where Y is a 3Ns dimensional vector and X is a design matrix of dimension 

3Ns × 3. The model includes two random vectors, γ and ε, which account for the variation 

between studies and within a study, respectively. Specifically, the parameter γi,j is a random 

effect for the variation between studies for outcome j, and the γ follows a multivariate 

normal distribution, γ~N(0, Φ), where Φ is a between-study variance- covariance matrix. 

The matrix Φ is block diagonal, i.e. Φ = diag(Φ1,Φ2,…,ΦNs), and each block is written as,

Φi =
τ1

2 ρ12
B τ1τ2 ρ13

B τ1τ3

ρ12
B τ1τ2 τ2

2 ρ23
B τ2τ3

ρ13
B τ1τ3 ρ23

B τ2τ3 τ3
2

, (2)

where. τ1
2, τ2

2, and τ3
2 are variances of heterogeneity for each outcome, and ρ12

B , ρ13
B , and ρ23

B

are correlation coefficients between outcome 1 and 2, outcome 1 and 3, and outcome 2 and 

3, respectively. The matrix, Φi, is assumed to be the same for each study i.

The random error, ϵi,j , denotes the variation within a study; it is the sampling error in the ith 

study for the jth outcome. The vector, ε, from Equation (1) is also assumed to follow 

multivariate normal distribution, ε~N(0,Ω), where Ω is a within-study block diagonal 

variance covariance matrix and each component of Ω for study i is written as,

Ωi =
si1

2 ρi, 12
w si1si2 ρi, 13

w si1si3

ρi, 12
w si1si2 si2

2 ρi, 23
w si2si3

ρi, 13
w si1si3 ρi, 23

w si2si3 si3
2

, (3)

where sij2  is the sampling error for study i and outcome j (the variance of the effect size yij). 

The vector ρi, 12
w , ρi, 13

w , ρi, 23
w  are correlation coefficients within each study, i, between 

outcomes 1 and 2, outcomes 1 and 3, and outcomes 2 and 3, respectively. The challenge of 

this model is the lack of knowledge on within-study correlation coefficients, ρiw, which 

needs to be specified. In general, few studies provide sufficient information for estimating 

these coefficients. 26 In an effort to resolve this problem, Riley et al 36 proposed a reduced 

model for multivariate outcomes that contains a single overall correlation coefficient to 
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replace both coefficients, ρB and ρiw that does not require specification of the within-study 

correlation coefficients. In this case, Y can be modeled as Y = Xβ + ν, with ν~N(0,Σ), where 

νis assumed to follow a multivariate normal distribution and Σ is again a block-diagonal 

matrix. The overall variance-covariance matrix for study i is written as,

Σ i = (

ψ1
2 + si1

2 ⋅ ⋅

ρi, 12
g (ψ1

2 + si1
2 )(ψ2

2 + si2
2 ) ψ2

2 + si2
2 ⋅

ρi, 13
g (ψ1

2 + si1
2 )(ψ3

2 + si3
2 ) ρi, 23

g (ψ2
2 + si2

2 )(ψ3
2 + si3

2 ) ψ3
2 + si3

2

), (4)

where ρg is a global correlation coefficient, which is an amalgam of both correlation 

coefficients, ρB and ρw, and can be modeled identically across the studies (ρi
g = ρg). 29,36 We 

note that ψ is not identical to τ in equation (2) due to the inclusion of the global correlation 

coefficient ρg in Equation (4).

2.2. Multivariate network meta-analysis model

Efthimiou et al 29 extended Riley’s MMA model to accommodate multiple treatment arms 

by decomposing the variance-covariance matrix to reflect the correlations between 

treatments and outcomes. In the multiple treatments setting, we consider NT total treatments 

in a network where each study contains a maximum of 3 outcomes. The consistency 

equations of Lu and Ades 2 are assumed to hold for every outcome, implying that the vector 

of pooled effect sizes can be written as a function of basic parameters which are treatment 

effects relative to the reference treatment.

β B:C , l = β A:C l − β A:B l forl = 1, 2, 3, (5)

where the functional parameter, βi,(B:C)l is a pooled log odds ratio of treatment C relative to 

treatment B for outcome l in the ith study. The right hand side of Equation (5) represents 

basic parameters, assuming A is a reference treatment.

For 2-arm studies reporting 3 outcomes, the MNMA model is Y = Xβ + ν,

y1, A:B , 1
y1, A:B , 2
y1, A:B , 3
y2, B:C , 1
y2, B:C , 2
y2, B:C , 3
y3, A:C , 1

⋮
yNs, A:C , 3

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
0 0 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 1

×

βA:B, 1
βA:B, 2
βA:B, 3
βA:C, 1
βA:C, 2
βA:C, 3

+

ν1, A:B , 1
ν1, A:B , 2
v1, A:B , 3
v2, B:C , 1
v2, B:C , 2
v2, B:C , 3
v3, A:C , 1

⋮
vNs, A:C , 3

, (6)

where Y is the vector of observed effects (log odds ratios), X is a design matrix that 

represents all treatment contrasts in the network, 37 β is the (NT − 1)×3 dimensional vector 
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of basic parameters, ν is the combined vector of random errors and additional variations due 

to heterogeneity, with ν~N(0,Σ). In this model, the heterogeneity is assumed to be constant 

between different comparisons. The main difference between MMA and MNMA is the 

design matrix X which maps the observed treatment comparisons, using basic parameters, 

and variance-covariance matrix, Σi. When there are only 2-arm studies in the network, the 

same variance-covariance matrix Σi, from Equation (4), can be employed. However, there 

are often studies containing more than 2 arms in a network. For the 3-arm study, the 

variance-covariance matrix expands to 6 × 6 matrix, which results in additional correlation 

coefficients between outcomes and treatments. To reduce the burden of additional parameter 

estimation, Efthimiou et al 29 substantially simplified the variance-covariance matrix. Based 

on the homogenous variance assumption, these authors transformed the matrix in a way that 

minimizes the number of parameters to estimate, which is easy to apply and reduce the 

computational burden. Details of the derivation for the simplified matrix is found in the 

Supplementary Materials of that paper.29 The simplified variance-covariance matrix for 3-

arms and 3 outcomes that compares treatments A, B, and C is given as,

Σ i =

(

υi, AB, 1 ⋅ ⋅ ⋅ ⋅ ⋅

ρ12
g υi, AB, 1υi, AB, 2 υi, AB, 2 ⋅ ⋅ ⋅ ⋅

ρ13
g υi, AB, 1υi, AB, 3 ρ23

g υi, AB, 2υi, AB, 3 υi, AB, 3 ⋅ ⋅ ⋅

1
2 υi, AB, 1υi, AC, 1

ρ12
g

2 υi, AB, 2υi, AC, 1
ρ13

g

2 υi, AB, 1υi, AC, 1 υi, AC, 1 ⋅ ⋅

ρ12
g

2 υi, AB, 1υi, AC, 2
1
2 υi, AB, 2υi, AC, 2

ρ23
g

2 υi, AB, 2υi, AC, 2 ρ12
g υi, AC, 1υi, AC, 2 υi, AC, 2 ⋅

ρ13
g

2 υi, AB, 1υi, AC, 3
ρ23

g

2 υi, AB, 2υi, AC, 3
1
2 υi, AB, 3υi, AC, 3 ρ13

g υi, AC, 1υi, AC, 3 ρ23
g υi, AC, 2υi, AC, 3 υi, AC, 3

),

(7)

where υi,AB,1 represents ψ1
2 + si1

2  for outcome 1 in the ith study between treatment A and B 

comparison. With more than 2 outcomes, there is a singular estimated matrix problem. To 

ensure the variance-covariance matrices, (4) and (7), are positive definite, the Cholesky 

decomposition is used. 38
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In Efthimiou et al 29, only bivariate outcomes were considered although the approach for 3 

outcomes was outlined in Supplementary Materials. The depression networks in our study 

contain 2 and 3 arm trials reporting on 3 outcomes; accordingly, we apply the model of 

Efthimiou et al 29 to accommodate 3 outcomes. Our extensive simulation study also assesses 

the robustness of the model to ORB for 3 outcomes.

2.3. Bayesian modelling

The MNMA model presented in equations (5–7) is fit within a Bayesian framework using 

Markov chain Monte Carlo (MCMC) methods, which can flexibly combine evidence from 

multiple sources by incorporating prior beliefs, and reduce complexity when there are 

missing outcomes. When summarizing evidence from multiple outcomes, the posterior 

distribution of missing values can be estimated directly from the model through MCMC 

with predictive distributions. 39 For simulation and data analysis, we initialize 3 chains and 

assess convergence using trace plots, density plots, and Rubin & Gelman convergence 

diagnostic. 40 For prior distributions of effect sizes and correlation coefficients, we assign 

vague (or non-informative) uniform priors, ~N(0,10000) and ρg~U(−1,1). We also assume 

that each correlation coefficient is common across studies (ρi
g = ρg). For the variance 

parameters, we choose weakly informative uniform priors, τ ~ U(0,2) and ψ ~ U(0,2) for 

both univariate and multivariate NMA. We implement analysis in OpenBUGS (Ver.3.2.3.), 

and R (Ver 5.4.1.) and report posterior means, and 95% credible intervals. Statistical 

“significance” is achieved when a 95% credible interval excludes the null value.

3. Simulation Study

To evaluate the ability of the MNMA to reduce the impact of outcome reporting bias on 

pooled estimates, we compare the performance of MNMA to UNMA under 3 different 

missingness mechanisms: missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR). 35 We adapt the approach from the previous 

studies. 8,24,32,41 We assume there are 5 treatment interventions (K=5) and 3 total outcomes 

(L=3) where at least one outcome is reported in all studies in the network. This assumption 

is reasonable for the motivating examples owing to the fact that at least one major outcome 

such as efficacy or discontinuation must be reported in an RCT publication. Each generated 

network consists of 50 studies, 84% of which are 2-arm and 16% of which are 3-arm 

studies, reflecting both the current application and networks of RCTs for prevalent mental 

health disorders, in which most studies are 2 arm but some 3 arm studies exist. 42,43 The 

numbers of treatments included in the simulation are approximately 29%, 21%, 17%, 17%, 

and 16% respectively for treatments A, B, C, D, and E. We set the probabilities of the event 

for treatment A, B, C, D, and E in outcome 1, 2, and 3 as follows. 

(pA1,pB1,pC1,pD1,pE1 )=(0.35,0.4,0.5,0.55,0.6), 

(pA2,pB2,pC2,pD2,pE2 )=(0.62,0.48,0.42,0.37,0.35), and 

(pA3,pB3,pC3,pD3,pE3 )=(0.4,0.5,0.6,0.65,0.65) where pkl denotes the probability of event for 

treatment k and outcome l. When the treatment has a protective effect compared to the 

reference treatment, A, the LOR for efficacy (the primary outcome) should be greater than 0, 

thus these choices result in clinically sensible effect sizes, e.g., 

(lorAB1,lorAC1,lorAD1,lorAE1)=(0.214,0.619,0.820,1.025), 
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(lorAB2,lorAC2,lorAD2,lorAE2)=(−0.570,−0.812,−1.021,−1.109), and 

(lorAB3,lorAC3,lorAD3,lorAE3)=(0.405,0.811,1.025,1.025). We set both heterogeneity 

standard deviations, τ and ψ, to 0.3. We assume the presence of binary outcome 2 is a 

harmful outcome that could be negatively correlated with outcome 1, which is why the 

LORs are negative for outcome 2. Consistent with the design of most frequentist RCTs, 

within a study, the sample size is assumed to be equal for each treatment arm, and the 

sample size for each study is drawn from a uniform distribution U(75, 125). Due to the 

limited space, we only illustrate comparisons between the reference treatment, A, and other 

treatments.

We conduct simulations under 3 outcome correlation structures - uncorrelated, moderate, 

and strong. The correlation of the binary data between outcome 1 and 2, outcome 1 and 3, 

and outcome 2 and 3 are one of, (0,0,0) (−0.5,0.5,−0.5), or (−0.8, 0.8, −0.8), respectively, 

which we generate using a copula model for binary outcomes from the R package, copula. 44 

The Copula model allows for specification of the univariate margins and the multivariate 

dependence structure independently,8 hence, margins can be correlated binomial 

distributions regardless of a different multivariate distribution such as a multivariate normal 

distribution. We assume outcome 1 is always reported (e.g., an outcome such as efficacy), 

but outcomes 2 and/or 3 may be missing. These outcomes may refer to measurements like 

discontinuation, dropout, medication adherence, or adverse events. We set the percentage of 

missingness to 30% or 50%. Under MCAR, the probability of missingness is simulated from 

a Bernoulli distribution. Under MAR, the probability of missingness is associated only with 

the observed outcome 1. Under MNAR, the probability of missingness is associated with 

unobserved outcomes, either outcome 2 or 3, or both. For MAR and MNAR, under which 

ORB would arise, we generate missingess according to the significance of outcome in a 

given study. We conduct a Fisher’s exact test to determine the significance of the 

missingness. Under MNAR, outcome 2 should be less likely to be missing if outcome 2 in a 

given study is highly significant. The logic is similar for outcome 3. Under MAR, outcomes 

2 and 3 of a given study would be less likely to be missing if the outcome 1 is highly 

significant. The details of the data generation procedure for MAR and MNAR outcomes are 

outlined in the Supplementary Materials.

As described above, we use non-informative priors for correlation coefficients ρg~U(−1,1), 

and for pooled relative effects, β~N(0,10000). We use a weakly informative prior for random 

effects, ψ~ (0,2). Under each simulation scenario, we generate 200 networks and apply 

UNMA and MNMA methods to each. We summarize the simulations in terms of bias in the 

posterior mean LOR and 95% coverage probability (CP) as determined by whether the 95% 

credible interval includes the true value. Owing to computation time for simulation in 

OpenBUGS, we obtain 5,000 samples after discarding first 5,000 samples as burn-in. The 

steps for the analysis can be summarized as:

i. Apply UNMA for each outcome separately using the prior distributions, 

τ~U(0,2) to each of the 4 missingness scenarios including complete data, 

MCAR, MAR, and MNAR under the 3 specified correlation structures (0, 0.5, 

0.8).
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ii. Apply MNMA to 3 outcomes using the following prior distributions, 

ρ12
g U −1,1 , ρ13

g U −1,1 , ρ23
g U − 1,1 , ψ1 U 0,2 , ψ2 U 0,2 , and ψ3 U 0,2

under the complete data, MCAR, MAR, and MNAR under the 3 specified 

correlation structures (0, 0.5, 0.8).

Figures S1 and S2 in the Supplementary Materials summarize the results of the empirical 

bias and the CP of log odds ratios of UMNA and MMNA when the correlation between 

outcomes is zero. The solid blue line represents the bias in the LOR resulting from MNMA, 

and the dotted red line represents bias resulting from UNMA. As expected, when the 

correlation between outcomes is zero, there is no advantage of MNMA to UNMA in terms 

of bias reduction and the posterior estimates of parameters and coverage probabilities are 

nearly exactly the same. This comparison serves as a check of our MNMA formulation and 

coding.

Figures 1 and 2 compare the methods when the correlation among outcomes is moderate, 

i.e., |ρ| = 0.5, and the number of missing studies is 50%. First, as expected, there is little 

difference in performance between the two methods under the complete data or MCAR. 

However, under MAR missingness, the UNMA results in severely biased LORs for 

outcomes 2 and 3. Application of MNMA substantially reduces this bias (shown in columns 

2 and 3 of Figure 1), as compared to UNMA, e.g., for LOR132 and LOR133. The CPs 

similarly demonstrate a difference in coverage between two methods. Figure 2 shows the 

coverage probabilities for the UNMA are as low as 0.89 and 0.90 for LOR142 and LOR143, 

as compared to 0.92 and 0.93, respectively from fitting the MNMA.

Figure 1 also shows that under MNAR, the bias is much larger compared to that under 

MAR, as would be expected. However, even under MNAR, MNMA results in smaller bias, 

as compared to UNMA. For example, the bias in LOR132 decreases from 0.20 to 0.13. The 

trends in CP are similar.

Contrary to bias reduction, bias increase is also observed by employing MNMA. In general, 

the LORs for outcome 1 (which is always observed), are estimated correctly by both 

approaches. However, minimally larger bias results from MNMA under the MNAR setting, 

compared with the UNMA. For example, the bias for LOR141 increases from 0.006 to 

0.0135 using the multivariate approach, which is shown in the column 1 of the Figure 1.

Figures S3 and S4 compare the two methods under 30% missingness. As the proportion of 

missingness decreases, it is clear that bias in LORs is smaller and the corresponding CPs 

larger for missing outcomes regardless of the approach used; however, the MNMA still 

reduces bias and improves coverage probability substantially. For example, the bias in 

LOR142 decreases from 0.136 to 0.084 when using the multivariate approach for MNAR 

data. Figures S5–S8 in the Supplementary Materials compare the two methods when the 

correlation among outcomes is very strong, i.e., |ρ| = 0.8. As expected, under very strong 

outcome correlation, MNMA substantially reduces the bias in pooled effect sizes for 

outcomes 2 and 3 over UNMA (shown in columns 2 and 3 of the Figures S5 and S7), 

showing an obvious dose response relationship between reduction of bias as correlation 
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increases. The trends for CPs are also similar; these better achieve the nominal coverage rate 

as correlation increases. (See Figures S6 and S8)

4. Application to the antidepressant networks

Thorlund et al 34 present a systematic review and network meta-analysis of efficacy and 

safety of selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake 

inhibitors (SNRIs) and other active antidepressants in older adults for the treatment of major 

depressive disorder. There is a total of 4,588 participants across 15 RCTs. We choose this 

study to illustrate the multivariate method due to amount of missingness present in the 

efficacy and safety data, and due to a reasonably high correlation between these outcomes. 

In the current study, three outcomes are included for multivariate analysis: response, all-

cause discontinuation (also called dropout), and discontinuation due to adverse events. 

Response is defined as at least 50% reduction in Hamilton Depression Rating Scale score or 

Montgomery-Asberg Depression Rating Scale score from baseline. All-cause 

discontinuation and discontinuation due to AEs are defined as leaving the study for any 

reason, and leaving the study due to adverse events, respectively. Figure 3 present the 

network structure for each outcome. The size of the dots is proportional to the number of 

studies in the network including that treatment. A line exists if two treatments have been 

compared head-to-head while the thickness of the line is proportional to the number of times 

those treatments have been compared. The first panel shows that the network for treatment 

response is sparser than that for other outcomes; in fact, 12 (80%) studies report response, 

15 (100%) report all-cause discontinuation, and 14 (93%) report discontinuation due to AEs. 

The number of studies per each intervention is summarized in Table S1. Note that diazepam, 

which is not an anti-depressant, was used as a placebo arm in one trial. In this application, 

settings for the prior distributions are identical to those in the simulation. For both univariate 

and multivariate methods, we obtain 150,000 samples after discarding first 10,000 samples 

as burn-in.

Table 1 presents the posterior median and mean estimates and 95% credible intervals for 

heterogeneity variances, τ2/ ψ2, and correlation parameters, ρg, respectively for the UNMA 

and MNMA methods. The posterior mean values for the correlation parameters in the 

variance-covariance matrix from Equation (4) demonstrate a moderate negative relationship 

between response and the other two outcomes, and a moderate positive relationship between 

all-cause discontinuation and discontinuation due to AEs. The median estimates of 

heterogeneity variances are slightly different between the two methods, likely because the 

network is small. Figure 4 shows the posterior mean ORs and 95% credible intervals for 

each outcome for placebo versus all other treatments. The presence of correlation and the 

fact that all-cause discontinuation is a completely observed outcome, leads to an 

improvement in precision of the 95% credible intervals for outcomes subject to missingness; 

the width of the 95% CIs resulting from the MNMA (solid line) are narrower compared to 

those resulting from the UNMA (dotted line), likely a result of borrowing information from 

the two additional outcomes. For each outcome, there is also a slight difference in the point 

estimates of the ORs between multivariate (dotted line) and univariate (solid line) 

approaches. The different point estimates and narrowed 95% CIs in some comparisons lead 

to “significant” results not otherwise observed via univariate analysis; e.g., the odds of 
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discontinuation due to AEs is significantly elevated in the venlafaxine vs placebo and 

fluoxetine vs placebo group (third panel in Figure 4). The odds of response in the duloxetine 

vs placebo is also significantly elevated. (first panel in Figure 4)

Figure 5 compares the multivariate (blue) versus univariate (red) posterior probabilities of 

each possible position ranked from 1 (best) to 10 (worst) for response rate. These figures are 

also available for all-cause discontinuation and discontinuation due to AEs; see Figures S9 

and S10 in the Supplementary Material. Results from the multivariate approach indicate the 

ranking distribution of citalopram changes favorably versus the univariate approach, which 

is also consistent with the change in point estimates of the LOR (first panel, Figure 4). On 

the other hand, the ranking distributions for placebo and paroxetine indicate slightly lower 

response rankings are favored by the multivariate versus univariate approach; specifically, 

the ranking distribution for placebo indicates it is less effective in eliciting a response, as one 

would expect from a placebo. Note, the ranking distribution for trazodone cannot be 

interpreted. The one trial of trazadone in this network did not report a response. Since there 

is no available data for this treatment, samples from the MCMC algorithm represent 

normally distributed noise, leading to more extreme values in both directions for the ranking 

distribution. As expected, there is almost no change in the ranking distributions for the fully 

observed outcome, all-cause discontinuation (Figure S9 in the Supplementary Materials). 

There are slight non-notable changes in the ranking distributions for discontinuation due to 

AEs (Figure S10 in the Supplementary Materials).

5. Discussion

Outcome reporting bias is recognized as an impediment to meta-analysis, undermining the 

validity of pooled effect sizes. 45 A number of statistical studies have shown that ignoring 

correlation between outcomes leads to biased pooled effect sizes when ORB is present. 24,36 

The methodological development and simulation study in this paper aims to demonstrate 

settings where multivariate network meta-analysis can effectively reduce the impact of ORB 

by borrowing strength across more fully observed outcomes. The approach we present is 

especially useful for small to medium-sized networks with a reasonable amount of missing 

data in at least one outcome, and a moderate to strong correlation between outcomes. Which 

approach to use must also be driven by subject matter – in the current setting, both efficacy 

and safety are important considerations in determining optimal treatments for depression in 

older adults,46 thus the multivariate approach is sensible.

Results from our simulations (both reported and unreported) demonstrate that MNMA 

substantially reduces bias to nearly zero under MAR, and also effectively reduce bias under 

MNAR when the correlation between outcomes is moderate or strong. When the MNMA is 

applied to networks with complete or MCAR data, there is no loss in efficiency and the same 

or similar results are obtained as the UNMA approach of Lu and Ades.2 That the method 

reduces bias (albeit not to 0) under the MNAR setting is also an important finding for those 

concerned about the impact that ORB will have on the validity of the pooled effect sizes. 

The bias reduction is also more profound when correlation between outcomes is stronger. 

The model accommodates both negatively and positively correlated outcomes via 

specification of several correlation parameters in the covariance matrix parameters. Overall, 
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given the availability of freeware OpenBUGS and code presented in the Supplementary 

Material, it is straightforward to implement the Bayesian MNMA.

There are some limitations of MNMA. First MNMA does not accommodate publication 

bias. The methods of Mavridis et al 15 should be adapted in future work to accommodate 

publication bias. Secondly, MNMA can increase bias in estimated effect sizes for fully 

observed outcomes when the other outcomes are under MNAR, a limitation that has already 

been addressed in the multivariate pairwise meta-analysis literature. 24,26,47 Similar to those 

studies, in our simulation study, the MNMA approach introduces a small amount of bias for 

the fully observed outcome (outcome 1), when the other outcomes are subjected to MNAR 

missingness. This bias is minimal, though, and is offset by the benefit of bias reduction in 

other outcomes. Second, it is more computationally complex to employ the multivariate 

versus univariate method. As previous studies have addressed, 8,29 MNMA requires 

assumptions about multivariate consistency for which there is no powerful test, as well as 

estimation of parameters within a potentially large variance-covariance matrix to model both 

the correlation between outcomes and treatments. In addition, multivariate NMA also suffers 

from the same limitations as does univariate NMA. A limitation of our simulation work 

includes that we assumed that the within-study correlations are same by generating 

aggregate data, primarily to ensure estimability. Although we initially assume within-study 

correlations are not available, comparisons with the model that accounts for within-study 

correlation based on individual patient data (IPD) are also desirable. Our approach does not 

utilize any up/down weighting of multivariate outcomes according to clinical input. As such 

an approach would be consistent with Bayesian philosophy, it is an area of interest for future 

study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bias in estimates of LORs under various missingness scenarios. (|ρ| = 0.5, 50% missingness)
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Figure 2. 
Coverage probabilities for LORs under various missingness scenarios. (|ρ| = 0.5, 50% 

missing)
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Figure 3. 
Network structure of the RCTs for response rate, all-cause discontinuation, and 

discontinuation due to AEs. PLB=placebo; ATP= Amitriptyline; TRA= Trazodone; 

FLX=Fluoxetine; CIT=Citalopram; DUL=duloxetine; ESC=Escitalopram; PAR=Paroxetine; 

SER=Sertraline; VEN=Venlafaxine.
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Figure 4. 
Posterior odds ratios for response rate, all-cause discontinuation, and discontinuation due to 

AEs (left to right) for all treatments versus PLB. Dotted and solid lines represent the 

estimates of the univariate and multivariate NMA, respectively. PLB=placebo; ATP= 

Amitriptyline; TRA= Trazodone; FLX=Fluoxetine; CIT=Citalopram; DUL=duloxetine; 

ESC=Escitalopram; PAR=Paroxetine; SER=Sertraline; VEN=Venlafaxine.
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Figure 5. 
Ranking distribution for response outcome. The result for diazepam was excluded. 

PLB=placebo; ATP= Amitriptyline; TRA= Trazodone; FLX=Fluoxetine; CIT=Citalopram; 

DUL=duloxetine; ESC=Escitalopram; PAR=Paroxetine; SER=Sertraline; VEN=Venlafaxine.
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Table 1.

Posterior median estimates and 95% credible intervals for variance of heterogeneity, and posterior mean 

estimates and 95% credible intervals for correlation parameters including three outcomes for older adults’ 

depression network. Response, all-cause discontinuation, and discontinuation due to AEs outcomes are 

illustrated as 1,2, and 3, respectively

τ2 / ψ1
2 τ2 / ψ2

2 τ2 / ψ3
2 ρ12

g ρ13
g ρ23

g

UNMA 0.157 [0.004; 1.092] 0.139 [0.001; 0.832] 0.185 [0.001; 1.346] - - -

MNMA 0.095 [0.004; 0.544] 0.076 [0.000; 0.480] 0.106 [0.000; 0.880] −0.603 [−0.923; 
−0.155]

−0.641 [−0.930; 
0.040]

0.604 [0.050; 
0.905]
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