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Abstract
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused
considerable controversy in the popular media. A central source of the controversy is a lack of
clarity about the relation of meta-regression parameters to corresponding parameters in models for
subject-level data. This paper focuses on a linear regression with continuous outcome and
predictor, a case that is often considered less problematic. We frame meta-regression in a general
mixture setting that encompasses both finite and infinite mixture models. In many applications of
meta-analysis the goal is to evaluate the efficacy of a treatment from several studies and meta-
regression on grouped data is used to explain variations in the treatment efficacy by study features.
When the study feature is a characteristic that has been averaged over subjects, it is difficult not to
interpret the meta-regression results on a subject level, a practice that is still widespread in
medical research. While much of the attention in the literature is on methods of estimating meta-
regression model parameters, our results illustrate that estimation methods cannot protect against
erroneous interpretations of meta-regression on grouped data. We derive relations between meta-
regression parameters and within-study model parameters and show that the conditions under
which slopes from these models are equal cannot be verified based on group-level information
only. The effects of these model violations cannot be known without subject level data. We
conclude that interpretations of meta-regression results are highly problematic when the predictor
is a subject level characteristic that has been averaged over study subjects.
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1. Introduction
A major controversy in mental health research is the efficacy of modern antidepressants.
This controversy gained much prominence with the publication of a meta-regression, based
on group-level data from studies submitted to the USA Food and Drug Administration,
relating the efficacy of antidepressants to baseline depression symptoms of patients, by
Kirsch et al. [1]. The authors concluded that efficacy reaches clinical relevance only for
individuals with high baseline severity and that this pattern is due to a decrease in response
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to placebo, rather than an increase in response to medication. Numerous publications
followed: [2] came to the same conclusion after reanalyzing studies in [1], while [3] and [4]
conducted similar meta-regression analyses using other data and each came to different
conclusions – the former that the antidepressants were equally effective at all levels of
baseline severity, and the latter that improvement with both drug and placebo treatment
increases with baseline severity, but the slope for the drug is steeper. [5] took this
controversy further and come to question the approach of Evidence Based Medicine (a term,
which has become one of the most important in today’s health system), citing the
discrepancy between individual study reports and meta-regression results in the
antidepressants field.

To illustrate how the use of meta-regression is fueling the antidepressant efficacy
controversy, we analyzed raw data from ten antidepressant studies both at the subject-level
and at the study-level using a meta-regression (see Section 4 for details). The predictor X is
the baseline Hamilton Rating Scale for Depression (HRSD), with larger values
corresponding to higher depression severity. As was done in the motivating article [1], the
outcome Y in the regression is the change in HRSD from baseline to end of treatment.
Although using change score as the outcome is known to have numerous shortfalls [6; 7],
here it is done to make results comparable to [1], as we illustrate weaknesses related to
aggregation (or ecological) bias and the ecological fallacy (e.g., [8; 9]) and discuss the
meaning of various regression coefficients. In [1], only studies with 22 < Mean Baseline
HRSD < 31 were selected and a weighted least-squares was used to fit the meta-regression
model. Figure 1 shows the results of a meta-regression for six of our ten studies (which
included nine drug arms) with this restricted baseline range for the means. The (thick) solid
lines show the estimated meta-regression lines based on means for the six placebo arms and
the nine drug arms (grouped data). The dotted lines in the figure are the regression lines
based on subject-level data fit individually for drug and placebo arms. Even though all the
subject-level regression lines had positive slopes for the placebo arms, the placebo meta-
regression has a negative slope. In a meta-regression, it is very difficult not to interpret the
results from meta-regression on a subject level when averaged subject characteristics are
used as predictors. In this illustration, a natural interpretation of the meta-regression is that
placebo-treated subjects with more severe baseline depression experience less placebo
response even though this contradicts the interpretation obtained from subject-level
regression lines (shown by the dashed lines in Figure 1).

The goal of meta-analysis is to combine several estimates of some quantity of interest
(typically a treatment effect) in order to more precisely estimate that quantity. Studies often
try to address secondary questions using meta-regression by regressing estimates of
treatment effects across studies on study characteristics, such as sample size, sponsorship
(e.g. private or federal) or drug dose. As illustrated above, meta-regression has also been
used to relate a treatment effect to an averaged patients’ characteristic and proceed to make
inferences on a subject-level. Meta-regression methods have been developed that rely on the
availability of patient-level data from at least some of the studies in the meta-analysis [e.g.,
10; 11; 12; 13; 14; 15]. However, here we discuss meta-regression when subject-level data
are not accessible and the available information consists of the observed sample means,
standard deviations and sample sizes for each treatment. While regression with a
dichotomous outcome has received wide attention and perhaps most scientists are familiar
with the problems of meta-regression in that case, the discussion of continuous outcomes
and regular linear regression in the literature are few and many researchers consider this
situation to be less problematic. This worrisome state of affairs is demonstrated by the
publications, in widely read and influential medical journals, of results based on meta-
regression with subject-level covariates based only on group level data, including [1].
Regrettably, even in the statistical literature, the threat of ecological bias is often
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underplayed, as for example, in works discussing power and sample size issues in meta-
regression, such as [15] and [12].

This paper focuses on relating meta-regression model parameters to subject-level (or within-
study) regression parameters using continuous outcome Y and a continuous predictor X,
which is a subject-level characteristic. In the antidepressant studies used for illustration, the
meta-regression relates the mean change in depression severity Ȳj to the mean baseline
severity X¯j in several trials j = 1, …, K, for treatment T = t, with t = 0 for placebo and t = 1
for active treatment:

(1)

If the slopes γt1 for t = 0 and t = 1 are not different, the treatment effect would be estimated
by the difference between the intercepts γt0 and it would be considered constant over the
entire range of the mean baseline depression severity (the covariate X¯). A difference
between the slopes would indicate that the effect of treatment is different depending on the
mean baseline severity. The difference between the slopes γt1 for t = 0 and t = 1 measures
the magnitude of the interaction between treatment (T) and covariate (X), which will be
discussed in Section 4.2. The model for subject-level data is

(2)

where (Xij, Yij, Tij) are subject level data for the ith subject in the jth study.

From the example above, the fundamental question becomes: what is the relation of meta-
regression study-level slopes in (1), to subject-level slopes from (2) that characterize the
relationship within the studies? In cases when only group level data are available, another
fundamental question is: can one ever use the meta-regression results to make reliable
inference on a subject level? In the antidepressant example, if the outcomes for subjects
receiving a particular treatment are homogeneous across studies, and subjects are recruited
based on a range of X-values, then the studies comprising a meta-regression can be regarded
as representative of subpopulations that are slices from the joint distribution of (X, Y) – this
scenario is investigated in Section 2.1. A more general mixture model framework is
provided in Section 2.2 that encompasses both finite and infinite mixture models. The
relations between the outcome and the predictor are derived and compared for (a) the
components (subpopulations) of the mixture, (b) the overall mixture population, as well as
(c) the relationship between the subpopulations’ means of the outcome and the predictor
(i.e., the meta-regression coefficients). Section 3 focuses on the recommended practice of
estimating the meta-regression coefficients with random effect models. We return to the
analysis and discussion of the antidepressant studies in Section 4 and conclude the paper in
Section 5.

2. Heterogeneity of the target population in meta-regression
The literature on meta-analysis has tended to focus almost exclusively on approaches to
estimating the regression parameters with little or no regard to the meaning and
interpretation of these parameters, except for occasional warnings about committing the
ecological fallacy [e.g., 16; 17; 18; 9]. If interest is in the subject-level regression
coefficients in (2), it is imperative to understand how the meta-regression parameters relate
to the within-study subject-level regression parameters in order to properly interpret the
former. This section addresses the questions: Which population one wants to make
inferences about when conducting meta-regression and how do parameters estimated in the
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meta-regression relate to parameters of the population of interest? The emphasis is on
clarifying the meaning of meta-regression parameters, rather than on issues of estimation.
Because the core focus in this and the next section is the relation of the outcome to the
patient-level covariate within treatment groups, in order to simplify the exposition, we drop
the treatment index t in (1) and (2) and consider models for just one of the treatment groups
in a clinical trial.

The derivations for the results in the the following subsections are given in the eSupplement.

2.1. Slices From One Population
Here we consider an idealized setting where the meta-regression will give results consistent
with the analysis of subject-level data. Each study comprising a meta-regression is sampled
from a subpopulation of a parent population that is homogeneous with respect to the
relationship of Y on X and the jth subpopulation is determined by a restriction on the
predictor X, i.e., X ∈ Dj, where Dj denotes a range of x values considered for the jth sub-
sample. For example, a depression study may have an inclusion criterion based on HRSD
being in some range (e.g. HRSD > 22 or 10 < HRSD < 21). We will assume the Dj are non-
degenerate intervals or subsets of intervals on the real line.

Suppose the joint distribution of (X, Y) has density f(x, y), the marginal density of X is f(x)
and the regression of Y on X is linear: E[Y |X] = β0 + β1X. Let μx and μy denote the means
of X and Y respectively and let

(3)

denote the covariance matrix for (X, Y). Then, of course,  and β0 = μy − β1μx.

Letting wj = P(X ∈ Dj), the joint density of (X, Y) and the marginal density of X for the jth
subpopulation are

The regression of Y on X ∈ Dj for the jth subpopulation is

and therefore the regression of Y on X in each subpopulation is linear with an intercept β0
and a slope β1.

In this scenario, the meta-regression slope γ1 from (1) will indeed coincide with the common
slope within all slices. To see this, note that the mean of Y in the jth slice μjy is
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where μjx is the mean of X in the jth slice. Let , with Σπj = 1. Then the weighted
average of the mean responses, μ̃y is

where μ̃x is the weighted average of the μjx’s. Since the slope is the covariance between the
response and predictor divided by the variance of the predictor, the meta-regression slope γ1
is

Also, the y-intercept of the meta-regression line from (1) is

In some settings, this scenario may be plausible, e.g. see Section 4.2. However, in most
cases, this scenario is not realistic because studies that typically comprise meta-analyses
differ from one another in more ways than just the range of x. For example, if different
drugs were used, or different comorbid conditions were exclusion criteria, the joint
distributions of baseline depression and improvement (X, Y) are likely to vary across the
studies as well.

2.2. Mixture Models
In this section, each study in the meta-analysis represents a random sample from a
subpopulation and the collection of subpopulations corresponds to the components in a
mixture model. In the antidepressant example, each of the studies comprising the meta-
regression would represent a component in the mixture model, where X is the baseline
depression severity and Y is the degree of improvement on HRSD. Differences in mean
values of X across studies can be due to a variety of factors such as differing inclusion
criteria. The collection of subpopulations can be discrete leading to a finite mixture model,
or the collection can be regarded as a sample from a hypothetical continuum of studies,
leading to an infinite mixture model.

Each study will be parameterized by a vector Θ which we shall endow with a probability
density h(θ) to model the distribution of the parameters as they vary across the components
(represented by studies) of the mixture. In the case of a random vector (X, Y) having a

bivariate normal distribution, Θ = θ can be expressed as . An
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alternative parameterization useful from the standpoint of the regression Y = β0 + β1X + ε, is

, where σ2 is the variance of the error ε. Note, that in this alternative

parameterization of Θ,  and μy = β0 + β1μx. A finite mixture
with J components is obtained, when Θ = θj with probability πj for j = 1, …, J, where the
prior probabilities satisfy π1 + ··· + πJ = 1. Alternatively, one can obtain an infinite mixture
for a continuous density h(θ). A special case of an infinite mixture is when the regression
coefficients (β0, β1) are assumed to have a bivariate normal distribution. Note, that the
standard mixed effects model additionally assumes that μx is independent of the slope and
intercept.

2.2.1. Conditional and Marginal Regression of Y on X—The slope β1 denotes the
conditional association between X and Y, where conditional is meant with respect to the
components of the mixture, e.g., in the case of a finite mixture, conditional on j. Using an
approach similar to [19], the joint density of (X, Y, Θ) can be written as f(x, y, θ) = f(x, y|
θ)h(θ) from which the marginal density of (X, Y) is the mixture density

(4)

In the case of the finite mixture, where h has J support points, (4) becomes the well-known

finite mixture density . In order to distinguish within-study
parameters from averaged across study parameters, we will write

Similarly, the regression coefficients averaged across mixture components will be denoted

(5)

It will also be convenient to define mean-zero “random effects” for the y-intercept and slope
as

(6)

If the conditional Y on X association is linear in the mixture components, the regression of
Y on X for the mixture distribution (i.e., the marginal (X, Y) distribution given in (4)) is:

(7)

which has a linear part plus a generally nonlinear term. This marginal regression of Y on X

for the mixture will be linear if the density of X depends only on μx and  and if (μx, ) is
independent of the other mixture model parameters in Θ. In particular, if the slopes β1 and
intercepts β0 are constant across the components of the mixture, the linearity will follow.
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The two panels of Figure 2 show the regression curve E[Y |X] for two 5-component finite
mixtures of bivariate normal distributions, each with equal priors of πj = 1/5, j = 1, …, 5 and
a common slope β1 = 1.3. Also shown are 100 data points simulated independently from
each of the five mixture components (for context the observations are color-coded by
mixture component). In the left and right panels of the figure, the means of X for the five
components are equally spaced from 25 to 29. The two mixtures differ only in the range of
their y-intercepts, which are equally spaced: βj0 = 9, …, 11 for the left frame and βj0 = 5, …,
15 in the right frame in the order of the means of X. Thus, there is a positive relationship
between the mean μxj and the intercepts (βj0) for both mixtures. The dashed line in both
frames is the line with slope β1, and intercept equal to the (weighted) average of the finite

mixture component intercepts, . As Figure 2 illustrates, the
marginal relationship between X and Y (the solid curve) is not linear and the deviation from
linearity is stronger with more variability in the intercepts βj0.

The large circles are the mixture component means (μjx, μjy), for which estimates typically
exist from the individual studies in a meta-analysis. A key point to make here is that the
meta-regression slope, i.e., the slope of the mixture means, does not coincide with the
common slope β1 of the mixture components (i.e., the conditional association between X and
Y given j) and also does not represent the regression of Y on X in the entire mixture either
(i.e., the marginal association between X and Y).

The parameters of the mixture distribution (i.e., the marginal (X, Y) distribution given in
(4)) can be decomposed into within and between-components terms. Let

denote mean vector and corresponding covariance matrix and, using the same notation as
before, let μ̄ and Ψ̄ denote the mean vector and covariance matrix for the mixture
distribution computed by taking expectation with respect to Θ. The finite mixture derivation
of the multivariate analysis of variance (MANOVA) equality from [19] readily extends to
any general mixture by decomposing the covariance matrix for the mixture distribution, Ψ̄,
into within (Ψ̄W) and between (Ψ̄B) component covariance matrices as

(8)

If the generally nonlinear relationship E[Y |X] given by (7) is approximated by a linear
function

(9)

then the slope α1 of this approximation can be expressed as

(10)

which involves both within- and between-components variances.
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2.2.2. Meta-Regression of Y on X—Usually in meta-analysis, the only information
available are the sample sizes, the estimated means for X and Y in each component (e.g.,
study) – these are the large circles in Figure 2 and their standard errors. Typically, estimates
of the slopes in the individual mixture components are not available. When investigators
perform a meta-regression in such situations, they are attempting to make inferences about
the relationship between X and Y (a) either on average over the studies included in the meta-
analysis, i.e., average of the conditional (given study j) relationships, β¯1, or (b) in the
marginal (X, Y ) distribution given in (4), which in general is non-linear (see (7)), but has a
linear approximation, the slope of which is given in (10).

In the case when the slopes do not vary across studies, i.e., β1 is constant, the following
relationships hold:

(11)

This shows that the slope of the straight line approximation of the regression of Y on X in
the entire mixture distribution, α1, is a weighted average of within-study slope β1 and
between-studies slope γ1. It will equal the within-study slope β1 if all components of the
mixture have the same X-mean (i.e., Between X-Variance = 0). Also, γ1 = α1 and the meta-
regression estimates the slope of the linear regression approximation of the relationship
between X and Y in the entire mixture, if the within components variance of X is zero (i.e.,
Within X-Variance = 0). If γ1 = β1, then α1 is also equal to these parameters.

If the relation at the subject-level (summarized by the within-study average slope β¯1) is of
primary interest, then the principal question becomes: how is the meta-regression slope γ1
related to β¯1? The slope γ1 of the meta-regression line is determined by the between-study
covariance matrix Ψ̄B from (8) and is equal to

From this and the identity μy = β0 + β1μx, it follows that

(12)

which extends the finite mixture model result of [20, page 182] to the general mixture
setting. Based on (12), there is no clear relation between the meta-regression slope γ1 and
the average within-study slope β¯1. In particular, it is unclear how γ1 can be used to quantify
the relation of Y to X within studies without making strong assumptions or without within
study information regarding β0 and β1. To minimize the discrepancy between the average
within study slopes and the meta-regression slopes, one could attempt to choose studies with
a wide variability in mean baseline values so that varθ(μx) is inflated. If inflating this
variance does not also inflate the numerator of the second term in (12), then there should be
a greater agreement between the average within study slope and the meta-regression slope.
However, what happens with the numerator of the second term in (12) in that case in
unknown, unless the individual studies have reported the intercepts and slopes from the
regression of Y on X. The additional terms on the right-hand side of (12), besides β¯1, can be
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called the ecological-bias terms. The “ecological bias” disappears if μx is uncorrelated with
the intercepts and slopes and if μx has a third central moment of zero (assuming linear
conditional expectations).

Even in a “best-case scenario” where all studies share a common slope β1, the meta-
regression slope γ1 will generally differ from β1, unless μx is uncorrelated with the
intercepts. Also, when the within study slopes are all equal, it is illuminating to examine the
the variability in the y-intercepts β0. In the antidepressant studies example, the intercepts
correspond to the improvement (with a given treatment) for subjects with baseline severity
(X) equal to zero, which is a value outside the range of values in all studies, and in this
example the individual intercepts do not have meaningful interpretation. However, we can
interpret the variability in the y-intercepts by decomposing it into two parts. The variance of
β0 across studies can be partitioned as

The first part corresponds to variability of improvement between subjects with the same
value of the baseline severity, but from different studies which can be due to numerous
study-level or subject-level factors that are different between the studies. This part is often
termed “heterogeneity” in meta-tergression [e.g. 21, page 2693]. However, the variance of
the intercepts has a second term, which is directly related to the discrepancy between the
meta-regression slope γ1 and the common within-study slope β1. Therefore, even when the
individual study slopes are equal, the variance of the intercepts cannot be interpreted as
variance between the studies with respect to efficacy at given level of X, (see also Section
3.2).

An important reminder here is that even if there is a common within-study slope, the
between-study meta-regression slope can have a sign opposite of the common within-study
slope of the mixture components, which can occur if the sign of cov(μx, β0) is opposite the
sign of the common slope β1. Figure 3 shows a finite mixture simulation illustration of how
the slope of the mixture component means can come out with a sign opposite of the common
slope’s sign for the individual mixture components. An actual case was shown in Figure 1 of
the Introduction and is discussed in Section 4.3.

3. Random Effects Model for Meta-Regression
3.1. The assumptions of the model

Perhaps the most commonly used infinite mixture model is the linear mixed effects model
with random effects for the intercept and slope. In particular, a vector of fixed effects can be
defined as the averaged regression coefficients across studies given by (5) and the random
effects defined by (6), which are typically assumed to be bivariate normal. With subject-
level data the linear mixed effects model for simple linear regression can be expressed as

(13)

where Yij is the ith subject’s response in the jth study and the random effects (bj0, bj1)′ are

assumed to be independent of the (mean zero) error εij whose variance will be denoted .

In addition to the common assumption of normality of the random effects, another very
important assumption that is almost always made when fitting mixed effects model, is that
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the covariate is independent of the random effects [e.g., 22, page 310]. In the meta-
regression setting, this translates to independence between μx and the regression random
effects (b0, b1). It is common in meta-regression estimated with random effects models to
further simplify model (13) by assuming that there is no random effect for the slope, i.e. the
regression slope does not vary among studies (β1 := constant) [e.g., 17; 21; 18; 9]. Thus, the
only random effect is for the intercept, which is sometimes referred to as heterogeneity [e.g.
21, page 2693] (although, in a meta-analysis literature, the meaning of the term
heterogeneity is not entirely consistent and one could naturally regard heterogeneity between
studies in terms of both slopes and intercepts).

Under these assumptions, the parameterization of Θ can be simplified to

, where the non-varying terms have been dropped and β0 ~ N(β¯0, τ2),
with τ2 denoting the variance of the random intercept. The recommended approach to
estimating the parameters of the meta-regression model (1) is the random-effects approach
[e.g., 16; 17; 18; 9], which acknowledges that variability in the mean responses Ȳj is due to
the usual variability associated with a sample mean within a given trial, as well as possible
heterogeneity due to the fact that the true means can vary among the studies.

The meta-regression random-effects model [e.g. 17, page 397] in the context of a continuous
outcome and predictor is

(14)

where X¯j is often regarded as fixed and/or known, δj ~ N(0, τ2) is a random effect for

heterogeneity across studies,  is considered independent of δj and 
represents the sampling variability of Ȳj within study j.

If μx is independent of the intercept, then the covariance between μx and β0 will be zero and
(12) implies that the meta-regression slope γ1 will coincide with the common within-study
slope β1. In this simplified random effects model, the generally non-linear marginal
regression of Y on X from (7) is linear with slope equal to β1:

3.2. When the assumptions are violated
Both assumptions (i) β1 := constant, and (ii) cor(μx, β0) = 0 are difficult to justify in practice.
More importantly, in a typical meta-regression study with only group-level data available,
there is no information to evaluate whether any of these conditions hold. In the
antidepressant example, which will be reported in Section 4, raw subject-level data from 10
antidepressant studies is available and the drug arms in these studies do not satisfy these
assumptions.

To examine the ecological bias in meta-regression estimated by random effect models, data
sets were simulated based on the mixed effects model (13) where the tri-variate distribution
of (μx, β0, β1)′ was normal with mean and covariance parameters anchored to the sample
statistics from the 17 drug arms in the 10 studies reported in Section 4 which were:
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(15)

For the sake of this illustration, the error variance for εij was set to be constant across all
data sets, σ = 0.50 and the standard deviation of the predictors σx was also set to be constant,
σx = 6.60, the standard deviation of the baseline values for all subjects in our studies. The
sample sizes for each data set were equal to the actual sample size of the drug arms in our
data. For each simulation run, 17 vectors were simulated from (15). For the jth study with
sample size nj, predictor values Xij were then generated from a normal distribution with
mean μx and standard deviation σx. From each of the 17 generated data sets, the sample
means of the outcomes Y and predictors X were obtained along with their standard
deviations to be used in estimating parameters in a meta-regression. Meta-regression models
were estimated for each simulated data set using three methods: (i) ordinary least-squares
(OLS) with no weighting, (ii) a weighed least-squares using weights based on the estimated
standard errors of the outcome and (iii) a random effects model (14) estimated using
restricted maximum likelihood (REML) [e.g. 17] by implementing the rma function in the R
metafor package [23].

Figure 4 shows slope estimates under four conditions. Top left panel (a) presents the
situation when the typical assumptions underlying mixed effects models are satisfied, i.e.,
the random slope and intercepts (β0, β1) are independent of the covariates μx. Panels (b) and
(c) present the case when the slopes do not vary, i.e., no random effect for slope and no
correlation between the slopes and μx. The difference between panels (b) and (c) is in the
magnitude of corr(μx, β0): the correlation in panel (b) is smaller and equal to the correlation
observed in our data, and in panel (c) the correlation is set to 0.5. Panel (d) shows the case,
when (β0, β1) are correlated with μx and the parameters are exactly equal to the observed
values given in (15). On each panel, the parameters β¯1, α1 and γ1, estimated from the
(known) data generating distribution, are shown as vertical lines. The panels in the plot
show nonparametric density estimates of the slope estimates from 500 simulated data sets,
where the meta-regression slopes were estimated by one of methods (i), (ii) or (iii) from
above. In all of the cases the REML estimates of the random effect variance is much larger

(by over an order of magnitude) than the sample variance of the mean responses  and
consequently the OLS slopes estimates are nearly equal to the slopes estimated from the
random effect models – that is why the OLS densities are not visible on Figure 4 [e.g., 17,
page 387].

On panel (a) of Figure 4, where (β0, β1) are independent of μx, there is no ecological bias
and β¯1 = α1 = γ1. In this case all methods are yielding unbiased estimates of these slopes. On
panel (b), where the conditional (on study j) slopes β1 are all equal, but the random
intercepts β0 and μx are correlated, γ1 ≠ β1. However, because the corr(β0, μx) is small the
difference between them is not very large. In contrast, panel (c) shows that the difference
between β¯1 and γ1 can be quite large when the intercepts and x-means are strongly
correlated. Notice, that in all cases α1 is between β¯1 and γ1, since it is a weighted average of
the later two parameters, see (12). Finally, panel (d), which is based on the observed data,
presents the most realistic situation: the slopes vary and the random intercepts and slopes are
correlated with μx. There are large discrepancies between the meta-regression slope γ1 and
both β¯1 and α1.

Figure 5 shows the (nonlinear) regression curve E[Y |X] from (7) (which has been generated
by a Monte Carlo simulation of 100,000 randomly generated variates from a tri-variate
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normal distribution with parameters from (15)), and corresponds to the scenario on panel (d)
of Figure 4. This figure also shows the line defined by the fixed effects intercept β¯0 and
slope β¯1 and the best linear approximation y = α0 + α1x to the true regression curve, with α1
given by (10). In addition, the meta-regression line y = γ0 + γ1x is also plotted. The figure
illustrates that there is a marked difference between the marginal population regression
curve and the meta-regression line as well as a large discrepancy between the meta-
regression line and the line defined by the fixed effects slope and intercept. The online
eSupplement provides derivations relating the slope and intercept parameters used to create
this plot for the meta-regression line and the best-fit line in terms of the parameters defining
the distribution of Θ in (15).

If the random effects model is correctly specified, the meta-regression slope estimator is
estimating the true fixed-effects slope. However, the strong assumptions required for the
meta-regression random effects model (14) seem unwarranted in practice and the meta-
regression slope γ1 estimated from a random effects model in that case is estimating
something other than β1.

If the model generating the data is as in (14) with β1 constant across studies and corr(μx, β0)
= 0, then the meta-regression slope from model (14) is equal to the common slope. In this
idealized case, the variance of μy given μx is the variance of the intercepts, estimated by τ̂2,
the “heterogeneity parameter”. The heterogeneity parameter estimate is regularly used to
assess whether the intercepts are all equal, i.e., all regression lines are identical. However, in
the frequently occurring situations, where the random effect model assumptions are violated,
var(μy|μx) is given by

(16)

and consequently, τ̂2 does not correspond to a measure of intercept heterogeneity and has no
clear interpretation. To illustrate the problem, Figure 6 shows the sampling distribution of τ̂2

based on the simulations presented in panel (d) of Figure 4. τ̂2 grossly underestimates the
true intercept variance τ2 = 24.45 and also underestimates var(μy|μx). In fact, τ̂2 is
estimating some complicated function of the true model parameters which can be
determined using the approach in [24]. Thus, when the (misspecified) random effects meta-
regression model (14) is used to estimate the relationship between X and Y, not only does
the estimated meta-regression slope generally differ from β1, but also τ̂2 has no clear
meaning and interpreting it as a measure of heterogeneity is misleading.

4. Application: Antidepressant Efficacy vs. Baseline Depression Severity
In this section we return to the ten antidepressant studies mentioned in the Introduction to
compare the meta-regression results to subject-level regression results. The duration of
treatment in the studies varied from 5 weeks to 12 weeks with roughly weekly evaluations.
The entire pooled data set consists of 3132 subjects of whom 1080 were treated with a
placebo. All studies had a placebo arm and one or more drug arms – either different drugs or
different doses of the same drug. The drugs were fluoxetine and imipramine, and in one
study there was a phenelzine arm. The baseline depression severity X in all studies was
measured by the HRSD. The outcome Y is the improvement in depression severity
measured as the change from baseline to end of treatment. Although using the change score
as the outcome in evaluating the efficacy in clinical trials in known to have weaknesses
[e.g., see 6; 7] and the practice is discouraged in favor of the actual post-treatment scores,
this modeling choice is not a focus of this paper and the derivations here do not depend on
how Y is defined. Thus, we use Y = “change score” in order to parallel the analysis of [1],
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which motivated this work. In the analysis of individual studies, the estimated slopes using
model (2) of all arms of all studies were positive and significantly so, except for one of the
drug arms and one of the placebo arms (from two different studies, notedly, with the
smallest sample sizes of fewer than 100 subjects). Analyses were performed on different
subsets of subjects: only those with at least 6 weeks of data, or only those with at least 3, 2
or 1 post-baseline assessments. Results varied, but not qualitatively with respect to issues
that are the focus of this work, so here we report the analysis of the most inclusive subset –
all subjects with at least one post-baseline assessment.

Figure 7, panel (a) shows a scatterplot (improvement versus baseline depression severity) for
all subjects in the 10 studies. Due to the discreteness of the data (HRSD is recorded on an
integer scale), many of the data points overlapped. Therefore, each point in Figure 7 is a
bubble, whose size is directly proportional to the number of subjects that shared the same
coordinates. Because the HRSD scores are positive, the improvement (baseline minus end of
study HRSD) cannot exceed the baseline and the points in the figure are constrained to lie
below the 45° angle line. Nonparametric regression loess curves [25] (solid curves) are
plotted for all drug and all placebo treated subjects (ignoring study) with the drug curve
laying entirely above the placebo curve. To access the variability of the nonparametric
regression, 100 bootstrap samples of each of the placebo and drug arms of each study were
obtained and loess curves were computed for each combined bootstrap sample (indicated by
the dashed curves in Figure 7). The loess regression curves give an overall impression of the
trend of the marginal relationship between baseline symptoms severity and improvement
and indicate that drug treated subjects experience a greater degree of improvement than
subjects treated with a placebo. In addition, it appears that for subjects with low to mild
baseline severity (HRSD < 22), there is less benefit from the drug – the difference in average
improvement between drug and placebo is smaller than for subjects with higher baseline
severity. Of course, this could be, at least partly, a consequence of the ceiling effect, since
subjects with lower baseline HRSD have less room for improvement. There is also a great
deal of variability in the nonparametric regression curves at the upper end of the baseline
severity, likely due to the small number of subjects with baseline HRSD > 35. Note that the
loess curves for drug and placebo arms are nonlinear and the shape of the drug arm curve
has the same shape as the simulated regression curve E[Y |X] for the infinite mixture shown
in Figure 5 which is to be expected because the random variates in that figure were
simulated based on sample statistics from the drug arms.

4.1. Linear Mixed Effects Model Fit to Subject-Level Data
To account for the clustering of subjects within studies, the mixed effects model (13) with
the treatment effect T was fit to the subject level data

(17)

where Yij and Xij are the change from baseline and the baseline HRSD of the ith subject in
the jth study, Tij is the treatment indicator (T = 0 for placebo and T = 1 for active drug), and
the random effects are assumed to be independent of the error εij. The model with random
intercepts and slopes allows for different variances of the random effects for placebo and
active treatment groups within the same study. The results are plotted in Figure 7 panel (b),
which shows the raw data and the regression lines based on the fixed effects for the placebo
and drug treated subjects (the dashed lines are parametric pointwise 95% confidence bounds
about the lines).

The estimated fixed effect slope for X for the placebo treated subjects is 0.359 with an
estimated standard error of 0.049. The fixed effect interaction was estimated to be 0.175
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with standard error 0.058 so that the estimated slope for drug treated subjects is 0.543. A
95% bootstrap confidence interval for the fixed effect interaction term is (0.08, 0.27). The
slopes and the interaction term in the model were significant. The interaction is clearly
manifested by the increasing divergence seen between the placebo and drug lines as baseline
severity goes from low to high. We note in passing that lines (not shown), with intercepts
and slopes that are given by the weighted averages across studies from (5), coincide very
closely with the fixed effects lines estimated by (17) plotted on Figure 7(b).

4.2. Meta-Regression Results
The mean baseline and improvement from each arm in all studies were computed and these
means are plotted in Figure 7 panel (c). The circles indicate the placebo means and the
triangles are the drug means. In a typical meta-regression, these means along with sample
sizes and standard errors would be the only information available instead of the actual
subject-level data. The size of the plotting symbols are proportional to the inverse of the
standard error of the mean improvement. The solid lines in Figure 7(c) are obtained from a
random-effects meta-regression model

(18)

where δj ~ N(0, τ2) is a random effect for heterogeneity between studies, considered

independent of the error . The model is fit using restricted maximum
likelihood (REML) estimation and the R-package metafor [23]. Even though there are only a
few studies, the effect of baseline severity is highly significant in the meta-regression.
However, the interaction term is not significant (p-value = 0.75), which is not surprising
given the low power of meta-regression to detects interactions between a treatment indicator
and a covariate [15; 12]. The estimated common slope in the meta-regression (from a meta-
regression model without an interaction between treatment and X) is 0.363. The drug main
effect is also highly significant and estimated to be 3.47 with standard error 0.501 indicating
that from the meta-regression model, subjects on active treatment have a mean improvement
of about 3.47 HRSD units higher than placebo treated subjects for all levels of baseline
severity.

For reference, panel (c) of Figure 7 also shows the estimated regression lines (dashed lines)
from fitting (17), which are shown on panel (b). The fixed-effects regression line for
placebo-treated subjects overlaps almost perfectly with the meta-regression placebo line and
cannot be distinguished on the figure. Because the estimated meta-regression line coincides
almost exactly with the fixed effects regression line obtained from (17), it appears the
placebo arms are consistent with the slice model of Section 2.1. This in not entirely
surprising because the treatments across placebo arms are similar and it is conceivable that
humans can be (mostly) homogeneous in response to placebo. Unlike the case of a typical
meta-regression, because the raw data are available, a test for equality of the intercepts and
slopes across the placebo arms of the studies, i.e. test for heterogeneity [26] using estimated
intercepts and slopes (and their estimated standard errors) is possible. The p-values from
these tests are 0.737 and 0.749 respectively showing that the placebo arms are consistent
with the slice model of Section 2.1. As is shown by [27], this test has a very low power to
detect heterogeneity and therefore the homogeneity of the placebo regression lines can be
viewed with skepticism. However, the conclusion of heterogeneity for the drug arms seems
plausible because the p-values of the chi-square tests are 0.135 for intercept and 0.058 for
slopes.
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The meta-regression results for the drug treated subjects differ fairly substantially from the
analysis of the subject-level data. In the analysis of the subject level data, there was a
significant interaction indicating that the degree of improvement of drug treated subjects
over placebo treated subjects increased on average as baseline severity increased. However,
this interaction is very small and not significant in the meta-regression. The difference in the
meta-regression slope γ1 (common for drug and placebo) and the average within study slope
β¯1 for the drug arms is due to the second term in (12) and this term diminishes the
interaction effect seen in the subject-level data analysis. We computed the value of the
second term from (12) separately for the placebo and drug arms of the studies based on a
finite mixture (see (5)): the values were −0.058 and −0.102 respectively, explaining the lack
of appreciable difference between the estimates of γ1 and β¯1 for placebo and the observed
negative bias in the meta-regression coefficient for the drug arms.

4.3. Effect of Variance of μx on Meta-Regression
From (12) it can be seen that the difference between the meta-regression slope γ1 and the
average across studies slope β¯1 depends on the variance of the study means μx. Including in
the meta-analysis studies with a wide range of average subject characteristics x¯ has the
potential of reducing this difference, as discussed at the end of Section 2.2. Conversely,
reducing the range of the average baseline levels of x, which is sometimes done to ensure
similar patient populations for the meta-analysis, might result in a larger discrepancy of the
meta-regression slope γ1 from β¯1.

As was shown in Figure 1 in the Introduction, using only the six studies with a restricted
range 22 < Baseline HRSD < 31 changed the meta-regression results dramatically from the
meta-regression on all ten studies. Despite the small meta-regression sample size, the
interaction term is now significant (p = 0.0443), with the slope for the nine drug arms being
positive with an estimate of 0.499 and the slope for the six placebo arms being negative with
an estimate of −0.146, although not significantly different from zero (p = 0.539). Recall that
Figure 1 also showed individual subject-level regression lines estimated from model (2)
which all had positive slopes even though the meta-regression line for the placebo arms had
a negative slope.

We maintain that in practice it is very difficult not to interpret the results from meta-
regression on a subject level and to restrict the inferences to study-level characteristics.
Thus, the interpretation of the meta-regression that would likely be given in this case is that
the relative efficacy of the drug compared to placebo increases with baseline depression
severity and this is due to both a small decline in placebo effect and a significant rise of drug
effect associated with higher baseline levels of symptom severity. Of course, as was reported
in the previous sections, analysis of the subject-level data shows that the average
improvement increases as baseline severity increases for both placebo and drug treated
subjects.

4.4. General Comments
There are numerous modifications that can be made to the analysis presented here which
will inevitably lead to differing results (e.g. distinguishing different drugs and doses in the
model, restricting analysis to subjects at least two or three post-randomization observations,
etc). Covariates such as sex and age could have been included. Sex did not appear to have an
effect on the outcome, but age was significant, with older patients tending to have weaker
response to the medications and we could have included that as well. Each of the studies
were longitudinal where subjects were evaluated over several weeks and we could have
compared the results of a longitudinal data analysis with the meta-regression results as well
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as was done in [28]. Although the effects of all these factors are potentially interesting, we
have focused the scope of this paper on shortcomings with using meta-regression models.

5. Discussion
The goal of this paper is to elucidate the statistical issues underlying current controversies in
public media as well as in the psychiatric literature regarding the efficacy of antidepressants,
much of which has stemmed from the use of meta-regression. It is clear that for a collection
of studies, the relationship between the means of the outcome and the means of a subject
level covariate is usually not the same as the relationship between the outcome and the
covariate in the individual studies, nor is it the same as the relationship over the entire
collection of studies (i.e., ignoring study). In other words the meta-regression relationship
(γ1) from (1) is not the same as the conditional study relationships (β1) from (2) or the
marginal relationship over all studies (α1) from (9). Based on numerous publications in the
medical literature (including the motivating antidepressant paper [1]) it is evident that many
investigators conduct meta-regression with the goal of making inferences about the
conditional relationship (β1) between the outcome and the covariate, although it is possible
that the marginal association (α1) might be of interest also. We take the view that the
relationship that is most intuitive is the conditional relationship (which might be different
across the studies). Table 1 shows how the meta-regression relationship and the marginal
relationship depend on the parameters of the conditional relationships (β0, β1), as well as on
the other parameters characterizing the distributions of the outcome and the covariate within
and between studies (which are derived in the eSupplement C under some reasonable
simplifying assumptions).

From Table 1 it is clear that the slope of the meta-regression relationship (γ1) is equal to the
common slope (or the average of the slopes) of the individual studies relationships when the
distribution of the studies is such that the means of the covariate are not correlated with the
study intercepts and slopes. However, if only means and standard deviations for the outcome
and the covariate are available from the studies, these conditions cannot be verified.
Columns 4 and 6 of Table 1 present the cases when the slope of the meta-regression does not
equal the common study slopes (or the average of the study slopes). In those cases, the meta-
regression slope equals β1 (or β¯1) plus extra non-zero “bias” terms (B1 to B4 from the table),
but are unknown in typical meta-analysis situations. These conclusions do not depend on the
estimation methods, but rather they concern the parameters that characterize the relationship
between outcome and covariate, and the association between these parameters.

Let us now consider estimation. The currently recommended approach for meta-regression
estimation – a random effects meta-regression model [e.g., 16; 17; 18; 9] – makes the
assumptions that (i) β1 are all equal, and (ii) the random intercepts are independent of the
mean covariate, i.e., cov(μx, β0) = 0. These assumptions are given in the third column of
Table 1 and if they hold true, then the meta-regression slope is estimating the common study
slope β1. In fact, even if (i) from above is not satisfied, but (iii) cov(μx, β1) = 0 (see the fifth
column), the meta-regression model will be unbiased for the average study slope β¯1.
However, the conditions (i)–(iii) cannot be verified without estimates of (β0, β1) from the
individual studies and therefore, when conducting meta-regression there is no way of
knowing how the estimate of γ1 relates to β1, β¯1, or α1.

Methods for estimating meta-regression depend on restrictive and usually unverifiable
assumptions when only group level data is available and this can lead to results that are quite
misleading when the assumptions are violated. Moreover, a meta-regression slope can have
a different sign than slopes from subject-level analysis and this situation, contrary to
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common wisdom, is not that unusual, as investigators try to include only similar studies in
the meta-analysis, thus restricting the range of mean covariate values.

In summary, meta-regression inferences can be valid when the covariate is a study-level
characteristic, such as drug dose or treatment duration. However, using meta-regression
when the covariate is an average subject-level characteristic (such proportion of women, or
average age, or average baseline symptoms severity) is extremely risky when no information
is available about the association between the covariate and the outcome on subject level
from the individual studies. A major difficulty is the fact that when the covariate is a subject
characteristic, it is quite impossible not to interpret results from meta-regression on a
subject-level.
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Figure 1.
Meta-Regression Results: Plot of the study means and meta-regression lines for six studies
with baseline mean HRSD restricted to be between 22 and 31 (solid lines). Also plotted are
the lines from regressions using subject-level data individually for each of the 6 placebo
arms and 9 drug arms in the six studies (dashed lines).

Petkova et al. Page 19

Stat Med. Author manuscript; available in PMC 2014 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Simulated 5-component equal priors (1/5) finite mixtures of bivariate normal distributions
all having the same slope β1 = 1.3. The solid curve is the regression E[Y|X] for the mixture
distribution. The dashed curve is the line with slope β1 and an intercept equal to the
weighted average of mixture component intercepts. The large circles are the actual mixture
component means. The means of the x-components are equally spaced from 25 to 29 for
each mixture. The mixtures in the left and right frames differ only in the ranges of the
equally spaced y-intercepts for the mixture components: left-frame intercepts range from 9–
11 and the right frame intercepts are more spread out and range from 5–15. There is perfect
positive relationship between the x–means and the y–intercepts.
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Figure 3.
Same as Figure 2 except that the common mixture component slope is β1 = 0.3 and the y-
intercepts are equally spaced from −9 to −11 in 1/2 increments so that mixture component
x–means and the y-intercepts are perfectly negatively correlated.
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Figure 4.
Simulation results comparing three methods of meta-regression estimation on data simulated
from model (13), based on sample statistics from antidepressant drug arms, given in (15).
The dashed vertical line is the fixed effect slope β¯1, the solid vertical line is the between-
study meta-regression slope γ1 and the dotted line is the slope α1 of the linear approximation
to the marginal relationship (7). The density plots are based on estimates from 500 simulated
data sets using weighted least-squares and a random effects model: (a) (β0, β1) are
independent of μx; (b) β1 is constant, corr(β0, μx) is small; (c) β1 is constant, corr(β0, μx) is
large; (d)(β0, β1) and μx are not independent and the dependencies are those observed in the
actual data.
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Figure 5.
The regression curve E[Y |X] for the simulated random effects model based on the drug arm
statistics in Section 4 (case presented on Figure 4d). Also shown are the regression lines: (i)
the best linear approximation to E[Y |X] given by y = α0 + α1x; (ii) the fixed effect line y =
β¯0 + β¯1x; and (iii) the meta-regression line y = γ0 + γ1x.
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Figure 6.
Distribution of τ̂2 from the simulations in Figure 4d with its mean (most left solid vertical
line), compared to the true τ2 = 24.45 (right most solid vertical line) and the average of
var(μy|μx) from (16) (dashed vertical line).
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Figure 7.
Plot of subject-level data from all studies of improvement versus baseline depression
severity. The data points are indicated by the bubbles where the size of the bubble is directly
proportional to the number of subjects that share the same coordinates. (a): The solid curves
are nonparametric loess smoothers on subject-level data for drug and placebo treated
subjects. Loess curves were also generated for 100 bootstrap samples to highlight the
variability in the estimated nonparametric curves. (b): The solid lines correspond to the
fixed effect regression lines for drug and placebo arms, from a mixed effects model on
study-level data with random study effects for treatment, X and treatment by X interactions.
The dashed lines are upper and lower 95% pointwise confidence bounds. (c): Meta-
Regression Results: Plot of the mean improvement vs. baseline for all arms of all studies
(circles are for placebo treated and triangles for drug treated arms), sized according to the
inverse of the standard error of the mean response. The solid lines are the meta-regression
lines from REML estimation with R-package metafor [23]. For reference, the dashed line is
the fixed effect line from panel (b) for drug treated subjects. (The fixed-effect line for
placebo treated subjects overlaps with placebo-treated meta-regression line and cannot be
seen clearly.)
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